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WEIGHTED HARDY-TYPE INEQUALITIES ON
THE CONE OF QUASI-CONCAVE FUNCTIONS

L.-E. PERSSON, O. V. POPOVA AND V. D. STEPANOV

(Communicated by L. Pick)

Abstract. The paper is devoted to the study of weighted Hardy-type inequalities on the cone
of quasi-concave functions, which is equivalent to the study of the boundedness of the Hardy
operator between the Lorentz I'-spaces. For described inequalities we obtain necessary and
sufficient conditions to hold for parameters g > 1, p > 0 and sufficient conditions for the rest
of the range of parameters.

1. Introduction

In the remarkable paper [21] G.G. Lorentz introduced and characterized the basic
properties of new function spaces A,(¢) defined in terms of rearrangement

FA() :==inf{s > 0:mes{x: |f(x)] >s} <t}

of a function f on the semiaxis in decreasing order. More exactly, we say that [ €

AP(¢)7 if
oo 1/p
£l Ay (0) = (/o [f*]”(b) < oo,

Since then the Lorentz spaces have become an important tool in various branches of
analysis and its applications. In particular, the study of mapping properties of operators
of classical analysis in Lorentz spaces has started. First of all, it concerns Interpolation
Theory [4], where the Lorentz spaces play a crucial role in the extension of the classical
Marcinkiewicz theorem. In fact, they appear naturally in the real interpolation method
as intermediate spaces for L” —spaces (see e.g. [4] and [5]). In spite of the fact that the
original definition of A,(¢) contains an arbitrary weight function ¢, for a long period
only the special case of power functions ¢ was used. A breakthrough happened in 1990,
when M. Arifio and B. Muckenhoupt [1] characterized A,(¢) — A,(¢) property of the
Hardy-Littlewood maximal operator M in the case 1 < p < oo using the equivalence
(Mf)" =~ f**, where

0= [ s
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(see e.g. [2] for some simple proofs and historical facts concerning this estimate). It
took about 15 years to find a precise characterization of A,(¢) — A,(y) mapping
properties of the maximal operator for all 0 < p,q < o= and arbitrary weight functions
¢ and v (see [3], [6], [7], [12], [13], [17], [29], [31], [32] [33])). On the way E.T.
Sawyer [29] introduced Lorentz I"-spaces I',(v) such that f € I',(v), if

oo 1/p
Hf”r,,(v) = <‘/0 [f**]pv> < oo,

Similar to A— analysis, mapping properties of classical operators in the Lorentz
I"-spaces became a challenging task of numerous investigations (see, for example, re-
search papers [6], [8], [14], [15], [16], [26], [30], [32] and monographs [19], [20]).

It has also become convenient to use functions with two different conditions of
monotonicity ([15], [22], [30]). In particular, functions u(z) are used, such that u(r)
is non-decreasing and @ is non-increasing. It is known [5] that such functions are
equivalent to concave functions and called quasi-concave. Some new information and
historical remarks concerning such functions can be found in the paper [25].

The main motivation of this paper is to find the integral criteria of I',(v) — I'y(w)
boundedness for the Hardy-Littlewood maximal operator. This problem was first stud-
ied in [32] in the diagonal case 1 < p = g < oo,v = w. The next result was obtained
in the paper [14] with answers in terms of implicit sequences as well as in the paper
[15]. Later on, G.Sinnamon [30] gave integral criteria for the case 1 < p,q < o us-
ing a reduction principle for the inequalities on the cone of quasi-concave functions.
In this paper we extend Sinnamon’s result to cover also the case 0 < p < 1 and give
an alternative approach for the other cases. Moreover, we obtain results not only for
quasi-concave functions, but for a more generalized class of functions.

