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SHEPHARD TYPE PROBLEMS FOR L,-CENTROID BODIES

FENG YIBIN AND WANG WEIDONG

(Communicated by I. Peri¢)

Abstract. Lutwak and Zhang proposed the notion of the L, -centroid body. In this article, based
on the definition of L, -dual affine surface area, we research Shephard type problems for the
L, -centroid body

1. Introduction and main results

Let 2" denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space R". For the set of convex bodies containing the origin
in their interiors, the set of convex bodies whose centroid lie at the origin and the set
of origin-symmetric convex bodies in R", we write )", JZ" and 7}, respectively.
S and S7. respectively denote the set of star bodies (about the origin) and the set of
origin-symmetric star bodies in R”. Let $"~! denote the unit sphere in R”, and V(K)
denotes the n-dimensional volume of body K. For the standard unit ball B in R",
denote @, =V (B).

In 1997, Lutwak and Zhang in [3] introduced the concept of L, -centroid body as
follows: For each compact star-shaped about the origin K C R", real number p > 1,
the L, -centroid body, I',K, of K is the origin-symmetric convex body whose support
function is defined by

1
P - x|P
her(u) - Cn7I7V(K) /I; ‘u x| d'x7 (1'1)
forany u € §"!.
Here the integration is with respect to Lebesgue and ¢, p = @y 1p/ 020,@p_1 .
Using polar coordinates in (1.1), we easily get

1

) = ey o o0 s (1)

forany u € §"1.

Lutwak, Yang and Zhang have made a series of studies about the L, -centroid
body, and many scholars were attracted. The L,-centroid body have got many results
from these articles (see [2-5, 12, 13, 17]). Particularly, Grinberg and Zhang gave the
following Shephard problems for the L, -centroid body in [2].
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THEOREM 1.A. For K,L€ S}, if I',K CT',L and L is the polar of L, -projection
body, then
V(K)<V(L),

with equality if and only if K = L.

THEOREM 1.B. For K € %2

oo If K & 2, then there exists L € J£); such that
I',K CT,L, but

oS

V(K) > V(L).

Here ﬁozs denotes the set of centered convex bodies whose support functions are of C*
and have positive continuous curvature functions, and £, denotes the set of L,-balls

(see [2]).
In 1996, Lutwak in [6] introduced the concept of L, -affine surface area as follows:
For K € % and p > 1, the L, -affine surface area, Q,(K), of K is defined by

P n+p )4
n

n R0, (K) 5 = inf{nV,(K.Q")V(Q)F : 0 € 813,
where V,(M,N) denotes the L,-mixed volume of M,N € %.

Further, Wang and Leng in [10] defined ith L, -mixed affine surface area, Q p7,-(K ),
of K (for i=0, Q;(K) is just the L,-affine surface area Q,(K)) and extended Lut-
wak’s some results. Regarding the study of L,-affine surface area, many results have
been obtained in these articles (see [6, 10, 11, 15, 16]).

According to the notion of L, -affine surface area. In 2008, Wang and He in [14],
associated with the L,-dual mixed volume, gave the notion of the L, -dual affine sur-
face area. For K € S}, and 1 < p < n, the L,-dual affine surface area, ﬁ,p(K), of K
is defined by

P~ n—p

nQ y(K)"" =inf{nV_,(K,Q")WV(Q)"" : Q € 4"}, (1.3)
where V_,(M,N) denotes the L,-dual mixed volume of M,N € S”.

In this paper, associated with definition (1.3) of the L,-dual affine surface area,
we will research the Shephard-type problems for the L, -centroid bodies. For the con-
venience of our work, we improve the definition (1.3) from Q € 2" to Q € S):

For K € §} and 1 < p < n, L,-dual affine surface area, ﬁ_p(K), of K is defined
by

L= P
n

Q. (K) T =inf{nV_,(K,Q)V(Q) 7 : Q€ Sj}. (1.4)

LEt ZZ denote the set of L, -projection bodies, then ZI’; cS,. IfQoe ZZ in (1.4),
write Q° (K) by

n—

nnQ (K)' 7 =inf{nV_,(K,Q")WV(Q)™ " : Q€ Z1}. (1.5)

According to equality (1.5), we first give an affirmative form of the Shephard-type
problems for the L, -centroid bodies.
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THEOREM 1.1. For K,L € S”

0’

1<p<n,if T,KCT,L, then

n—p ~ n—p

QLK) _ W)
V(K) T v

with equality if and only if T,K =T, L.

