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(Communicated by D. Hinton)

Abstract. In this paper, we establish several new Lyapunov-type inequalities for two classes of
Dirichlet quasilinear systems, which almost generalize and extend all related existing results
in the literature. As an application, we also obtain sharp lower bounds for the eigenvalues of
corresponding systems.

1. Introduction

In this paper, we state and prove new generalized Lyapunov-type inequalities for
the following systems

−((r1(x)φp1 (u′1))
′ = f1(x)φα1 (u1) |u2|α2

−((r2(x)φp2 (u′2))
′ = f2(x)φβ2

(u2) |u1|β1

}
, (1.1)

where φγ (u) = |u|γ−2 u, γ > 1, rk , fk ∈C ([a,b] ,R) , rk(x) > 0 for k = 1,2 and x ∈ R ,
(u1(x),u2(x)) is a real nontrivial solution of the system (1.1) such that

uk (a) = 0 = uk (b) (1.2)

for k = 1,2, a,b ∈ R with a < b are consecutive zeros, uk for k = 1,2 are not identi-
cally zero on [a,b] , 1 < pk < ∞ and α2 � 0, β1 � 0 satisfy

α1

p1
+

α2

p2
= 1 and

β1

p1
+

β2

p2
= 1. (1.3)

We also consider the following system

− (
rk (x)φpk

(
u′k

))′ = fk(x)φαk (uk)
n

∏
i=1(�=k)

|ui|αi , (1.4)
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where n∈N, φγ (u)= |u|γ−2 u, γ > 1, rk , fk ∈C ([a,b] ,R) , rk(x) > 0 for k = 1,2, ...,n
and x∈R , (u1(x),u2(x), ...,un(x)) is a real nontrivial solution of the system (1.4) such
that

uk (a) = 0 = uk (b) (1.5)

for k = 1,2, ...,n, a,b ∈ R with a < b are consecutive zeros, uk for k = 1,2, ...,n are
not identically zero on [a,b], 1 < pk < ∞ and the nonnegative parameters αk satisfy

n

∑
k=1

αk

pk
= 1. (1.6)

As an application, we have also investigated in the lower bounds on the eigenvalues
of the following problem. As usual, it is easier to find upper bounds for eigenvalues than
lower bounds. In fact, they can be obtained by using elementary inequalities. Finding
the estimated lower bounds is based on giving a suitable Lyapunov inequality for the
corresponding systems.

Let λk for k = 1,2, ...,n be generalized eigenvalues of the problem (1.4)–(1.6)
and r(x) be a positive function for x ∈ R . Then, the problem (1.4)–(1.6) with fk(x) =
λkαkr(x) > 0 for k = 1,2, ...,n and x ∈ R reduces to the following problem

− (
rk (x)φpk

(
u′k

))′ = λkαkr(x)φαk (uk)
n

∏
i=1(�=k)

|ui|αi , (1.7)

uk (a) = 0 = uk (b) , k = 1,2, ...,n, (1.8)
n

∑
k=1

αk

pk
= 1. (1.9)

Before we proceed with the description of the main problem, we discuss a few
hints concerning the literature on the results obtained in the problem (1.4)–(1.6) and
the special cases of problem (1.7)–(1.9).

Firstly, we give the following results for second order differential equations.
If n = 1, p1 = 2 and r1 (x) = 1, then the problem (1.4)–(1.6) reduces to the fol-

lowing problem

−u′′1 = f1 (x)u1, (1.10)

u1 (a) = 0 = u1 (b) . (1.11)

Lyapunov [2] proved the following remarkable result:

THEOREM A. If f1 ∈C ([a,b] , [0,∞)) and u1 is a nontrivial solution on [a,b] for
the problem (1.10)–(1.11) , then the so-called Lyapunov inequality∫ b

a
f1 (s)ds � 4

b−a
(1.12)

holds.

The Lyapunov inequality and many of its generalizations have proven to be useful
tools in oscillation theory, disconjugacy, eigenvalue problems, and numerous other ap-
plications for the theories of differential and difference equations. A thorough literature
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review of continuous and discrete Lyapunov inequalities and their applications can be
found in the survey paper by Cheng [3] and the references quoted therein. For some of
the most recent works on Lyapunov-type inequalities, the reader is referred to [1–42].

Since then, there have been several results to generalize the above linear equation
in many directions. Before stating many efforts, it is worth to the mention following
works.

By using Green’s function, Hartman [17] obtained the generalized inequality as
follows:

THEOREM B. If f1 ∈C ([a,b] , [0,∞)) and u1 is a nontrivial solution on [a,b] for
the problem (1.10)–(1.11) , then the inequality

∫ b

a
f1 (s)

(s−a)(b− s)
b−a

ds � 1 (1.13)

holds.

We know that the inequality

4AB � (A+B)2 (1.14)

holds where A and B are positive numbers. If we take A = x−a > 0 and B = b−x > 0
for x ∈ (a,b) in the function M (x) := (x−a)(b− x), then we obtain the following
inequality

(x−a)(b− x) �
(

b−a
2

)2

, (1.15)

i.e.

max
a<x<b

M (x) = M

(
a+b

2

)
=

(
b−a

2

)2

. (1.16)

Thus, condition (1.13) is a generalization of condition (1.12).
If n = 1 and r1 (x) = 1, then the problem (1.4)–(1.6) reduces to the following

problem

− (φp1

(
u′1

)
)′ = f1(x)φp1 (u1) (1.17)

u1 (a) = 0 = u1 (b) . (1.18)

Pinasco [28] extended the Lyapunov inequality from the linear equation to the
half-linear equation as follows:

THEOREM C. If f1 ∈ C ([a,b] ,R) be a bounded positive function and u1 is a
nontrivial solution on [a,b] for the problem (1.17)–(1.18) , then the inequality

∫ b

a
f1 (s)ds � 2

(
2

b−a

)p1−1

(1.19)

holds.

