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SHEPHARD TYPE PROBLEMS FOR Lp –CENTROID BODIES

FENG YIBIN AND WANG WEIDONG

(Communicated by I. Perić)

Abstract. Lutwak and Zhang proposed the notion of the Lp -centroid body. In this article, based
on the definition of Lp -dual affine surface area, we research Shephard type problems for the
Lp -centroid body

1. Introduction and main results

Let K n denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space Rn . For the set of convex bodies containing the origin
in their interiors, the set of convex bodies whose centroid lie at the origin and the set
of origin-symmetric convex bodies in Rn , we write K n

o , K n
c and K n

os , respectively.
Sn

o and Sn
os respectively denote the set of star bodies (about the origin) and the set of

origin-symmetric star bodies in Rn . Let Sn−1 denote the unit sphere in Rn , and V (K)
denotes the n -dimensional volume of body K . For the standard unit ball B in Rn ,
denote ωn = V (B) .

In 1997, Lutwak and Zhang in [3] introduced the concept of Lp -centroid body as
follows: For each compact star-shaped about the origin K ⊂ Rn , real number p � 1,
the Lp -centroid body, ΓpK , of K is the origin-symmetric convex body whose support
function is defined by

hp
ΓpK

(u) =
1

cn,pV (K)

∫
K
|u · x|pdx, (1.1)

for any u ∈ Sn−1 .
Here the integration is with respect to Lebesgue and cn,p = ωn+p/ω2ωnωp−1 .
Using polar coordinates in (1.1), we easily get

hp
ΓpK

(u) =
1

(n+ p)cn,pV (K)

∫
Sn−1

|u · v|pρK(v)n+pdv, (1.2)

for any u ∈ Sn−1 .
Lutwak, Yang and Zhang have made a series of studies about the Lp -centroid

body, and many scholars were attracted. The Lp -centroid body have got many results
from these articles (see [2–5, 12, 13, 17]). Particularly, Grinberg and Zhang gave the
following Shephard problems for the Lp -centroid body in [2].
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THEOREM 1.A. For K,L ∈ Sn
o , if ΓpK ⊆ ΓpL and L is the polar of Lp -projection

body, then
V (K) � V (L),

with equality if and only if K = L.

THEOREM 1.B. For K ∈ F 2
os , if K �∈ Lp , then there exists L ∈ K n

os such that
ΓpK ⊂ ΓpL, but

V (K) > V (L).

Here F 2
os denotes the set of centered convex bodies whose support functions are of C2

and have positive continuous curvature functions, and Lp denotes the set of Lp -balls
(see [2]).

In 1996, Lutwak in [6] introduced the concept of Lp -affine surface area as follows:
For K ∈ K n

o and p � 1, the Lp -affine surface area, Ωp(K) , of K is defined by

n−
p
n Ωp(K)

n+p
n = inf{nVp(K,Q∗)V (Q)

p
n : Q ∈ Sn

o},

where Vp(M,N) denotes the Lp -mixed volume of M,N ∈ K n
o .

Further, Wang and Leng in [10] defined i th Lp -mixed affine surface area, Ωp,i(K) ,
of K (for i = 0, Ωp,i(K) is just the Lp -affine surface area Ωp(K)) and extended Lut-
wak’s some results. Regarding the study of Lp -affine surface area, many results have
been obtained in these articles (see [6, 10, 11, 15, 16]).

According to the notion of Lp -affine surface area. In 2008, Wang and He in [14],
associated with the Lp -dual mixed volume, gave the notion of the Lp -dual affine sur-
face area. For K ∈ Sn

o and 1 � p < n , the Lp -dual affine surface area, Ω̃−p(K) , of K
is defined by

n
p
n Ω̃−p(K)

n−p
n = inf{nṼ−p(K,Q∗)V (Q)−

p
n : Q ∈ K n

c }, (1.3)

where Ṽ−p(M,N) denotes the Lp -dual mixed volume of M,N ∈ Sn
o .