Let Ry := [0,00) and 901" be the class of all measurable functions f: Ry —
[0,+ee]. Let y be a continuous strictly increasing function on [0, ) such that y(0) =0
and lim;_... Y(7) = e. Such functions are called admissible. A function u(t), such that

u(r) is non-decreasing and % is non-increasing, is called y— quasi-concave. For an

admissible function y let €y, be the subset of measurable functions f € MM such that
f(r) is non-increasing and y/(r)f(¢) is non-decreasing.
Let u,v,w € M be weights, 0 < p < eo. In Section 2 we study the inequality of

the form 1
q q
(o) << (,
%
— P
Af(1) <Aﬂf0 . )

In Theorem 1 we obtain the necessary and sufficient conditions for this inequality to
hold for parameters g > 1,p > 0. The sufficient conditions for the rest of parameters
(more exactly, 0 < p<g<1,0<g<p<1,0<g<1<p<oo)are derived in
Theorem 2. For a natural analog of (1) for p = e or g = e see [6], Section 2.

J%)ﬂfegw I

where
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We also study the inequality (1), where the operator from (2) is replaced with the

complementary operator
1
P
Bf(r) = ( /[ )f”u) 3)

which is important in the interpolation theory ([4], [5]) and other areas. In this case
we obtain necessary and sufficient conditions (Theorem 4) for the same range of p and
g as in Theorem 1 using an extension of Sinnamon’s reduction theorem (see Theorem
3 and Lemma 1), and also make Remark 1 concerning reduction of the inequality (1)
with the operator (2) to the one with the operator (3).

Throughout the paper expressions of the type O-eco are taken to equal 0. The
relation A < B means that A < ¢B with a constant ¢ depending only on the parameter
of summation. We write A ~ B instead of A < B < A or A = ¢B and we use the
symbol Z for the set of all integers. We set p':=p/(p—1) for 0 < p <o, p#1 and

1.1

use the notation - := i ;—) for 0 < g < p <eo. LP(u) denotes the set of all measurable
1

functions f on (0,e) such that ||f||,. := (f(aoo) ‘f\pu>5 < oo. The constant C may
be different at different occurrences.

2. Main results

First of all, we note that the inequality (1) for both operators (2) and (3) can be
reduced to the case p = 1 if we substitute fP by f because f € Qy < f € Qyp.

Let u,v and w be weights.

We say that a measure v(x)dx is non-degenerate with respect to some admissible
function ¢, if for every 1 € (0,00)

v(s)ds . v(s)ds _ (s)ds — oo
Jom T+ 8T < Jo 00~ 5=

THEOREM 1. Let ¢ > 1,p > 0 and the measure v(x)dx be non-degenerate with
respect to the function WP (x). Put

and
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Then the inequality

(/[0700) </[o,z] f(s)”(s)ds) qW(f)dl) 5 <C (/{0700) fpV(t)dt) ’ (4)

holds for all functions f € Qy, if and only if
(i) A1 <o, if q=1,0< p < 1, where

wissn ([, (] viomes v

(ii) Ay < oo, if g=1,1 < p < oo, wWhere

==

€
7

e ( [ (L () psameas) dw<z>)p/w>d<wﬂ<r>>> .

(iii) Az <o, if ¢ > 1,0 < p <1, where

wmsn([ (] e U(s,y>dw<y>)qw<s>ds) Vot

(iv) Ag 1 +A42+A43+A44 < oo if 1 < p < g < oo, where

==

aav=swn ([ veat ) 7 (f,, o) g

>0

taz = s ( [ U Ve o) 7 ( [ w(ss ) 3

>0

aazi=sop ([ V' 5) 7 (f_ voomoa) g

>0

1
aas=swp ([ v awron)” ([ wias)
>0 [OJ] [7°°)
(v) As1+Asy+As3+Asy <o, if 1 <g < p<oo, where

Asy = ( [ ([ wemons) ([ vorwrs)’
Asy = ( /[0700) ( mU(t,x)p’V(x)d(wpp’(x))> v ( /[700) W(x)dx>’r’w(t)dt> %7
Asi = ( [ ([, o) ([ voor >dy)5v<t>d<wpp’<r>>) :

Q=

1
r

V(x)d(y” (X))> :

T
/
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r

Asaim ( [ ( [ wioar) % ( [ Vo aw ) ’ V(X>U(x)p'd(w”(x))>

Proof. Let f(t) € Qy. Then by Lemma 2.8 in [8] there exists a non-increasing

function g(¢) such that
1
10~ 55, 80w ).