Sim and Lee [31] obtained the generalized inequality (1.19) as follows:



846 AYDIN TIRYAKI, DEVRIM ÇAKMAK AND MUSTAFA FAHRI AKTAŞ

THEOREM D. If f1 ∈C ([a,b] , [0,∞)) and u1 is a nontrivial solution on [a,b] for
the problem (1.17)–(1.18) , then the inequality

∫ b

a
f1(s)

[
2(s−a)(b− s)

b−a

]p1−1

ds � 2 (1.20)

holds.

Note that when p1 = 2 in the problem (1.17)–(1.18), the condition (1.20) coincides
with the condition (1.13). But Hartman’s argument does not work here, due to the lack
of Green’s function for p1 -Laplacian. It is easy to see that, by using the inequality
(1.14), condition (1.20) is a generalization of condition (1.19).

It is clear that the problem (1.1)–(1.3) with the condition

(α2 = 0 and α1 = p1) or (β1 = 0 and β2 = p2), (1.21)

or the problem (1.4)–(1.6) for n = 1 reduces to the following type problem

− (
r1 (x)φp1

(
u′1

))′ = f1(x)φp1 (u1) (1.22)

u1 (a) = 0 = u1 (b) . (1.23)

Moreover, when αk = pk for k = 1,2, ...,n, and for i �= k , αi = 0 for i = 1, 2, ...,n ,
we obtain a single equation from system (1.4).

Now, throughout the paper for the sake of brevity, we denote

f +
k (x) = max{0, fk(x)} is the nonnegative part of fk(x), (1.24)

Dk (x) =
[ξk(x)ηk(x)]

pk−1

ξ pk−1
k (x)+ η pk−1

k (x)
, Ek (x) = 2pk−2

(
ξk(x)ηk(x)

ξk(x)+ ηk(x)

)pk−1

(1.25)

and

Fk = 2−pk (ξk (x)+ ηk (x))pk−1 = 2−pk

(∫ b

a
r1/(1−pk)
k (s)ds

)pk−1

, (1.26)

where

ξk(x) =
∫ x

a
r1/(1−pk)
k (s)ds and ηk(x) =

∫ b

x
r1/(1−pk)
k (s)ds (1.27)

for k = 1,2, ...,n .
Wang [42] obtained the following inequality:

THEOREM E. If f1 ∈C ([a,b] ,R) and u1 is a nontrivial solution on [a,b] for the
problem (1.22)–(1.23) , then the inequality

∫ b

a
f +
1 (s)E1 (s)ds > 2p1−2C (p1) (1.28)

holds, where

C (p1) =
{

2p1−2, 1 < p1 < 2
1, p1 � 2.

(1.29)
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Secondly, we give the following results for systems (1.1) and (1.4).
Napoli and Pinasco [21] were interested in the problem of finding Lyapunov-type

inequality for the system (1.4) with n = 2 and rk (x) = 1 for k = 1,2 and obtained a
generalization of the inequalities (1.12) and (1.19) as follows:

THEOREM F. If fk ∈ C ([a,b] , [0,∞)) for k = 1,2 and (u1 (x) ,u2 (x)) is a non-
trivial solution on [a,b] for the problem (1.4)–(1.6) with n = 2 and rk (x) = 1 for
k = 1,2 , then the inequality

2

∏
k=1

(∫ b

a
fk(s)ds

)αk/pk

� 2α1+α2 (b−a)1−(α1+α2) (1.30)

holds.

By using the inequality (1.30), Napoli and Pinasco [21] have also obtained the
lower bounds on the eigenvalues of system (1.7) with n = 2 and rk (x) = 1 for k = 1,2
as follows:

THEOREM G. There exist a function k1(λ1) such that λ2 � k1(λ1) for every gen-
eralized eigenvalue (λ1,λ2) of the problem (1.7)–(1.9) with n = 2 and rk (x) = 1 for
k = 1,2 , where

k1(λ1) =
1

α2

{
2α1+α2 (b−a)1−(α1+α2)

[
(λ1α1)

α1/p1

∫ b

a
r (s)ds

]−1
}p2/α2

. (1.31)

Çakmak and Tiryaki [7] obtained the following inequality for system (1.1).

THEOREM H. If fk ∈C ([a,b] ,R) for k = 1,2 and (u1 (x) ,u2 (x)) is a nontrivial
solution on [a,b] for the problem (1.1)–(1.3) , then the inequality

(∫ b

a
r1/(1−p1)
1 (s)ds

) β1(p1−1)
p1

(∫ b

a
r1/(1−p2)
2 (s)ds

) α2(p2−1)
p2

×
(∫ b

a
f +
1 (s)ds

) β1
p1

(∫ b

a
f +
2 (s)ds

) α2
p2

> 2α2+β1 (1.32)

holds.

Çakmak and Tiryaki [8] extended and generalized the system (1.4) with n = 2 and
rk (x) = 1 for k = 1,2 to the system (1.4) with rk (x) = 1 for k = 1,2, ...,n as follows:

THEOREM I. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x))
is a nontrivial solution on [a,b] for the problem (1.4)–(1.6) with rk (x) = 1 for k =
1,2, ...,n, then the inequality

n

∏
k=1

(∫ b

a
f +
k (s)ds

)αk/pk

�
n

∏
k=1

[
(ck −a)1−pk +(b− ck)

1−pk
]αk/pk

(1.33)
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holds, where |uk(ck)| = max
a<x<b

|uk(x)| for k = 1,2, ...,n.