In this paper, associated with definition (1.3) of the Lp -dual affine surface area,
we will research the Shephard-type problems for the Lp -centroid bodies. For the con-
venience of our work, we improve the definition (1.3) from Q ∈ K n

c to Q ∈ Sn
os :

For K ∈ Sn
o and 1 � p < n , Lp -dual affine surface area, Ω̃−p(K) , of K is defined

by

n
p
n Ω̃−p(K)

n−p
n = inf{nṼ−p(K,Q∗)V (Q)−

p
n : Q ∈ Sn

os}. (1.4)

Let Zn
p denote the set of Lp -projection bodies, then Zn

p ⊆ Sn
os . If Q ∈ Zn

p in (1.4),

write Ω̃◦−p(K) by

n
p
n Ω̃◦

−p(K)
n−p

n = inf{nṼ−p(K,Q∗)V (Q)−
p
n : Q ∈ Zn

p}. (1.5)

According to equality (1.5), we first give an affirmative form of the Shephard-type
problems for the Lp -centroid bodies.
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THEOREM 1.1. For K,L ∈ Sn
o , 1 � p < n, if ΓpK ⊆ ΓpL, then

Ω̃◦−p(K)
n−p

n

V (K)
�

Ω̃◦−p(L)
n−p

n

V (L)
,

with equality if and only if ΓpK = ΓpL.

As the application of Theorem 1.1, together with Theorem 1.A, we obtain a special
affirmation form for the Shephard-type problems of Lp -centroid bodies.

THEOREM 1.2. For K,L ∈ Sn
o , 1 � p < n, if ΓpK ⊆ ΓpL and L is the polar of

Lp -projection body, then

Ω̃◦
−p(K) � Ω̃◦

−p(L),

with equality if and only if K = L.

Next, combining with definition (1.4) of the Lp -dual affine surface area, we get an
improved form of the Shephard-type problems for the Lp -centroid bodies.

THEOREM 1.3. For K ∈ Sn
o , L ∈ Sn

os and 1 � p < n, if ΓpK = ΓpL, then

Ω̃−p(K) � Ω̃−p(L),

with equality if and only if K = L.

Finally, we obtain a negative form of the Shephard-type problems for the Lp -
centroid bodies.

THEOREM 1.4. For L∈ Sn
o and 1 � p < n, if L is not origin-symmetric star body,

then there exists K ∈ Sn
os , such that

ΓpK ⊂ ΓpL,

but
Ω̃−p(K) > Ω̃−p(L).

The proofs of Theorems 1.1–1.4 will be completed in section 4 of this paper.

2. Preliminaries

2.1. Support function, radial function and polar of convex bodies

If K ∈ K n , then its support function, hK = h(K, ·) : Rn → (−∞,∞) , is defined by
(see [1, 8])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn, (2.1)

where x · y denotes the standard inner product of x and y .
From the definition of the support function, we easily obtain for c > 0 and any

u ∈ Sn−1

h(cK,u) = ch(K,u). (2.2)
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If K is a compact star-shaped (about the origin) in Rn , then its radial function,
ρK = ρ(K, ·) : Rn \ {0}→ [0,∞) , is defined by (see [1, 8])

ρ(K,u) = max{λ � 0 : λ ·u ∈ K}, u ∈ Sn−1. (2.3)

Given c > 0, we can get for any u ∈ Sn−1

ρ(cK,u) = cρ(K,u). (2.4)

If ρK is continuous and positive, then K will be called a star body. Two star bodies K ,
L are said to be dilates (of one another) if ρK(u)�ρL(u) is independent of u ∈ Sn−1 .

If K ∈ K n
o , the polar body , K∗ , of K is defined by (see [1, 8])

K∗ = {x ∈ Rn : x · y � 1,y ∈ K}. (2.5)

From (2.5), we easily have (K∗)∗ = K , and

hK∗ =
1

ρK
, ρK∗ =

1
hK

. (2.6)

2.2. Lp -mixed volume

For K,L ∈ K n
o , p � 1 and λ ,μ � 0 (not both zero), the Firey Lp -combination

(also called the Lp -Minkowski combination), λ ·K +p μ · L ∈ K n
o , of K and L is

defined by (see [7])

h(λ ·K +p μ ·L, ·)p = λh(K, ·)p + μh(L, ·)p, (2.7)

where the operation ”+p ” is called Firey addition and λ ·K denotes the Firey scalar
multiplication. From (2.2) and (2.7), we can get

λ ·K = λ
1
p K.

If K,L ∈ K n
o , then for p � 1, the Lp -mixed volume, Vp(K,L) , of K and L is

defined by (see [7])

n
p
Vp(K,L) = lim

ε→0+

V (K +p ε ·L)−V(K)
ε

.