As the application of Theorem 1.1, together with Theorem 1.A, we obtain a special
affirmation form for the Shephard-type problems of L, -centroid bodies.

THEOREM 1.2. For K, L€ S, 1 <p <n, if I';,K CT,L and L is the polar of
L, -projection body, then
Q7 (K) <, (L),
with equality if and only if K = L.
Next, combining with definition (1.4) of the L, -dual affine surface area, we get an
improved form of the Shephard-type problems for the L, -centroid bodies.

THEOREM 1.3. For K€ S}, L€ S, and 1 <p <n,if I',K=T,L, then

0’ os

with equality if and only if K = L.

Finally, we obtain a negative form of the Shephard-type problems for the L,-
centroid bodies.

THEOREM 1.4. For L€ S} and 1 < p <n, if L is not origin-symmetric star body,
then there exists K € S”., such that

'K CTI,L,
but B _
Q_,(K)>Q_,(L).

The proofs of Theorems 1.1-1.4 will be completed in section 4 of this paper.

2. Preliminaries

2.1. Support function, radial function and polar of convex bodies

If K € %", then its support function, hg = h(K,-) : R" — (—o0,0), is defined by
(see [1, 8])
h(K,x) =max{x-y:y€ K}, xeR", (2.1)

where x -y denotes the standard inner product of x and y.
From the definition of the support function, we easily obtain for ¢ > 0 and any
ue st
h(cK,u) = ch(K,u). (2.2)
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If K is a compact star-shaped (about the origin) in R”, then its radial function,
px =p(K,-) :R"\ {0} — [0,e0), is defined by (see [1, 8])

p(K,u)=max{A>0:1-uck}, ucs" . (2.3)
Given ¢ > 0, we can get for any u € §"~!
(e ) = cp(K,u). 2.4)

If pk is continuous and positive, then K will be called a star body. Two star bodies K,
L are said to be dilates (of one another) if px(u),/py(u) is independent of u € S~ 1.
If K € %", the polar body , K*, of K is defined by (see [1, 8])

K'={xeR":x-y<l,yeK}. (2.5)
From (2.5), we easily have (K*)* =K, and

1 1
hgr = —, = 2.6
K= Pre =g (2.6)

2.2. L,-mixed volume

For K,L € 2, p> 1 and A,u > 0 (not both zero), the Firey L, -combination
(also called the L,-Minkowski combination), A-K +pu-Le ), of K and L is
defined by (see [7])

h(A-K+ppt L) = Ah(K, )" + ph(L, )7, (2.7)

where the operation ”+,” is called Firey addition and A - K denotes the Firey scalar
multiplication. From (2.2) and (2.7), we can get

A-K=AVK.

If K,.L € "

o

defined by (see [7])

then for p > 1, the L,-mixed volume, V,(K,L), of K and L is

V(K+pe-L)— V(K
"y kL) = tim L& D V)
P

e—0T €

Corresponding to each K,L € 7", there is a positive Borel measure, S,(K,-), on
S"=1 such that (see [7])

1
VP(K7L) = n o1 h{(”)dSP(Kv')7

where S,(K,-) is called the L, -surface area measure of K € .%".
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2.3. L,-dual mixed volume

For K,L€ S}, p>1 and A,u > 0 (not both zero), the L,-harmonic radial com-

0’

bination, A *K+_puxLeS),of K and L is defined by (see [6])
PA*xK+_puxL,-)"=2Ap(K,-) P +up(L,-)"", (28)

where the operation ”+_,” is called L,-harmonic radial addition and A « K denotes
the L, -harmonic radial scalar multiplication. From (2.4) and (2.8), we can obtain

AxK=A"7K.