By using the inequality (1.33), Çakmak and Tiryaki [8] have also obtained the
lower bounds on the eigenvalues of system (1.7) with rk (x) = 1 for k = 1,2, ...,n as
follows:

THEOREM J. There exist a function k2(λ1,λ2, ...,λn−1) such that λn � k2(λ1,
λ2, ...,λn−1) for every generalized eigenvalue (λ1,λ2, ...,λn) of the problem (1.7)–
(1.9) with rk (x) = 1 for k = 1,2, ...,n, where |uk(ck)|= max

a<x<b
|uk(x)| for k = 1,2, ...,n

and

k2(λ1,λ2, ...,λn−1)

=
1

αn

⎧⎨
⎩

n

∏
k=1

[
(ck−a)1−pk +(b−ck)

1−pk
] αk

pk

[
n−1

∏
k=1

(λkαk)
αk
pk

∫ b

a
r(s)ds

]−1
⎫⎬
⎭

pn
αn

. (1.34)

If we use inequality (1.14), by choosing A = x− a > 0 and B = b− x > 0 for
x ∈ (a,b) in the function m(x) := 1

x−a + 1
b−x , then we have the following inequality

1
x−a

+
1

b− x
� 4

b−a
(1.35)

for x ∈ (a,b) , i.e.

min
a<x<b

m(x) = m

(
a+b

2

)
=

4
b−a

.

If we take n = 2 in the problem (1.7)–(1.9), since the inequality (1.35) holds, we ob-
serve that Theorem J improves and generalizes Theorem G. Similarly, by using the
inequality (1.35), Theorem H also generalizes Theorem F.

More recently, by using the ideas of Çakmak and Tiryaki [7, 8] with a slight mod-
ification, Tang and He [32] obtained the following inequalities for systems (1.1) and
(1.4).

THEOREM K. If fk ∈C ([a,b] ,R) for k = 1,2 and (u1 (x) ,u2 (x)) is a nontrivial
solution on [a,b] for the problem (1.1)–(1.3) , then the inequality

(∫ b

a
f +
1 (s)D1 (s)ds

) α1β1
p2
1

(∫ b

a
f +
2 (s)D1 (s)ds

) β1α2
p1 p2

×
(∫ b

a
f +
1 (s)D2 (s)ds

) β1α2
p1p2

(∫ b

a
f +
2 (s)D2 (s)ds

) α2β2
p2
2 > 1 (1.36)

holds.
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THEOREM L. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x))
is a nontrivial solution on [a,b] for the problem (1.4)–(1.6) , then the inequality

∏n
k=1 ∏n

i=1

(∫ b
a f +

i (s)Dk (s)ds
) αkαi

pk pi > 1 (1.37)

holds.

Note that Theorem K with the condition (1.21) (or Theorem 2.2 given in Tang and
He [32]) or Theorem L with n = 1 gives a better result than Theorem E given by Wang
[42] in both cases, i.e. 1 < p1 < 2 and p1 > 2, from the inequality (2.16) in [42].

By using similar technique to Theorem 1.4 of Napoli and Pinasco [21], Tang and
He [32] also obtained the following result, which gives lower bounds for the n -th eigen-
value of λn , from Theorem L for system (1.7) with rk(x) = 1 for k = 1, 2, ...,n .

THEOREM M. There exists a function k3(λ1,λ2, ...,λn−1) such that λn > k3(λ1,λ2,
...,λn−1) for every generalized eigenvalue (λ1,λ2, ...,λn) of the problem (1.7)–(1.9)
with rk(x) = 1 for k = 1, 2, ...,n, where

k3(λ1,λ2, ...,λn−1)

=
1

αn

⎡
⎣∏n−1

i=1 (λiαi)αi/pi ∏n
k=1

(∫ b
a

[(s−a)(b−s)]pk−1

(s−a)pk−1 +(b−s)pk−1 r (s)ds

)αk
pk

⎤
⎦
− pn

αn

. (1.38)

In this paper, our motivation comes from the recent papers of Çakmak and Tiryaki
[7, 8], Sim and Lee [31] and Tang and He [32]. We state and prove several new gener-
alized Lyapunov-type inequalities for the problems (1.1)–(1.3) and (1.4)–(1.6). In fact,
we almost generalize and extend all related existing results in the literature.

In [7] and [8], the authors derive a Lyapunov-type inequality which relates both
points a and b in I = [x0,∞)⊂R at which all components of the solution have consecu-
tive zeros and any point in (a,b) where all components of the solution are maximized.
But here, we derive Lyapunov-type inequalities for the problem (1.1)–(1.3) or (1.4)–
(1.6), where all components of the solution have only consecutive zeros at the points
a,b ∈ R with a < b in I . Namely, we do not required that all of the components of the
solution are maximized at any point in (a,b).

Since our attention is restricted to the Lyapunov-type inequalities for the quasilin-
ear systems of differential equations, we shall assume the existence of the nontrivial
solution of the system (1.1) or (1.4). For readers who contributed to the existence of the
solution of these type systems, we refer to the paper by Afrouzi and Heidarkhani [43].

This paper is organized as follows. In sections 2 and 3, we shall present new
Lyapunov-type inequalities for systems (1.1) and (1.4), respectively. In section 4, we
present an application of this type inequality obtained for the problem (1.4)–(1.6).

Now, we present some inequalities on Dk (x) , Ek (x) and Fk for k = 1,2, ...,n
which are useful in the comparison of our main results. We know that since the function
h(x) = xpk−1 is concave for x > 0 and 1 < pk < 2, Jensen’s inequality h

(ω+v
2

)
�
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1
2 [h(ω)+h(v)] with ω =

1
ξk(x)

and v =
1

ηk(x)
implies

Dk (x) � Ek (x) (1.39)

for 1 < pk < 2, k = 1,2, ...,n . If pk > 2 for k = 1,2, ...,n , then the function h(x) =
xpk−1 is convex for x > 0. Thus, the inequality (1.39) is reversed, i.e.

Dk (x) � Ek (x) (1.40)

for pk > 2, k = 1,2, ...,n . In addition, since the function l(x) = x1−pk is convex for
x > 0 and pk > 1, Jensen’s inequality l

(ω+v
2

)
� 1

2 [l(ω)+ l(v)] with ω = ξk(x) and
v = ηk(x) implies

Dk (x) � Fk (1.41)

for k = 1,2, ...,n . By using inequality (1.14) with A = ξk (x) > 0 and B = ηk (x) > 0
for k = 1,2, ...,n in Ek (x) , we obtain the following inequality

Ek (x) � Fk (1.42)

for k = 1,2, ...,n .