Corresponding to each K,L ∈ K n
o , there is a positive Borel measure, Sp(K, ·) , on

Sn−1 , such that (see [7])

Vp(K,L) =
1
n

∫
Sn−1

hp
L(u)dSp(K, ·),

where Sp(K, ·) is called the Lp -surface area measure of K ∈ K n
o .
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2.3. Lp -dual mixed volume

For K,L ∈ Sn
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic radial com-

bination, λ �K +−p μ �L ∈ Sn
o , of K and L is defined by (see [6])

ρ(λ �K +−p μ �L, ·)−p = λ ρ(K, ·)−p + μρ(L, ·)−p, (2.8)

where the operation ”+−p ” is called Lp -harmonic radial addition and λ �K denotes
the Lp -harmonic radial scalar multiplication. From (2.4) and (2.8), we can obtain

λ �K = λ− 1
p K.

Associated with the Lp -harmonic radial combination of star bodies, Lutwak in [6]
introduced the notion of Lp -dual mixed volume as follows: For K,L ∈ Sn

o , p � 1 and
ε > 0, the Lp -dual mixed volume, Ṽ−p(K,L) , of K and L is defined by (see [6])

n
−p

Ṽ−p(K,L) = lim
ε→0+

V (K +−p ε �L)−V(K)
ε

. (2.9)

The definition above and Hospital’s role give the following integral representation
of Lp -dual mixed volume (see [6]):

Ṽ−p(K,L) =
1
n

∫
Sn−1

ρn+p
K (u)ρ−p

L (u)du, (2.10)

where the integration is with respect to spherical Lebesgue measure S on Sn−1 .
From the formula (2.10), we get

Ṽ−p(K,K) = V (K) =
1
n

∫
Sn−1

ρn
K(u)du. (2.11)

The Minkowski’s inequality for the Lp -dual mixed volume can be stated that (see
[6]):

THEOREM 2.A. If K,L ∈ Sn
o , p � 1 , then

Ṽ−p(K,L) � V (K)
n+p

n V (L)−
p
n , (2.12)

with equality if and only if K and L are dilates.

2.4. Lp -projection body

For K ∈K n
o , p � 1, the Lp -projection body, ΠpK , of K is the origin-symmetric

convex body whose support function is given by (see [4])

hp
ΠpK

(u) =
1

nωncn−2,p

∫
Sn−1

|u · v|pdSp(K,v),

where u,v ∈ Sn−1 , and Sp(K, ·) is the Lp -surface area measure of K .
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3. Lp -harmonic Blaschke combination

In order to prove our results, we need the concept of Lp -harmonic Blaschke com-
bination.

For K,L ∈ Sn
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic Blaschke

combination, λ ∗K+̂pμ ∗L ∈ Sn
o , of K and L is defined by

ρ(λ ∗K+̂pμ ∗L, ·)n+p

V (λ ∗K+̂pμ ∗L)
= λ

ρ(K, ·)n+p

V (K)
+ μ

ρ(L, ·)n+p

V (L)
, (3.1)

where the operation ”+̂p ” is called Lp -harmonic Blaschke addition and λ ∗K denotes
Lp -harmonic Blaschke scalar multiplication. From (2.4) and (3.1), we easily have

λ ∗K = λ
1
p K.

Taking λ = μ = 1 in λ ∗K+̂pμ ∗ L , then K+̂pL is just Lp -harmonic Blaschke
addition, which was introduced in [17], of K,L ∈ Sn

o .
Let λ = μ = 1

2 , L = −K , then Lp -harmonic Blaschke body is defined by

∇̂pK =
1
2
∗K+̂p

1
2
∗ (−K). (3.2)

Obviously, the Lp -harmonic Blaschke body ∇̂pK is origin-symmetric.

THEOREM 3.1. If K,L ∈ Sn
o , p � 1 , λ ,μ � 0 (not both zero), then

V (λ ∗K+̂pμ ∗L)
p
n � λV (K)

p
n + μV(L)

p
n , (3.3)

with equality if and only if K and L are dilates.

Proof. From (2.10), (2.12) and (3.1), we have for any Q ∈ Sn
o ,

Ṽ−p(λ ∗K+̂pμ ∗L,Q)
V (λ ∗K+̂pμ ∗L)

= λ
Ṽ−p(K,Q)

V (K)
+ μ

Ṽ−p(L,Q)
V (L)

� [λV (K)
p
n + μV(L)

p
n ]V (Q)−

p
n . (3.4)

Taking Q = λ ∗K+̂pμ ∗L in (3.4), and from (2.11), we can get (3.3).
Associated with the equality condition of (2.12), we see that equality holds in (3.3)

if and only if K and L are dilates. �

Taking λ = μ = 1
2 , L = −K in (3.3), we easily get the following result.