Associated with the L,-harmonic radial combination of star bodies, Lutwak in [6]
introduced the notion of L, -dual mixed volume as follows: For K,L € S, p > 1 and

[

€ >0, the L,-dual mixed volume, XN/,I,(K,L), of K and L is defined by (see [6])

- VK+_pexL)—V(K
M KoL) = lim (KT exl) ZV(K)

- Jim, : (2.9)

The definition above and Hospital’s role give the following integral representation
of L,-dual mixed volume (see [6]):

~ 1 n _
VoKL = [ Pk e, ), (2.10)
where the integration is with respect to spherical Lebesgue measure S on S" !,
From the formula (2.10), we get
~ 1

Vop(KK)=V(K) == | pi(u)du (2.11)

The Minkowski’s inequality for the L, -dual mixed volume can be stated that (see
[6]):
THEOREM 2.A. If K,L€ S}, p> 1, then

0’

~ n+p

Vo (K,L) > V(K) " V(L) (2.12)

Bl

with equality if and only if K and L are dilates.

2.4. L,-projection body

For K € 2", p > 1, the L,-projection body, I ,K, of K is the origin-symmetric
convex body whose support function is given by (see [4])

1

P — y|P
) = oo /S Juev]Pds, (K ),

where u,v € S, and S,(K,-) is the L,-surface area measure of K.
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3. L,-harmonic Blaschke combination

In order to prove our results, we need the concept of L, -harmonic Blaschke com-
bination.

For K,L €S}, p>1 and A,u > 0 (not both zero), the L,-harmonic Blaschke
combination, A * K —T—pu *L €S, of K and L is defined by

PO KTy *L )" - p(K )P p(L)""
V(AxK+,uxL)  V(K) K V(L)

(3.1)

where the operation "4, is called L, -harmonic Blaschke addition and A K denotes
L, -harmonic Blaschke scalar multiplication. From (2.4) and (3.1), we easily have

AxK=APK.

Taking A =p =1 in A« K+, + L, then K+,L is just L,-harmonic Blaschke
addition, which was introduced in [17], of K,L € S}.
Let A =u= %, L = —K, then L,-harmonic Blaschke body is defined by

= 1 .1
VoK = 5% Kz (<K). (3.2)

Obviously, the L,-harmonic Blaschke body § K is origin-symmetric.
THEOREM 3.1. If K, L€ S", p>1, A,u > 0 (not both zero), then

P
n

V(A K3 puxL)% > AV(K)% +uV(L)*, (3.3)

with equality if and only if K and L are dilates.
Proof. From (2.10), (2.12) and (3.1), we have for any Q € S,

Vo,(A*K+pu+L,Q) )LV,F(K,Q) N V_,(L,0)
VOaxKiu=L) vE MV

> AV(K)" +uV(L)7V(Q) r. (3.4)

Taking Q = A * K+, L in (3.4), and from (2.11), we can get (3.3).
Associated with the equality condition of (2.12), we see that equality holds in (3.3)
if and only if K and L are dilates. [

Taking A = u = % = —K in (3.3), we easily get the following result.
COROLLARY 3.1. If K€ S}, p> 1, then
V(V,K) > V(K), (3.5)

with equality if and only if K is an origin-symmetric.

Further, we also give a Brunn-Minkowski type inequality for L, -harmonic Blaschke
combination as well as its a corollary.
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THEOREM 3.2. If K,L € 8", A,u >0 (not both zero) and 1 < p < n, then

n—p

Q ,(AxK¥,u*L) 5 - Q L, (K)F QL)

V(A% K+,u*L) V(K) (36)

with equality if and only if K and L are dilates.
Proof. From the definition (1.4), we get

nrQ (A K+ ,u « L)
inf{nV_p(A* K3 ppL,Q*)V(Q) "% : Q € Si,}
inf{[ [ p(2 s KHpus Loy p(Q" ) Tdu]V(Q)”

4
n e

Thus

nrQ_ (A x K3, usL) 5
V(AxK+,1u*L)

—int{[ [ s (A« Kt ppux L) p(Q" ) du|V(Q)F 10 €S}
o

(AxK+,uxL)

f{[/s -1 [ o5 '}ﬁ;ﬂ +“p(l‘;(uL);+p}P(Q*,u)”du}V(Q)5 :

n+ — _5
— inf V( { [Py 7p(Q ) pdu]V(Q)