2. Lyapunov-type inequalities for system (1.1)

For system (1.1), one of the main results of this section is the following theorem.

THEOREM 2.1. If fk ∈C ([a,b] ,R) for k = 1,2 and (u1 (x) ,u2 (x)) is a nontrivial
solution on [a,b] for the problem (1.1)–(1.3), then the inequality

1 <

(∫ b

a
f +
1 (s)Dα1/p1

1 (s)Dα2/p2
2 (s)ds

)β1/p1
(∫ b

a
f +
2 (s)Dβ1/p1

1 (s)Dβ2/p2
2 (s)ds

)α2/p2

(2.1)
holds.

Proof. Let uk(a) = 0 = uk(b) for k = 1,2 where a,b ∈ R with a < b are con-
secutive zeros, and uk for k = 1,2 are not identically zero on [a,b] . Multiplying the
first equation of system (1.1) by u1 and the second equation of system (1.1) by u2 ,
integrating from a to b and taking into account that uk(a) = 0 = uk(b) for k = 1,2, we
get ∫ b

a
r1 (s)

∣∣u′1 (s)
∣∣p1 ds =

∫ b

a
f1 (s) |u1 (s)|α1 |u2 (s)|α2 ds (2.2)

and ∫ b

a
r2 (s)

∣∣u′2 (s)
∣∣p2 ds =

∫ b

a
f2 (s) |u1 (s)|β1 |u2 (s)|β2 ds. (2.3)

By using uk (a) = 0 and Hölder’s inequality, we get

|uk (x)| �
∫ x

a

∣∣u′k (s)
∣∣ds �

(∫ x

a
r1/(1−pk)
k (s)ds

)(pk−1)/pk
(∫ x

a
rk (s)

∣∣u′k (s)
∣∣pk ds

)1/pk
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for k = 1,2 and x ∈ [a,b] . Thus, we get

|uk (x)|pk ξ
1−pk
k (x) �

∫ x

a
rk (s)

∣∣u′k (s)
∣∣pk ds (2.4)

for k = 1,2. Similarly, by using uk (b) = 0 and Hölder’s inequality, we get

|uk (x)|pk η
1−pk
k (x) �

∫ b

x
rk (s)

∣∣u′k (s)
∣∣pk ds (2.5)

for k = 1,2 and x ∈ [a,b] . Adding (2.4) and (2.5), we have

|uk (x)|pk � Dk (x)
∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds (2.6)

for k = 1,2 and x∈ [a,b] . After that by using similar technique to the proof of Theorem
2.1 given by Tang and He [32], it can be showed that the equality case in (2.6) does not
hold. Thus, we get

|uk (x)|pk < Dk (x)
∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds (2.7)

for k = 1,2 and x ∈ (a,b) . For k = 1 in the inequality (2.7), we get

|u1 (x)|p1 < D1 (x)
∫ b

a
f1 (s) |u1 (s)|α1 |u2 (s)|α2 ds (2.8)

from (2.2). If we take the α1
p1

and β1
p1

-th powers of both side of inequality (2.8), we
have

|u1 (x)|α1 < Dα1/p1
1 (x)

(∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds

)α1/p1

(2.9)

and

|u1 (x)|β1 < Dβ1/p1
1 (x)

(∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds

)β1/p1

, (2.10)

respectively. Multiplying both sides of (2.9) by f +
1 (x) |u2(x)|α2 , integrating from a to

b , we have(∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds

)1−α1/p1

<

∫ b

a
f +
1 (s) |u2 (s)|α2 Dα1/p1

1 (s)ds. (2.11)

Similarly, for k = 2 in the inequality (2.7), we get

|u2 (x)|p2 < D2 (x)
∫ b

a
f2 (s) |u1 (s)|β1 |u2 (s)|β2 ds (2.12)

from (2.3). If we take the α2
p2

and β2
p2

-th powers of both side of inequality (2.12), we
have

|u2 (x)|α2 < Dα2/p2
2 (x)

(∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds

)α2/p2

(2.13)
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and

|u2 (x)|β2 < Dβ2/p2
2 (x)

(∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds

)β2/p2

, (2.14)

respectively. Multiplying both sides of (2.14) by f +
2 (x) |u1(x)|β1 , integrating from a to

b , we have

(∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds

)1−β2/p2

<

∫ b

a
f +
2 (s) |u1(s)|β1 Dβ2/p2

2 (s)ds. (2.15)

By using (2.13) in (2.11) and (2.10) in (2.15), we have

(∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds

)1−α1/p1

< M1

(∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds

)α2/p2

(2.16)
and

(∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds

)1−β2/p2

< M2

(∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds

)β1/p1

,

(2.17)
where

M1 =
∫ b

a
f +
1 (s)Dα1/p1

1 (s)Dα2/p2
2 (s)ds and M2 =

∫ b

a
f +
2 (s)Dβ1/p1

1 (s)Dβ2/p2
2 (s)ds,

respectively. If we take the e1 and e2 -th powers of both side of inequalities (2.16) and
(2.17), and multiplying the resulting equations, we obtain

[(∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds

)1−α1/p1
]e1

×
[(∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds

)1−β2/p2
]e2

<

[
M1

(∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds

)α2/p2
]e1

×
[
M2

(∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds

)β1/p1
]e2

. (2.18)

It is easy to see that by using similar technique to the proof of Theorem 2.1 given by
Tang and He [32], we obtain the following inequalities

0 <

∫ b

a
f +
1 (s) |u1 (s)|α1 |u2 (s)|α2 ds and 0 <

∫ b

a
f +
2 (s) |u1 (s)|β1 |u2 (s)|β2 ds.