We denote the least possible constant C in (4) by Ha(p,q), thatis

<=

(f[ov‘”) (f[O,r] f(s)u(s)ds> ! w(t)dt)

Ha(p,q) := sup T
T (Jow Fryar)”

Then we have

=

Hy(p,q) ~ sup <f[0’°°) (f[(”’] (W%s‘) Jo. gd‘”) “(5)d5>q w(t)dt) -

sl (o (357 Jioa gw) vie)ar ) ’

/[074 (ﬁ /[O,S] gd "’) u(s)ds = /[OJ] U(t,y)g(y)dy(y).

(S (Jos Ut 3)e0)ay()) wierar

D

We write

Thus,

_—

Ha(p,q) =~ sup >
sl ( Jiow) (ﬁ Jiou gdl//) v(t)dt)

~|—

For g =1 we obtain

Ult,y)w(t)d d
HA(p7 l) = sup f[O,oo) (fb’“’) (t y) (t) l) g(y) W(y)

C (fom (35 Jon gaw) vio)ar) ’

)

and [8], Theorem 4.2 yields

Y)W 'd' d
HA(p,l)%sup f[O,t] <fb’v°°)U(Z y) (Z) Z) W(y)

PO (VI + YO Jyy W) PY(5)ds)

==

for 0 < p <1 and

Ha(p,1) = ( J,. v

pl

12055 (o (. t9wt00) )

xV()d(y (1))
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for 1 < p <. Note that [, ) U(,z)w()dt is non-increasing in z on (0,e). Hence,

_ ﬁ ( /{M ( /[ 7N)U(t7z)w(t)dt> dw(z)) 7

and we obtain

Ha(p. 1)~ ( [ ( L ( B Ulrawtsar ) dw<z>)p/w>d<wf’<t>>) "

for 1 < p < eo. Inthe case 1 < g < co we have

ul, d h(t)w(t)d
Ha (o) supsup B (JonUa.)20) W)? (w(t)dt

sb =0 (f[o,oo) (ﬁ Jios) gdllf>p"(’)dt> ' (flow) hq,W) '

I fioe) (S U E.)n0)w(0)dr ) g (v)ay (v)
up .

= sup S
h=0 s \7 sl p
(f[o,oo) h4 W) v e <f[0,oo) (ﬁ Jios gle) V(f)dt>
If 0 < p < 1, then, according to [8], Theorem 4.2 (i),

==

HV_%(l)f A (S UGs,0)R(s)w(s)ds ) dy(y)]|-
Hy(p,q) =~ sup [O']( [y>0) y | ) v(y

k>0 (f[07°°) hq’w> 7

IV7 1) Sy (5" U (5.0)dw() ) hls)w(s)ds |

h=0 ( f[o,oo) h’/w> i

By using [18], Chapter XI, §1.5, Theorem 4 we get

mipa=sov o ([ ([ vinave) weas) g

t>0

If 1 < p < oo, then by using [8], Theorem 4.2 (ii) we find

= -

(o W [s0012 55 fy @61w9)] V000 )

Ha(p,q) =~ sup
k>0 (f[07°°) hq'w> K

o

, (0
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D7) = /[Z Ui

It is easy to see that ®(z) | . Hence,

where

1 1
G0 oy PO = oy P

and (6) is equivalent to

/

p

~|-

V(s)d(w(t)))

(e (s (Jemy V0200 w0101 avo)
Halp.g) ~ sup
70 < fou Ww)

Y.