COROLLARY 3.1. If K ∈ Sn
o , p � 1 , then

V (∇̂pK) � V (K), (3.5)

with equality if and only if K is an origin-symmetric.

Further, we also give a Brunn-Minkowski type inequality for Lp -harmonicBlaschke
combination as well as its a corollary.
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THEOREM 3.2. If K,L ∈ Sn
o , λ ,μ � 0 (not both zero) and 1 � p < n, then

Ω̃−p(λ ∗K+̂pμ ∗L)
n−p

n

V (λ ∗K+̂pμ ∗L)
� λ

Ω̃−p(K)
n−p

n

V (K)
+ μ

Ω̃−p(L)
n−p

n

V (L)
, (3.6)

with equality if and only if K and L are dilates.

Proof. From the definition (1.4), we get

n
p
n Ω̃−p(λ ∗K+̂pμ ∗L)

n−p
n

= inf{nṼ−p(λ ∗K+̂pμ ∗L,Q∗)V (Q)−
p
n : Q ∈ Sn

os}
= inf

{[∫
Sn−1

ρ(λ ∗K+̂pμ ∗L,u)n+pρ(Q∗,u)−pdu
]
V (Q)−

p
n : Q ∈ Sn

os

}
.

Thus

n
p
n Ω̃−p(λ ∗K+̂pμ ∗L)

n−p
n

V (λ ∗K+̂pμ ∗L)

= inf
{[∫

Sn−1

ρ(λ ∗K+̂pμ ∗L,u)n+p

V (λ ∗K+̂pμ ∗L)
ρ(Q∗,u)−pdu

]
V (Q)−

p
n : Q ∈ Sn

os

}
= inf

{[∫
Sn−1

[
λ

ρ(K,u)n+p

V (K)
+ μ

ρ(L,u)n+p

V (L)

]
ρ(Q∗,u)−pdu

]
V (Q)−

p
n : Q ∈ Sn

os

}
= inf

{ λ
V (K)

[∫
Sn−1

ρ(K,u)n+pρ(Q∗,u)−pdu
]
V (Q)−

p
n

+
μ

V(L)

[∫
Sn−1

ρ(L,u)n+pρ(Q∗,u)−pdu
]
V (Q)−

p
n : Q ∈ Sn

os

}
� λ

V (K)
inf{nṼ−p(K,Q∗)V (Q)−

p
n : Q ∈ Sn

os}

+
μ

V(L)
inf{nṼ−p(L,Q∗)V (Q)−

p
n : Q ∈ Sn

os}.

This give (3.6).
The equality of (3.6) holds if and only if λ ∗K+̂pμ ∗ L are dilates with K and

L , respectively. This mean that the equality holds in (3.6) if and only if K and L are
dilates. �

COROLLARY 3.2. If K ∈ Sn
o , 1 � p < n, then

Ω̃−p(∇̂pK) � Ω̃−p(K), (3.7)

with equality if and only if K is an origin-symmetric.

Proof. Taking λ = μ = 1
2 , L = −K in (3.6), and combining with (3.2), we get

Ω̃−p(∇̂pK)
n−p

n

V (∇̂pK)
� 1

2
Ω̃−p(K)

n−p
n

V (K)
+

1
2

Ω̃−p(−K)
n−p

n

V (K)
. (3.8)
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For any Q ∈ Sn
os , then Q∗ ∈ K n

os , and using ρQ∗(u) = ρ−Q∗(u) = ρ(Q∗,−u) , we get

Ṽ−p(−K,Q∗) = Ṽ−p(K,Q∗). (3.9)

Associated with (1.4), and from (3.9), we easily have

Ω̃−p(−K) = Ω̃−p(K). (3.10)

Thus from (3.8) and (3.10), we know(
Ω̃−p(∇̂pK)

Ω̃−p(K)

) n−p
n

� V (∇̂pK)
V (K)

. (3.11)

Since 1 � p < n , thus combining with (3.5) and (3.11), this yields (3.7).
Associated with the equality condition of (3.5), we see that equality holds in (3.7)

if and only if K is an origin-symmetric. �

4. The proofs of Theorems

In this section, we complete the proofs of Theorems 1.1–1.4. Here the proof of
Theorem 1.1 require a Lemma as follows:

LEMMA 4.1. [4] If K ∈ Sn
o , p � 1 , then for any Q ∈ K n

o

Vp(Q,ΓpK) =
ωn

V (K)
Ṽ−p(K,Π∗

pQ).