(2.19)
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Now, we choose e1 and e2 such that 0 <
∫ b
a f +

1 (s) |u1 (s)|α1 |u2 (s)|α2 ds and 0 <∫ b
a f +

2 (s) |u1 (s)|β1 |u2 (s)|β2 ds cancel out in inequality (2.18), i.e. solve the homoge-
neous linear system

(1− α1
p1

)e1 − β1
p1

e2 = 0,
α2
p2

e1 −
(
1− β2

p2

)
e2 = 0.

}
(2.20)

We observe that by hypotheses α1
p1

+ α2
p2

= 1 and β1
p1

+ β2
p2

= 1, this system admits a
nontrivial solution, indeed all equations are equivalent to(

1− α1

p1

)
e1 =

β1

p1
e2 and

α2

p2
e1 =

(
1− β2

p2

)
e2.

Hence, we may take e1 = β1
p1

and e2 = α2
p2

, and we get inequality (2.1) which completes
the proof. �

For system (1.1), another main result of this section is the following theorem.

THEOREM 2.2. If fk ∈C ([a,b] ,R) for k = 1,2 and (u1 (x) ,u2 (x)) is a nontrivial
solution on [a,b] for the problem (1.1)–(1.3), then the inequality

1 <

(∫ b

a
f +
1 (s)Eα1/p1

1 (s)Eα2/p2
2 (s)ds

)β1/p1
(∫ b

a
f +
2 (s)Eβ1/p1

1 (s)Eβ2/p2
2 (s)ds

)α2/p2

(2.21)
holds.

Proof. Let uk(a) = 0 = uk(b) for k = 1,2 where a,b ∈ R with a < b are consec-
utive zeros, and uk for k = 1,2 are not identically zero on [a,b] . As in the proof of
Theorem 2.1, we have (2.2)–(2.5). If we take k = 1 in inequalities (2.4) and (2.5), then
we have

|u1 (x)|p1 � ξ p1−1
1 (x)

∫ x

a
r1 (s)

∣∣u′1 (s)
∣∣p1 ds (2.22)

and

|u1 (x)|p1 � η p1−1
1 (x)

∫ b

x
r1 (s)

∣∣u′1 (s)
∣∣p1 ds (2.23)

for x∈ [a,b] . Multiplying the inequalities (2.22) and (2.23) by η p1−1
1 (x) and ξ p1−1

1 (x) ,
respectively, we obtain

η p1−1
1 (x) |u1 (x)|p1 � (ξ1(x)η1(x))

p1−1
∫ x

a
r1 (s)

∣∣u′1 (s)
∣∣p1 ds (2.24)

and

ξ p1−1
1 (x) |u1 (x)|p1 � (ξ1(x)η1(x))

p1−1
∫ b

x
r1 (s)

∣∣u′1 (s)
∣∣p1 ds (2.25)

for x ∈ [a,b] . Thus, adding the inequalities (2.24) and (2.25), we have

|u1 (x)|p1
(

ξ p1−1
1 (x)+ η p1−1

1 (x)
)

� (ξ1(x)η1(x))
p1−1

∫ b

a
r1 (s)

∣∣u′1 (s)
∣∣p1 ds (2.26)
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for x∈ [a,b] . It is easy to see that the function ξ p1−1
1 (x)+η p1−1

1 (x) takes the minimum
value at c1 ∈ (a,b) such that ξ1 (c1) = η1 (c1) . Thus, we get

|u1 (x)|p1
(

ξ p1−1
1 (c1)+ η p1−1

1 (c1)
)

� (ξ1(x)η1(x))
p1−1

∫ b

a
r1 (s)

∣∣u′1 (s)
∣∣p1 ds. (2.27)

Since ξ1(c1)+ η1(c1) = ξ1(x)+ η1(x) , ∀x,c1 ∈ (a,b) , and ξ1(c1) =
ξ1(x)+ η1(x)

2
=

1
2

∫ b
a r1/(1−p1)

1 (s)ds , we have

|u1 (x)|p1
[
22−p1 (ξ1(x)+ η1(x))

p1−1
]

= |u1 (x)|p1
[
2ξ p1−1

1 (c1)
]

�

(ξ1(x)η1(x))
p1−1

∫ b

a
r1 (s)

∣∣u′1 (s)
∣∣p1 ds (2.28)

and hence from (2.2)

|u1 (x)|p1 � E1 (x)
∫ b

a
f1 (s) |u1 (s)|α1 |u2 (s)|α2 ds (2.29)

for x ∈ [a,b] . After that by using similar technique to the proof of Theorem 2.1 given
by Tang and He [32], it can be showed that the equality case in (2.29) does not hold.
Thus, we get

|u1 (x)|p1 < E1 (x)
∫ b

a
f1 (s) |u1 (s)|α1 |u2 (s)|α2 ds (2.30)

for x ∈ (a,b) . The rest of the proof is the same as in the proof of Theorem 2.1, and
hence is omitted. �

REMARK 2.1. It is easy to see from the inequality (1.39) that if we take 1< pk < 2
for k = 1,2, then inequality (2.21) is weaker than inequality (2.1). Hence, Theorem 2.2
is better than Theorem 2.1. Similarly, from the inequality (1.40), if pk > 2 for k = 1,2,
then Theorem 2.1 is better than Theorem 2.2. In addition, if pk = 2 for k = 1,2, then
Theorem 2.1 coincides with Theorem 2.2.

In general case, the results of Tang and He [32] can not be compared with our
results, but they only compared with each other in the special cases as follows.

REMARK 2.2. Let the condition (1.21) holds. Thus, Theorem 2.1 coincides with
Theorem K (or Theorem 2.2 given in Tang and He [32]) for the problem (1.22)–(1.23).
Moreover, from the inequality (1.39), if we take 1 < p1 < 2, then Theorem 2.2 gives a
better result than Theorem K for the problem (1.22)–(1.23).