Since

/[o;] ( [z,m)U(t7Z)h(t)W(t)dt) dy(z) = /[o,.y] ( . U(nz)h(t)w(t)dt) dy(z)

+/[0 ] ( . )U(Z,Z)h(t)w(t)dt> dy(z) = I + b,
we have

h= /M( o’ (Z»Z)dll/(z)> h(e)wi(r)d
= [ wowo ([ ([ as)awa)ar= [ vomemioar

b _/[OS (/[Sw) Uz, s)—l—U(s,z)]h(t)w(t)dt) dy(z)

and

=y(s U t,8)h(r)w(t)dr +U(s) [ h(r)w(t)dt.
[s.o 5,%0)
Thus, the characterization of (6) is equivalent to the following inequalities restricted to
the set of non-negative functions:
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and
Ha(p,q) = B1 + B>+ Bs.

Applying well-known criteria for the weighted Hardy and Hardy-type inequalities [23],
[24], [27], [28], we obtain

Bi+By+B3~As1+A40+A43+A44
for 1 < p < g < e and

Bi+By+ B3~ As51+As2+As53+As4

for 1 <g<p <oo.

For the range of parameters 0 < p < ¢g<1,0<g<p<1,0<g<l<p<oo
integral criteria are unknown for validity of (4). Below we find the sufficient conditions
for the inequality (4) to hold for f € Q,,. We note that

(o) < (G o) o)

for any non-increasing function g(7). Hence, the validity of the inequality

(o (st o) ) < ()

for any non-increasing function g is sufficient for the validity of the inequality (4) for
all f€Qy and Hy(p,q) < C;. However, if v and y are such that the reverse to (7)
inequality holds (see, for instance [6], Theorem 4.1), then Ha(p,q) =~ C). It is easy to
see that (8) is equivalent to the inequality

(), ([, veneoive) (z)dt)$<c1</m?m)gpv>'ﬂ o

where U (t,y) is defined in Theorem 1.

We now use [9], Theorem 5.7 (see also [10] and [11]) to estimate the constant C;
in (9) for the range of parameters p and g mentioned above and obtain the following
result:

THEOREM 2. Let p > 0,0 < g < 1. For the inequality (4) to hold for all functions
f € Qy itis sufficient that C| < oo, where Cy is defined as follows:
()if0<p<g<l, then

1

€\ = sup ( [, vminteo)uts >dy)qv<x>—%,
x=0

(i) if 0 <g<p<1, then

r
q

z<supz( [ )+ waU G w0)ay ) vmrﬁ)',

{utkez
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(ii) if 0 < g <1 < p <eo, then

C=C1+Cip+Cyj3,

where

i (s ()
o= (s, (11" (], 3] vomn)
</ U7V (y ()dy)r'y.

X (/Xk (Uly) + lV(y)U(Xk,y))p/V(y)_”’V(y)dy> 7)

~|—

887

Note that the case (i) is valid for the bigger range 0 < p < 1, p < g < °=. However,
the sufficient condition for 0 < p < 1,¢g > 1 is of no interest to us here, as we have
obtained the necessary and sufficient conditions for this range of parameters in Theorem

1.

REMARK 1. To characterize the inequality (1) for the operator (3) we can reduce

it to one for the operator (2) and then use the result of Theorem 1. Indeed, let

Q=

<f[07°°) (f[r,oo) fu> ! W(t)dt)

Hp(p,q) := sup

fEQy <f[07°o) fpv> r
We have
L L P
o fOuds = || =5 s = /[Ol]f(s)u(s)ds.

Observe that f € Qy < f € Qy, for f(s) =1f(1). Then

)

1 1\
/l(xw) </[ 7oo>f”) MON= fo </[o,:1f”> v
N9 (1\dr NG
= fo, (1) () = (U, ) oo
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R MO R O L

where
ils) = +u (1) |
W(s) = (1) |
#(s) = 572y (;) .
Thus,

Hp(p,q)lu,v,w] = Ha(p,q) &7, 7]
and applying Theorem 1 for Hy (p,q)[ v,w| we obtain criteria for Hg(p,q)[u,v,w].