Proof of Theorem 1.1. Since ΓpK ⊆ ΓpL , thus for any Q ∈ K n
o

Vp(Q,ΓpK) � Vp(Q,ΓpL), (4.1)

with equality if and only if ΓpK = ΓpL . Therefore, from (4.1) and Lemma 4.1, we have

Ṽ−p(K,Π∗
pQ)

V (K)
�

Ṽ−p(L,Π∗
pQ)

V (L)
. (4.2)

Let M = ΠpQ , then M ∈ Zn
p . From (1.5) and (4.2), we get

n
p
n Ω̃◦−p(K)

n−p
n

V (K)
= inf

{
nṼ−p(K,M∗)

V (K)
V (M)−

p
n : M ∈ Zn

p

}

� inf

{
nṼ−p(L,M∗)

V (L)
V (M)−

p
n : M ∈ Zn

p

}

=
n

p
n Ω̃◦−p(L)

n−p
n

V (L)
, (4.3)
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i.e.
Ω̃◦−p(K)

n−p
n

V (K)
�

Ω̃◦−p(L)
n−p

n

V (L)
. (4.4)

According to the equality condition of (4.1), thus we know that the equality holds
in (4.4) if and only if ΓpK = ΓpL . �

Proof of Theorem 1.2. For K,L ∈ Sn
o , if ΓpK ⊆ ΓpL , then from Theorem 1.1, we

know
Ω̃◦−p(K)

n−p
n

V (K)
�

Ω̃◦−p(L)
n−p

n

V (L)
,

i.e., (
Ω̃◦−p(K)

Ω̃◦−p(L)

) n−p
n

� V (K)
V (L)

. (4.5)

Since L is the polar of Lp -projection body, thus from Theorem 1.A and (4.5), and
notice that 1 � p < n , we may get

Ω̃◦
−p(K) � Ω̃◦

−p(L). (4.6)

According to the equality condition of Theorem 1.A, we see that equality holds in
(4.6) if and only if K = L . �

For the proof of Theorem 1.3, we also need to establish the following lemmas.

LEMMA 4.2. If K ∈ Sn
o , p � 1 , then

Γp(∇̂pK) = ΓpK. (4.7)

Proof. From (1.2) and (3.2), we get

hp(Γp(∇̂pK),u)

=hp
(

Γp

(
1
2
∗K+̂p

1
2
∗ (−K)

)
,u

)
=

1
(n+ p)cn,p

∫
Sn−1

|u · v|p ρ( 1
2 ∗K+̂p

1
2 ∗ (−K),v)n+p

V ( 1
2 ∗K+̂p

1
2 ∗ (−K))

dv

=
1

(n+ p)cn,p

∫
Sn−1

|u · v|p
[
1
2

ρ(K,v)n+p

V (K)
+

1
2

ρ(−K,v)n+p

V (−K)

]
dv

=
1
2
hp(ΓpK,u)+

1
2
hp(Γp(−K),u). (4.8)

From (1.2), we easily know Γp(−K) = ΓpK , so combining with (4.8), then for any
u ∈ Sn−1 ,

hp(Γp(∇̂pK),u) = hp(ΓpK,u).

This yields (4.7). �
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LEMMA 4.3. For K,L ∈ Sn
o , p � 1 , then ΓpK = ΓpL if and only if for any Q ∈

Sn
os ,

Ṽ−p(K,Q)
V (K)

=
Ṽ−p(L,Q)

V (L)
. (4.9)

Proof. From (2.6) and (2.10), we get

Ṽ−p(K,Q)
V (K)

=
1

nV (K)

∫
Sn−1

ρK(v)n+pρQ(v)−pdv

=
1

nV (K)

∫
Sn−1

ρK(v)n+php
Q∗(v)dv. (4.10)

Since Q ∈ Sn
os , so Q∗ ∈ K n

os . Thus taking Q∗ = [−u,u] , then we know for every
v ∈ Sn−1 ,

h(Q∗,v) = |u · v|.
From (1.2) and (4.10), we have

hp
ΓpK

(u) =
1

(n+ p)cn,pV (K)

∫
Sn−1

|u · v|pρK(v)n+pdv

=
nṼ−p(K, [−u,u]∗)
(n+ p)cn,pV (K)

. (4.11)

Therefore, for K,L ∈ Sn
o and any Q ∈ Sn

os , if

Ṽ−p(K,Q)
V (K)

=
Ṽ−p(L,Q)

V (L)
,

then we have
ΓpK = ΓpL.