By using the inequality (1.41) in (2.1) or (1.42) in (2.21), we obtain the following
result from Theorem 2.1 or 2.2.

COROLLARY 2.1. If fk ∈ C ([a,b] ,R) for k = 1,2 and (u1 (x) ,u2 (x)) is a non-
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trivial solution on [a,b] for the problem (1.1)–(1.3), then the inequality

(∫ b

a
r1/(1−p1)
1 (s)ds

) β1(p1−1)
p1

(∫ b

a
r1/(1−p2)
2 (s)ds

) α2(p2−1)
p2

×
(∫ b

a
f +
1 (s)ds

) β1
p1

(∫ b

a
f +
2 (s)ds

) α2
p2

> 2α2+β1 (2.31)

holds.

REMARK 2.3. It is clear that Corollary 2.1 coincides with Theorem H given by
[7]. In fact, Theorem 2.1 or 2.2 is a generalization of Theorem H.

3. Lyapunov-type inequalities for system (1.4)

For system (1.4), one of the main results of this section is the following theorem.

THEOREM 3.1. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x))
is a nontrivial solution on [a,b] for the problem (1.4)–(1.6), then the inequality

1 <
n

∏
k=1

(∫ b

a
f +
k (s)

n

∏
i=1

Dαi/pi
i (s)ds

)αk/pk

(3.1)

holds.

Proof. Let uk(a) = 0 = uk(b) for k = 1,2, ...,n where n ∈ N, a,b∈ R with a < b
are consecutive zeros and uk for k = 1,2, ...,n are not identically zero on [a,b] . By
using uk (a) = 0 and Hölder’s inequality, we get

|uk (x)| �
∫ x

a

∣∣u′k (s)
∣∣ds �

(∫ x

a
r1/(1−pk)
k (s)ds

)(pk−1)/pk
(∫ x

a
rk (s)

∣∣u′k (s)
∣∣pk ds

)1/pk

for k = 1,2, ...,n and x ∈ [a,b] . Thus, we get

|uk (x)|pk ξ
1−pk
k (x) �

∫ x

a
rk (s)

∣∣u′k (s)
∣∣pk ds (3.2)

for k = 1,2, ...,n . Similarly, by using uk (b) = 0 and Hölder’s inequality, we get

|uk (x)|pk η
1−pk
k (x) �

∫ b

x
rk (s)

∣∣u′k (s)
∣∣pk ds (3.3)

for k = 1,2, ...,n and x ∈ [a,b] . Adding (3.2) and (3.3), we have

|uk (x)|pk � Dk (x)
∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds (3.4)
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for k = 1,2, ...,n and x ∈ [a,b] . After that by using similar technique to the proof of
Theorem 3.1 given by Tang and He [32], it can be showed that the equality case in (3.4)
does not hold. Thus, we get

|uk (x)|pk < Apk/αk
k Dk (x) , (3.5)

where x ∈ (a,b) and Ak =
(∫ b

a rk (s)
∣∣u′k (s)

∣∣pk ds
)αk/pk

for k = 1,2, ...,n . If we take

the αk
pk

-th power of both side of inequality (3.5), we obtain

|uk (x)|αk < AkD
αk/pk
k (x) . (3.6)

Multiplying both sides of (3.6) by f +
k (x)

n

∏
i=1( �=k)

|ui(x)|αi for k = 1,2, ...,n, integrating

from a to b , we have∫ b

a
f +
k (s)

n

∏
i=1

|ui (s)|αi ds <

∫ b

a
AkD

αk/pk
k (s) f +

k (s)
n

∏
i=1(�=k)

|ui(s)|αi ds (3.7)

for k = 1,2, ...,n . On the other hand, multiplying the k -th equation of system (1.4) by
uk and integrating from a to b , we get∫ b

a
rk (s)

∣∣u′k(s)∣∣pk ds =
∫ b

a
fk(s)

n

∏
i=1

|ui (s)|αi ds �
∫ b

a
f +
k (s)

n

∏
i=1

|ui (s)|αi ds (3.8)

for k = 1,2, ...,n . By using (3.8) in (3.7), we have∫ b

a
rk (s)

∣∣u′k(s)∣∣pk ds <

∫ b

a
AkD

αk/pk
k (s) f +

k (s)
n

∏
i=1( �=k)

|ui (s)|αi ds (3.9)

for k = 1,2, ...,n . Therefore, by using (3.6) in (3.9), we have(∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds

)1−αk/pk

<
n

∏
i=1( �=k)

Ai

∫ b

a
f +
k (s)

n

∏
i=1

Dαi/pi
i (s)ds (3.10)

for k = 1,2, ...,n . If we take the ek -th power of both side of inequalities (3.10) for
k = 1,2, ... ,n , and multiplying the resulting equations, we obtain

n

∏
k=1

(∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds

)ek(1−αk/pk)

<
n

∏
k=1

(
n

∏
i=1(�=k)

Ai

∫ b

a
f +
k (s)

n

∏
i=1

Dαi/pi
i (s)ds

)ek

and hence

n

∏
k=1

(∫ b

a
rk (s)

∣∣u′k(s)∣∣pk ds

)ek(1−αk/pk)

<
n

∏
k=1

(∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds

) αk
pk

n
∑

i=1(�=k)
ei n

∏
k=1

(∫ b

a
f +
k (s)

n

∏
i=1

Dαi/pi
i (s)ds

)ek

. (3.11)
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It is easy to see that by using similar technique to the proof of Theorem 3.1 given by
Tang and He [32], we obtain the following inequalities

∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds > 0 (3.12)

for k = 1,2, ...,n . Now, we choose ek such that
∫ b
a rk (s)

∣∣u′k(s)∣∣pk ds for k = 1,2, ...,n
cancel out in inequality (3.11), i.e. solve the homogeneous linear system

(p1 −α1)e1 − α1e2 − α1e3 ... − α1en = 0
−α2e1 + (p2−α2)e2 − α2e3 ... − α2en = 0

...
−αne1 − αne2 − αne3 ... + (pn −αn)en = 0

⎫⎪⎪⎬
⎪⎪⎭ . (3.13)

We observe that by hypothesis
n

∑
k=1

αk

pk
= 1, this system admits a nontrivial solution,

indeed all equations are equivalent to

αk

pk

(
n

∑
i=1(�=k)

ei

)
= ek

(
n

∑
i=1(�=k)

αi

pi

)

for k = 1,2, ...,n . Hence, we may take ek = αk
pk

for k = 1,2, ...,n , and we get inequality
(3.1) which completes the proof. �

For system (1.4), another main result of this section is the following theorem.