However, it is easy to see, that the functionals in Theorem 1 with weights i, 7, w
are not always convenient. By this reason we find alternative characterization for the
inequality (1) with the operator (3) by using a different approach, which is based on
Sinnamon’s result ([30], Theorem 2.6) for the class of quasi-concave functions g | =

. [
{remoror 221},
For admissible function /() we introduce the class of functions Qg B consisting

of the functions f(r) € M*, such that y(r)®f(¢) is non-decreasing and y(z) P £(r) is
non-increasing. In particular, the class Q| consists of functions f(r), such that f(z)

is non-decreasing and % is non-increasing.
We also define the operators

Hy gh(x) == y(x)* | w(t)%h(r)dt
and
HYPh(x) = y(x)P : w(t) Ph(r)ar.
For oo+ 8 > 0 we also use the operator
HYBh(x) = Hyoh(x) + HYPh(x),

which can be rewritten as

:/ min<<m>a,<w)ﬁ> h(t)dt.
[0.) ¥ (x) w(t)
It is easy to see that l//(x)O‘H,,VZ 5 h(x) is non-decreasing and l//(x)’ﬁHvl’ﬁgh(x) is non-
increasing for any function h(z) € 9M*. Thus, H;',’ﬁ M+ C QZ{” B

It is also easy to check that f[OPQ) (Hu",’gh1> hy = f[o,oo) hy <H$gh2> .

The following theorem characterizes the embedding LY — L1 on ng | for 0 <
P.q < oo.
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THEOREM 3. () If0< g < p <oo, u,v€IM", then

1
”f 11 1lgu (/ < v,0 _Trz 0 Tri r
su : H ’v) <HW u) u
reew, 1Flp ™ Wy U7¥7 v

() IFO< p<g<oo,u,v M, then

_1 1
aop Lo oy () ()
fGQKI ”pr,v >0 i :

Proof. The part (i) of the theorem is proved in three steps. First we obtain the
norm of the the embedding L} — L for the functions from H;’Z’éﬁﬁ* C QY. Then
we extend the result of step 1 to be valid on Qg’_ |- Finally, we obtain the norm of the
embedding L) — L} on QE’; - /

Step 1. For 0 < g < 1 we need to show the estimate

L/

l—q

q:“ ~ (/[0700) (H&Qﬁ) 7T (H“” )'L u> (o)

Since every f € HV",’ " has a representation f = H "” oh for some h e M*, we
see, that G is the least possible constant C in the mequahty

(/ (H"” u) c/ H"” vhesm+.
0.0)

Since [ . (Hl’” h) = Jpo, )h<lev> the last inequality is equivalent to

( /[0700)( [va]h(t)dﬂr w(x) /[ . %dt)qu(x)dxf <C /[O7w)h(t)HV",’: v(t)dt.

By the Minkowsky inequality, C ~ C| + C,, where C; and C, are the least constants
for the following inequalities for 7z € M :

( /[O.’N) ( [Oﬁx]h(t)dt)qu(x)dx); < /[O’N)h(t)HV"ﬁ’v(z)d,,
( /[O’N) (W(x) /[ . %dt)qu(x)dx>; <G /[O’w)h(t)Hu”/’”?v(z)dt,

)

G:= sup
feHyy

It is easy to check that that H, W’? v is a non-increasing function. Using [31], Theorem
3.3 with V = HW’lv and U = u, we obtain

l—q

p 1y
~ v,0 g1 v,0 L a
C =~ (/[0700) (H%l v) (H ) = u) .
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For estimating C, we replace 1%)) by A(t), and the second part of [31], Theorem 3.3
(

with non-decreasing function V() = u/(t)HVl’:?v(t) and U(r) = y(r)9u(r) yields

q 14
- w0 \ a1 L q
G~ (/[0700) (H ) (Hq,qu) T— u) .

Since C =~ C| + C;, we obtain the needed estimate (10).