% [ P (L) 7p(Q ) Pau|v(Q)F 0 € S, )
A
V(K)

7y V(K. 0)V(0)

[ TR _»p
+V(L) inf{nV_,(L,0")V(Q) " : Q € S }.
This give (3.6).
The equality of (3.6) holds if and only if A * K+, L are dilates with K and
L, respectively. This mean that the equality holds in (3.6) if and only if K and L are
dilates. [J

p
n

€S}

COROLLARY 3.2. If K€ S}, 1 < p<n, then
(V,K) =8, (K), (3.7)
with equality if and only if K is an origin-symmetric.
Proof. Taking A =y =%, L= —K in (3.6), and combining with (3.2), we get
1Q,(K)F  1Q.,(-K)+
2 V(K) 2 V(K)

(3.8)
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For any Q € S, then Q* € U7}, and using po+ (1) = p_g+(u) = p(Q*,—u), we get

V_p (=K, Q") =V_(K,Q"). (3.9)
Associated with (1.4), and from (3.9), we easily have

Q_,(-K)=Q_,(K). (3.10)

Thus from (3.8) and (3.10), we know

0, (V,K)) " V,K) )
Q_,(K - ' '

)

Since 1 < p < n, thus combining with (3.5) and (3.11), this yields (3.7).
Associated with the equality condition of (3.5), we see that equality holds in (3.7)
if and only if K is an origin-symmetric. [J

4. The proofs of Theorems

In this section, we complete the proofs of Theorems 1.1-1.4. Here the proof of
Theorem 1.1 require a Lemma as follows:

LEMMA 4.1. [4] IfK €S}, p > 1, then for any Q € X

V,(Q,T,K) = %V—p(K,H;Q)

Proof of Theorem 1.1. Since I',K CT',L, thus forany Q € JZ."

Vp(Q.TpK) < Vp(Q,TpL), (4.1)

with equality if and only if I',K =T, L. Therefore, from (4.1) and Lemma 4.1, we have

V(K. I1,0) _ V-, (LIT;0)

< 4.2
V() V(D) #.2)
Let M =11,Q, then M € ZI’;. From (1.5) and (4.2), we get
P~ n—p >
nnQ (K)7 nV_,(K,M") »
P 7 qnf! 2N Ty e M e Z?
V(K) { vE '™ <%
nV_,(L,M*) _p
< P\ n n
\mf{ V(L V(M) Mezp}
P, n—p
nnQ? (L) 43)
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ie.
~o p =, n—p
Q2 ,(K)7 Q2 (L)
VK) T V(D)
According to the equality condition of (4.1), thus we know that the equality holds
in(4.4)ifandonly if I')K =T ,L. [

(4.4)

Proof of Theorem 1.2. For K,L € S, if I',)K CT',L, then from Theorem 1.1, we
know - _ -

@ (K)T
V(K)

ie.,
n—p

LK\ " VK
(ﬁ‘ip@)) SV -

Since L is the polar of L,-projection body, thus from Theorem 1.A and (4.5), and
notice that 1 < p < n, we may get

Q2 (K) < Q2 ,(L). (4.6)
According to the equality condition of Theorem 1.A, we see that equality holds in

(4.6)ifandonlyif K=L. O

For the proof of Theorem 1.3, we also need to establish the following lemmas.

LEMMA 4.2. If K€ S}, p>1, then

r,(V,K)=T,K. (4.7)

Proof. From (1.2) and (3.2), we get
hp(rp(vpK)»”)

(e 0 )

L W S PEC A1 % S
(n+p)enp Jon-1 V(3 xK+,1«(—K))

- |u.vp{l”(’”>"*” Lp(K)rt?
sn—1

- (n+p)enp 2 V(K) 2 V(-K)

= %hp(rplg u) + %hp(rp(—K)7 u). (4.8)

From (1.2), we easily know I',(—K) =T',K, so combining with (4.8), then for any
ues1,