THEOREM 3.2. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x))
is a nontrivial solution on [a,b] for the problem (1.4)–(1.6), then the inequality

1 <
n

∏
k=1

(∫ b

a
f +
k (s)

n

∏
i=1

Eαi/pi
i (s)ds

)αk/pk

(3.14)

holds.

Proof. Let uk(a) = 0 = uk(b) for k = 1,2, ...,n where n ∈ N, a,b∈ R with a < b
are consecutive zeros and uk for k = 1,2, ...,n are not identically zero on [a,b] . As
in the proof of Theorem 3.1, we have inequalities (3.2) and (3.3). Multiplying the
inequalities (3.2) and (3.3) by η pk−1

k (x) and ξ pk−1
k (x) , k = 1,2, ...,n , respectively, we

obtain

η pk−1
k (x) |uk (x)|pk � (ξk(x)ηk(x))

pk−1
∫ x

a
rk (s)

∣∣u′k (s)
∣∣pk ds (3.15)
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and

ξ pk−1
k (x) |uk (x)|pk � (ξk(x)ηk(x))

pk−1
∫ b

x
rk (s)

∣∣u′k (s)
∣∣pk ds (3.16)

for k = 1,2, ...,n and x ∈ [a,b] . Thus, adding the inequalities (3.15) and (3.16), we
have

|uk (x)|pk
(

ξ pk−1
k (x)+ η pk−1

k (x)
)

� (ξk(x)ηk(x))
pk−1

∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds (3.17)

for k = 1,2, ...,n and x ∈ [a,b] . It is easy to see that the functions ξ pk−1
k (x)+η pk−1

k (x)
take the minimum values at ck ∈ (a,b) such that ξk (ck) = ηk (ck) for k = 1,2, ...,n .
Thus, we get

|uk (x)|pk
(

ξ pk−1
k (ck)+ η pk−1

k (ck)
)

� (ξk(x)ηk(x))
pk−1

∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds (3.18)

for k = 1,2, ...,n . Since ξk(ck)+ηk(ck) = ξk(x)+ηk(x) , ∀x,ck ∈ (a,b) , and ξk(ck) =
ξk(x)+ ηk(x)

2
= 1

2

∫ b
a r1/(1−pk)

k (s)ds , we have

|uk (x)|pk
[
22−pk (ξk(x)+ ηk(x))

pk−1
]

= |uk (x)|pk
[
2ξ pk−1

k (ck)
]

�

(ξk(x)ηk(x))
pk−1

∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds (3.19)

and hence

|uk (x)|pk � Ek (x)
∫ b

a
rk (s)

∣∣u′k (s)
∣∣pk ds (3.20)

for k = 1,2, ...,n and x ∈ [a,b] . After that by using similar technique to the proof of
Theorem 3.1 given by Tang and He [32], it can be showed that the equality case in
(3.20) does not hold. Thus, we get

|uk (x)|pk < Apk/αk
k Ek (x) , (3.21)

where x ∈ (a,b) and Ak =
(∫ b

a rk (s)
∣∣u′k (s)

∣∣pk ds
)αk/pk

for k = 1,2, ...,n . The rest of

the proof is the same as in the proof of Theorem 3.1, and hence is omitted. �

REMARK 3.1. By using the inequalities (1.39) and (1.40), it is easy to see that
Theorem 3.1 is better than Theorem 3.2 when pk > 2 for k = 1,2, ...,n , and Theorem
3.2 is better than Theorem 3.1 when 1 < pk < 2 for k = 1,2, ...,n . In addition, if pk = 2
for k = 1,2, ...,n , then Theorem 3.1 coincides with Theorem 3.2.

REMARK 3.2. Let n = 1. Thus, Theorem 3.1 coincides with Theorem L given by
Tang and He [32] for the problem (1.22)–(1.23). Moreover, from the inequality (1.39),
if we take 1 < p1 < 2, then Theorem 3.2 gives a better result than Theorem L for the
problem (1.22)–(1.23).
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REMARK 3.3. Note that (1.1) is a special case of (1.4) where n = 2, β1 = α1 and
β2 = α2 . Under these conditions, we can see that the inequality (3.1) (or (3.14)) of
Theorem 3.1 (or 3.2) reduces to the inequality (2.1) (or (2.21)) of Theorem 2.1 (or 2.2).

If we use the second mean value theorem for integrals in the inequalities (3.1) and
(3.14), we obtain the following results from Theorems 3.1 and 3.2, respectively.

COROLLARY 3.1. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x))
is a nontrivial solution on [a,b] for the problem (1.4)–(1.6), then there exist some points
dk ∈ (a,b) for k = 1,2, ...,n such that

n

∏
k=1

(
n

∏
i=1

D−αi/pi
i (dk)

)αk/pk

<
n

∏
k=1

(∫ b

a
f +
k (s)ds

)αk/pk

(3.22)

holds.

COROLLARY 3.2. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x))
is a nontrivial solution on [a,b] for the problem (1.4)–(1.6), then there exist some points
dk ∈ (a,b) for k = 1,2, ...,n such that

n

∏
k=1

(
n

∏
i=1

E−αi/pi
i (dk)

)αk/pk

<
n

∏
k=1

(∫ b

a
f +
k (s)ds

)αk/pk

(3.23)

holds.