Step 2. Let f be a function from ng |- It was shown in [4], Proposition 2.5.10
that for a quasi-concave function ¢ there exists the least concave majorant ¢ and that it
satisfies the estimate 1/2¢ < ¢ < ¢. The same estimate holds for the case of y— quasi-
concave functions. Thus, there exists the smallest concave function f defined as the
pointwise infimum of all dominating concave functions, which dominates f. In order
to prove that H "’7 o MT is dense in QO [» we show that f is a pointwise limit of an

increasing sequence of functions in HV“,/ PR
Because of monotonicity of f and % the limits a = limy_,o f(x) and b =

lim, ... 28 exist. Then f(x) = a+by(x) + g(x) with a concave function g such

v(x)
that lim, o g(x) = limy_.. % =0. We take /(1) 1= ax(o,1u(). Then H}(hy(x) is
a non-decreasing sequence converging pointwise to a as n — oo. If we take h,(t) :=
by (t) X(nn+1)(t), then Huuzghn(x) converges to by(x) as n — oo. Now we show that

g(x) is also a pointwise limit of functions in Hl% M*. We have g(x) = [jo & (t)dr.

Now, setting
1 (n+1)t
v() g g( n )

hy, ()3_t1n(n+ ) W<t>_l{f’<@> dt,

fosie= (U ) (175)

)dt converges to Wl,(()) for almost every y, when n — oo. This

we get

The sequence [ .,
implies that

hn (1)
HY o (x) :/ (/ ’ dt) dy(y)
o 0 \ i) W(0)
converges to [y ;&' (v)dy = g(x), when n — co.
We use the observation above to extend the result of the first step to the cone
Qg’ i- On the one hand, H,, % 1£m+ C Qg’ 1- On the other hand, if f, is a sequence from

H vl oM which converges p01ntw1se to the least concave majorant f of f, then, by the
Monotone Convergence Theorem,

Hf”lv X

1f g < 117

qu = hm ||fn||qu ~ hm I fn
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Thus, for 0 < g < 1 we have

If

q_ g\
UL (HW’OV> ! (HW’Ou> o u) ’ )
rel I1£11, </[0.,°°) vl v

sup

Step 3. To extend this result to the case 0 < g < p < e we make the following
observation:
feq, <:>ge£231,
where f(x)? = g(x”) and y(x)? = ¢(x”). Then for 0 < p,q < == we have

1

sup 1/ Nl g _ 18lg/p.u
reQl, A1 py geggl llgllry

where
U(xP)d(x") = u(x)dx, V(x)d(xP) = v(x)dx.
Thus, for 0 < g < p < eo we obtain

1
Hf”%u ~ ¢.’0 *% ¢.’0 [L; T
S Wl /[O,N) (Hgv) " (mgy,0) U)

feQl

Making the substitution ¢t — ¢”, we have

1

fllga ( [ (r80vn)) 7 (122, v6)’ u(t)dt) g

feQE)VJ Hf”Pﬂ/

Next we make the substitution x — x” to get

HOVV (17) = /[0700) min ((f((:;)) : 1) V(x)dx = /[0700) (‘5)((?:; : 1) v(x)dx = HY v(¢).

Similarly, we have
0 0
Hyo U(7) = Hygu(?).
Hence, we obtain the needed estimate

1
[/ 1l g (/ w0 \ 5 (uo N7\’
sup To— N (H y v) <H ¥ u) u
11l pv [0.0) v va

reQy

(ii) We can represent any function f(¢) € QJ', as the integral f() = Jios1 84w (s), where
function g(¢) is non-increasing. Therefore, we have

_—

I llga _ o (f[opo)(ﬁﬁo,z]gdlﬁ)qu(t)w(t)‘fdt)

v ||fH v a P
P I (e (8 foa 8dw) v w(ordr)

= -
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and by using [8], Theorem 5.1 (i) we obtain the result for 0 < p < g < co.
For an alternate characterization of Hg(p,q) we need the following

LEMMA 1. Let u,v be non-negative measurable functions and function y be ad-
missible. Assume that the measure v(t)dt is non-degenerate with respect to the function

y(r)P.
() If0< p< 1, then

1Lu u(t) ) 1
su — & su u(t)dt + x/ —=dt |V(x) »,
P TP (f wrirsven [ whar)veo

where
V(x) = /[Ox] v(t)dt + y(x)? /[ } l;((;))pdz.