N

W (Tp(VpK),u) =h?(I',K,u).
This yields (4.7). U
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LEMMA 4.3. For K,L € S};, p> 1, then I',K =T ,L if and only if for any Q €

o’

Sos»
V_P(K7 Q) — V—P(L7 Q) ) (49)
V(K) V(L)
Proof. From (2.6) and (2.10), we get
v*I’(I(7Q> _ l n+p —-p
V(K) - nV(K) Sn—lpK(v) pQ(V) dV
1 n+pppP
= , . 4.1
WV(K) Jypo PR T () (10
Since Q € Si,, so O € 1. Thus taking O* = [—u,u], then we know for every
ye s,
h(Q",v) = [u-vl.
From (1.2) and (4.10), we have
1
P _ vl n+p
thK(u) (n—i—p)cmpV(K) ~/S”’1 ‘u V| pK(V) dv
_ nV_p(K,[—u,ul ) @.11)
(n+p)cn,pV(K)

Therefore, for K,L € S and any Q € S, if

V,(K.0)  V,(L0Q)
VK) V(D)

then we have
I'pK=T,L.

In turn, according to (4.7), we may assume that K,L € S/, , because we can replace

K and L by VpK and WPL, respectively. Thus from (1.2), we know
1

PR o RO
n717

h{sz(u) = (

Let

1) = ﬁm«(v)"ﬂ’,

since K € S, thus pg(v) = px(—v) forany v € S"~1, this gives f(v) is a finite even
Borel measure on $"~!. From (4.12), we have

h{sz(u) = ( !

m/&%l lu-v|? F()dv, (4.13)

forany u € §"!.
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Similarly, if L € S”

0S8

then for any u € S" !,

%ﬁwwzaiga;énlvamwm, (4.14)
where {
€)= Pl

is also a finite even Borel measure on §" !,
Therefore, if I',K =1T",L, then by (4.13) and (4.14), we obtain

1

T Jo 18P 1 0) =gy =00 (@.15)
Let u(v) = f(v) — g(v), then (4.15) may be written as

1
W‘/Sn—l | u-v |p IJ.(V)dV =0. (416)
n,p

Notice that g (v) is a continuous finite even Borel measure on ", therefore together
with (4.16), we obtain i (v) =0, i.e., f(v)—g(v) =0. This show that for any v € §"~!,

1

v P = (4.17)
But we know for any Q € S},
Vop(K, 1 o
€(<K>Q> = VK Sy PEO) TP (),
pr(L, Q) o 1 pL(V)"+pPép(v)dv.

V(L)  nV(L) Js1
Hence, associated with (4.17), we have that for any Q € SV,

V—P(K7 Q) _ V—P(Lv Q)

V(&) v o

Proof of Theorem 1.3. According to (1.4), we know

V(K) V(K)

Since I',K =T, L, thus from Lemma 4.3, we get for any Q € S},

v(Q)”

V(K. Q") V(L0
@m = hm. (4.19)
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Thus from (4.18) and (4.19), we can get

QLK) _Q,mF
V(K V(L ’
i.e.,
_ n—p
Q LK)\ " V(K
Q-,(K) _ e (4.20)
Q (L) V(L)
And since L € S7, thus taking Q = L in (4.9), and associated with (2.12), we obtain
V(K) = V_p(K,L) > V(K) 5" V(L)F, (4.21)
i.e.,
V(K) < V(L). (4.22)
Combining with (4.20) and (4.22), we get
Q ,(K)<Q (L) (4.23)

According to the equality condition of (4.22), we see that equality holds in (4.23)
ifandonlyif K=L. U

Proof of Theorem 1.4. Since L is not an origin-symmetric, so from Corollary 3.2,
we know L _
Q_,(VoL) >Q_p(L).

Choose € > 0, such that ﬁ,p((l — £)§I7L) > ﬁ,p(L), thus let K = (1 — £)§I7L, then
Q_,(K)>Q_p,(L).
But from Lemma 4.2, and notice that T',(1 —&)K = (1 — &)I',K, we can get

I,K=T,(1-&)V,L=(1-¢&),V,L=(1-¢,LCT,L. O
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