REMARK 3.4. Note that if we take rk (x) = 1 and dk = ci where |ui(ci)| =
max
a<x<b

|ui(x)| for i,k = 1,2, ...,n in the inequality (3.22), then Corollary 3.1 coincides

with Theorem I given by [8]. Therefore, Theorem 3.1 is a generalization of Theorem
I. In addition, by using the inequality (1.39), if we take 1 < pk < 2, rk (x) = 1 and
dk = ci where |ui(ci)| = max

a<x<b
|ui(x)| for i,k = 1,2, ...,n , then Corollary 3.2 gives a

better result than Theorem I.
By using the inequality (1.41) in Theorem 3.1 or (1.42) in Theorem 3.2, we obtain

the following result.

COROLLARY 3.3. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x))
is a nontrivial solution on [a,b] for the problem (1.4)–(1.6), then the inequality

2

n
∑

k=1
αk

n

∏
k=1

(∫ b

a
r1/(1−pk)
k (s)ds

)αk(1−pk)/pk

<
n

∏
k=1

(∫ b

a
f +
k (s)ds

)αk/pk

(3.24)

holds.

REMARK 3.5. If we take n = 2, then Corollary 3.3 coincides with Corollary 2.1
with βi = αi for i = 1,2.

REMARK 3.6. Let n = 1 and r1 (x) = 1. If we compare Theorem 3.2 with The-
orem D given by Sim and Lee [31], then the positivity condition on the function f1 in
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Theorem D can be dropped for the problem (1.17)–(1.18). Thus, Theorem 3.2 gener-
alizes and extends Theorem D. In addition to this if p1 = 2, then Theorem 3.1 or 3.2
reduces to Theorem B for the problem (1.10)–(1.11). Moreover, from the inequality
(1.40), Theorem 3.1 with p1 > 2 gives a better result than Theorem D for the problem
(1.17)–(1.18).

REMARK 3.7. Since | f (x)|� f +(x) , the functions f +
k (x) for k = 1,2, ...,n in the

above results can also be replaced by | fk(x)| for k = 1,2, ...,n .

4. Lower bounds for generalized eigenvalues

Now, we present an application of the Lyapunov-type inequality obtained for sys-
tem (1.4).

We obtain the following result which gives lower bounds for the n -th component
of any generalized eigenvalue (λ1,λ2, ...,λn) of system (1.7). The proof of the follow-
ing theorem is based on above generalization of the Lyapunov-type inequality, as in that
of Theorem 9 of Çakmak and Tiryaki [8] and hence is omitted.

THEOREM 4.1. There exist a function h1(λ1,λ2, ...,λn−1) such that

h1(λ1,λ2, ...,λn−1) < λn (4.1)

for any generalized eigenvalue (λ1,λ2, ...,λn) of the problem (1.7)–(1.9) , where

h1(λ1,λ2, ...,λn−1) =
1

αn

[
n−1

∏
k=1

(λkαk)
αk/pk

∫ b

a
r (s)

n
∏
i=1

Di(s)αi/pi(s)ds

]−pn/αn

(4.2)

from the inequality (3.1) or

h1(λ1,λ2, ...,λn−1) =
1

αn

[
n−1

∏
k=1

(λkαk)
αk/pk

∫ b

a
r (s)

n

∏
i=1

Eαi/pi
i (s)ds

]−pn/αn

(4.3)

from the inequality (3.14) .

REMARK 4.1. By using the inequalities (1.39) and (1.40), it is easy to see that
Theorem 4.1 with (4.2) gives a better lower bound than Theorem 4.1 with (4.3) when
pk > 2 for k = 1,2, ...,n , and Theorem 4.1 with (4.3) gives a better lower bound than
Theorem 4.1 with (4.2) when 1 < pk < 2 for k = 1,2, ...,n . In addition, if pk = 2 for
k = 1,2, ...,n , then Theorem 4.1 with (4.2) is exactly the same as Theorem 4.1 with
(4.3).

REMARK 4.2. Let n = 2 and rk (x) = 1 for k = 1,2. If we compare Theorem 4.1
with Theorem G given by Napoli and Pinasco [21], we obtain h1(λ1) > k1(λ1) since
the inequality (1.41) or (1.42) holds. Therefore, Theorem 4.1 gives a better lower bound
than Theorem G.
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REMARK 4.3. Note that after the second mean value theorem for integrals in (4.2)
and (4.3) are used, if we take rk (x) = 1 and dk = ci where |ui(ci)| = max

a<x<b
|ui(x)| for

i,k = 1,2, ...,n in (4.2), then Theorem 4.1 with (4.2) reduces to Theorem J given by [8].
In addition, if we take 1 < pk < 2, rk (x) = 1 and dk = ci for i,k = 1,2, ...,n in (4.3),
by using the inequality (1.39), then Theorem 4.1 with (4.3) gives a better lower bound
than Theorem J.

REMARK 4.4. Since h1 is a continuous function, then h1(λ1,λ2, ...,λn−1) →+∞
as any eigenvalue of λk → 0+ for k = 1,2, ...,n− 1. Therefore, there exists a ball
centered in the origin such that the generalized spectrum is contained in its exterior.
Also, by rearranging terms in (4.1) we obtain from (4.2)

[
n

∏
k=1

ααk/pk
k

∫ b

a
r (s)

n

∏
i=1

Dαi/pi
i (s)ds

]−1

<
n
∏
k=1

λ αk/pk
k (4.4)

or from (4.3)

[
n

∏
k=1

ααk/pk
k

∫ b

a
r (s)

n

∏
i=1

Eαi/pi
i (s)ds

]−1

<
n
∏
k=1

λ αk/pk
k . (4.5)

It is clear that when the interval collapses, left-hand side of (4.4) or (4.5) goes to infinity.
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