(ii) If p > 1, then

1

sl (1 ([ woa) viwas)
( (/{x tt t) ,Vz(x)dx> 177

Vi(x)dx ~d (V(x)—%> , Va(x)dx~d (-w(x)P’V(x)—%> .

where

Proof. (i) Theorem 3 yields

1u 1 :
sup S / ( y()Pv(t)dr + V(t)dt>
reql, 1£11p ( 002 \W(x)? Ji0.g brie)

/

! b
g (W 0] y(t)u(t)dr + [m)”(f)dl) u(x)dx

N~ —
=]

Put V¥(x) := v i),, Joq W@)Pv(t)dt + [ .y v(t)dt, then we have

ap Wlia (1 Ly ([ ytoutoa)
fng’J Hf”[%v [0,9) u/(x)% (0.4

1

u(x)dx)

RIRS
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) </[07°°) W(;p,v*(x);’d( » V/(f)u(t)dt)pl> ”
' </[o,m> V() 7 <_ /{}g@u(t)dt)z?’) 4
) </[0’°°) ( o W(Ou(t)d’)p, Y (m’“) " (/[07&,) </[xw<,) u(:)dz)”’ V;(xmx) v

where

Vi(x)dx ~ d (V* (x)" 7 /W(x)ﬂ’) L Vi(x)dx ~d (—V* (x)” Z) .
For the class Q. we have

Tyl

||f ”le u(t)

feQpsi Hf”p,v feg(‘{l Hf”l% ‘;((If))

lu

~|

We make the substitutions u(t) — l';((?) and v(t) — 1;((:))1, to obtain V(¢)/y(t)?, Vi(t)

and V»(¢) instead of V*(¢), V{* and V; (z), respectively, and thus (i) is proved.
(i1) The corresponding result for the case 0 < p < 1 follows directly from Theorem
3. We have

sup ALY sup ( ! w(t)Pv(t)dt + v(t)dt)ll’
rea¥, IMllpw >0 \W(0P Jog )
><< ! w(t)u(t)di+ (z)d:)
— u u .
v(x) Jio. fr.eo)
Therefore,
[l Py
sup 111 = sup WIONPY ( ! w(t)u(t)dt + u(t)dt) V(x)_%.
reay Mllpo reqy I£1, o y(x) Jjo o)

Now we are ready to prove an alternate characterization of Hg(p,q).

THEOREM 4. Let ¢ > 1,p > 0 and the measure v(x)dx be non-degenerate with
respect to the function WP (x). Put
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Vi (x)dx ~ d (V(x)’2> , Va(x)dx~d (-w(x)P’V(x)’Z> .

u(r)
Ulx,s) = / w(t)dt, Uy(s) = / Ll
5] fs.00) W(1)
Then the inequality

(oo (100015 ) i L (f,_ o) %

holds for all functions f € Qy if and only if
(i) A1 < oo, if q=1,0< p < 1, where

._ u(t) —
Ay = sup ( /M (YW (1)t + w(x) /[ . WW(t)dt) V(x) 7

(ii) Ay < oo, if g=1,1 < p < oo, Where

A= ( /[0700) ( /M u(t)W(t)dt)pl Vi (x)dx

" /[0,«0 </[x,w> u((tt)) Wie)dr ) AR

(iii) Az <o, if ¢ > 1,0 < p < 1, where

1

Az :=sup [( U(t,s)qw(s)ds) !
20 (0]

+ui) ( Uf(max<s,r>>w<s>ds)%

[0,00)

(iv) Ag1 +Aup+As3+As4 <oo,if 1 < p < g<oo, where

1 1
Ay 1 = sup ( Vl(x)U(xJ)”,dx) ! (/ w(x)dx) ! ,
S0 \Jlre) (0]
1 1
r’d q
( ) ( U(t,x)qw(x)dx> ,
[f.>) (0]
L 1
P q
A4z =sup ( 1’ )PV )dx) < / w(x)dx) ,
120 \/[t,) (0]
1
( ) ( Uq(x)w(x)dx) "
0] o) ’