In turn, according to (4.7), we may assume that K,L∈ Sn
os , because we can replace

K and L by ∇̂pK and ∇̂pL , respectively. Thus from (1.2), we know

hp
ΓpK

(u) =
1

(n+ p)cn,pV (K)

∫
Sn−1

|u · v|pρK(v)n+pdv. (4.12)

Let

f (v) =
1

V (K)
ρK(v)n+p,

since K ∈ Sn
os , thus ρK(v) = ρK(−v) for any v ∈ Sn−1 , this gives f (v) is a finite even

Borel measure on Sn−1 . From (4.12), we have

hp
ΓpK

(u) =
1

(n+ p)cn,p

∫
Sn−1

| u · v |p f (v)dv, (4.13)

for any u ∈ Sn−1 .
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Similarly, if L ∈ Sn
os , then for any u ∈ Sn−1 ,

hp
ΓpL

(u) =
1

(n+ p)cn,p

∫
Sn−1

| u · v |p g(v)dv, (4.14)

where

g(v) =
1

V (L)
ρL(v)n+p

is also a finite even Borel measure on Sn−1 .
Therefore, if ΓpK = ΓpL , then by (4.13) and (4.14), we obtain

1
(n+ p)cn,p

∫
Sn−1

| u · v |p [ f (v)−g(v)]dv = 0. (4.15)

Let μ(v) = f (v)−g(v) , then (4.15) may be written as

1
(n+ p)cn,p

∫
Sn−1

| u · v |p μ(v)dv = 0. (4.16)

Notice that μ(v) is a continuous finite even Borel measure on Sn−1 , therefore together
with (4.16), we obtain μ(v) = 0, i.e., f (v)−g(v) = 0. This show that for any v∈ Sn−1 ,

1
V (K)

ρK(v)n+p =
1

V (L)
ρL(v)n+p. (4.17)

But we know for any Q ∈ Sn
o ,

Ṽ−p(K,Q)
V (K)

=
1

nV (K)

∫
Sn−1

ρK(v)n+pρ−p
Q (v)dv,

Ṽ−p(L,Q)
V (L)

=
1

nV (L)

∫
Sn−1

ρL(v)n+pρ−p
Q (v)dv.

Hence, associated with (4.17), we have that for any Q ∈ Sn
os ,

Ṽ−p(K,Q)
V (K)

=
Ṽ−p(L,Q)

V (L)
. �

Proof of Theorem 1.3. According to (1.4), we know

n
p
n Ω̃−p(K)

n−p
n

V (K)
= inf

{
n
Ṽ−p(K,Q∗)

V (K)
V (Q)−

p
n : Q ∈ Sn

os

}
. (4.18)

Since ΓpK = ΓpL , thus from Lemma 4.3, we get for any Q ∈ Sn
os

Ṽ−p(K,Q∗)
V (K)

=
Ṽ−p(L,Q∗)

V (L)
. (4.19)
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Thus from (4.18) and (4.19), we can get

Ω̃−p(K)
n−p

n

V (K)
=

Ω̃−p(L)
n−p

n

V (L)
,

i.e., (
Ω̃−p(K)

Ω̃−p(L)

) n−p
n

=
V (K)
V (L)

. (4.20)

And since L ∈ Sn
os , thus taking Q = L in (4.9), and associated with (2.12), we obtain

V (K) = Ṽ−p(K,L) � V (K)
n+p

n V (L)−
p
n , (4.21)

i.e.,
V (K) � V (L). (4.22)

Combining with (4.20) and (4.22), we get

Ω̃−p(K) � Ω̃−p(L) (4.23)

According to the equality condition of (4.22), we see that equality holds in (4.23)
if and only if K = L . �

Proof of Theorem 1.4. Since L is not an origin-symmetric, so from Corollary 3.2,
we know

Ω̃−p(∇̂pL) > Ω̃−p(L).

Choose ε > 0, such that Ω̃−p((1− ε)∇̂pL) > Ω̃−p(L) , thus let K = (1− ε)∇̂pL , then

Ω̃−p(K) > Ω̃−p(L).

But from Lemma 4.2, and notice that Γp(1− ε)K = (1− ε)ΓpK , we can get

ΓpK = Γp(1− ε)∇̂pL = (1− ε)Γp∇̂pL = (1− ε)ΓpL ⊂ ΓpL. �
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