= sup
120

Agq =sup
=0

V() r;

(1)
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(v) As1+Asp+As3+As4 <oo,if 1 <q<p<eo, where

1
r

As) = ( /[0700) ( . Vl(x)U(x,t)P/dx> a ( /[OJ]w(x)dx);w(z)dt) -

Asy = ( /[Oﬁm) ( . Vl(x)dx) 7 ( /[O’t]U(z,x)qw(x)dx)gvl(t)d,> :
Ass = ( /[Oﬁm) ( /[o,x] w(t)dt> g ( v (z)P’Vz(t)dt> 7 U, (x)P'Vz(x)dx> :
Asy= ( /[0700) ( U (s)qw(s)dsy ( » Vz(s)ds) ;’Vz(x)dx>%

Proof. Let g =1, then

Hp(p,1) = sup Jo (f[”‘”) fu) wt)dr ~ sup Jio.0o) F()u(t)W (2)dt

fes (f[o,w) fP V) ’ Jes (f 0,00) S V) ’

where W(r) = [j,;w(s)ds. We use Lemma 1 and obtain

Hy(p,1) ~ ( /[0700) ( /M u(t)W(t)dt)p, Vi(x)dx
+ /[0700) ( /[ . @W@)dr) ' Vz(x)dx> '

for 1 < p <o and

Ha(p, 1) ~ sup ( /[O_x] W)W (1)dt + x /[ } @W(z)d:) V(x) 7

x=0

for 0 < p < 1. Letnow g > 1. We have

_—

q
Haoea) — s <f[0700) (f[t7w) fu) w(t)dt) s f[o,oo) <f[t,oo) fu> g(r)dt
slp,a) = up : retngo N8l gur o 1/ 1lp
(Jo /77) |
. Sioeoy FO)ur) (fio8)

= sup sup
g0 Hqungfq’ feQ, Hf”pn/

895
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By using Lemma 1 for p > 1 we find

Hg(p,q) ~ sup 7———
>0 Hqu wi—d

( [Ox] (/[0,]g> dt)p,vl(x)dx
L) )

/[xw) uTt) ( (0] g(S)ds) a

)

- (/[o,x]g (s>ds> (/[,m) @dt) " /[va) (/M @dt) gle)ds,

and, thus, the initial inequality (11) is equivalent to the following three inequalities on
the set of non-negative functions:

17/
/ ( U*(x7s)g(s)ds) Vildx | <Cillgl g
[0.00) \/[0,4] '
P , 7
/ (/ g(s)ds) U; (x)? Va(x)dx <C2||g||q,_wl,q/
[0,00) \/[0.4] '
, 1
14 P
( [ () vese) Vz(x)dx> <Cilglgp v

o o
U*(x,5) _/Mu(t)du Ui (s) —/[m) dr.

t

We can write

= -

and

where

Criteria from [23], [24] yield the result of the theorem for | < p < g< e and 1 < ¢ <
p <eo. Incase 0 < p <1 we have

1
Hp(p,q) ~ sup 1———
820 Hqugwl—q’

| (o () oesn 5 (e ) v

= sup;sup [( [ ]U*(us)g(s)ds
0,

g>0 ||g||q ! wl=d' 120

LU (1) / g(s)ds+1
[0,7] [tyo0

Uil ) Vo) |



HARDY-TYPE INEQUALITIES ON THE CONE OF QUASI-CONCAVE FUNCTIONS 897

V(1) » ( Jioq U (t.5)g(s)ds +1 f[OM)Ul(max(s,t))g(s)ds> oo
=sup .

¢>0 &l yi-o

Then [18], Chapter XI, §1.5, Theorem 4 yields

Hp(p,q) = supV(t)fé < o U* (t,S)flw(s)ds) ; +t (/[0700) U‘f(max(s,t))w(s)ds)

1
q

>0
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