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A WEIGHTED NORM INEQUALITY FOR
MULTILINEAR FOURIER MULTIPLIER OPERATOR

YULAN JIAO

(Communicated by J. Pecaric)

Abstract. In this paper, a weighted norm inequality with multiple-weight is established for the
multilinear Fourier multiplier operator.

1. Introduction

The study of the multilinear Fourier multiplier was originated by Coifman and
Meyer in their celebrated work [2], [3]. Let ¢ € L*(R™"). Define the multilinear
Fourier multiplier operator T by

To(fiser S 0) = [ exp@ix(Er+...+En) O (Erseee G161 T En)E

(1.1)
for fi,..., fm € Z(R"), where and in the following, d& = d¢&; ...d¢&,,. Coifman and
Meyer [3] proved that if o € C°(R"™\{0}) satisfying that

989276 (&1, .- En)| < Can gy (1E1] ..o+ Eul) (F el (12)

forall |oy|+...+ |o4| < s with s = 2mn+1, then Ty is bounded from LP1(R") x ... x
LPn(R") to LP(R") forall 1 < pi,..., pm, p <o with 1/p =34,y 1/pk. For the
case of s > nm+ 1, Grafakos and Torres [7] improved the multiplier theorem of Coif-
man and Meyer to the indices 1/m < p < 1, using the multilinear Calderén-Zygmund
operator theory. A very important progress in this topics was given by Tomita. Let
® € . (R"™) such that supp® C {(&1, ..., &n) : 1/2 < |&1|+... +|&n| <2} and for
all (&1,...,&,) € R™\{0}.

2 q)(ziléh LR 271&111) =1

€T

Set

oi(&y, .. En) =D&, ... .E)0(2E), .. 2, (1.3)
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and

Jotllgeomy = ([ (1P +- 4 EnPV I oG, & 1ag) ",

with .% o; the Fourier transform of ;. Tomita [10] proved that if

SupHGlHWA'(Rmn) < oo, (14)
l€Z

for some s € (mn/2, mn|, then Ty is bounded from LP1(R") x ... x LPm(R") to L”(R")
provided that py, ..., pm, p € (1,%0) and 1/p = ¥ <x<m 1/pk. Grafakos and Si [6]
considered the mapping properties from LP!(R") x ... x LP»(R") to LP(R") for Ty
when p < 1. Particularly, the argument used in [6] shows that if ¢ satisfies (1.4) for
some s > n, then Ty is bounded from LP1(R") x ... x LP(R") to LP(R") provided
that py, ..., pm € (mn/s, ) and 1/p =¥ <x<n 1/px. see the proof of Theorem 1.1 in
[6].

Now we consider the weighted estimate for the operator Ti;. As it is well known,
when o satisfies (1.2) for some s > mn+ 1, then Ty is a standard multilinear Calderén-
Zygmund operator, and then by the weighted estimates with multiple weights for mul-
tilinear Calderén-Zygmund operators, which was established by Lerner [8], we know
that for any pi, ..., pu €[1,0) and p € (0, o) with 1/p =¥ <1<y 1/ i, and weights
W1, ..., Wy such that w = (wy, ..., wy,) € Az(R™) (for the definition of A;(R™"), see
Definition 1.1 below),

m
1Ts(f1s s S lirese vy S TTIfell o gy

k=1

where and in the following, for index py, ..., pm, we set p = (p1, ..., pm) and p €
(0, 0) suchthat 1/p=1/p;+...+ 1/p,. By asuitable kernel estimate and the theory
of multilinear singular integral operator, Anh and Duong [1] established the weighted
estimates with multiple weights for T when o satisfies (1.2) for m =2 and s € (n, 2n].
Our purpose in this paper is to give a weighted norm inequality with multiple weights
for T, which is a generalization of the result in [1]. To state our main result, we first
introduce a class of weights.

DEFINITION 1.1. Let m > 1 be an integer, wy, ..., w,, be weights, p1, ..., pm
(0,00) with 1/p =37 1/pk, rx € (0, pr] (1 <k<m). Set w= (wy, ..., W),
(Pt pm) and vig = TI7_ wh/P% . We say that i € Azx(R™) if

Qsélﬂgn <|Q‘ / )UFH (|Q\ / W;?(x)d)ol/rkfl/mc o

k=1

P E
ﬁ:

1
Pk g i >l/rk*1/1’k 1/

when py = ry, <@ Jowe © (x)dx is understood as (infyeg wy)
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REMARK 1.1. Forthecaseof ry =...=r, =1, Aj/(R™) is denoted by A5(R™),
which was introduced in [8], while when r| = ... =1, =1 > 1, Aj5/(R™) was given
in [1].

Our main result in this paper is the following weighted norm inequality for 7.

THEOREM 1.1. Let ¢ be a multiplier which satisfies (1.4) for some s € (mn/2, mn],
tyoooytm € [1,2) such that 1/ty+ ...+ 1/t =s/n. If pp € (tg, ) for k=1,....m
and the weights wi, ..., wy satisfy w € Ag(R™), then

m
I To(fis s S o @ vig) S Tl e e, wy)- (1.5)
k=1
REMARK 1.2. Forthecase of t; = ... =1, =mn/s, (1.5) was proved by Anh and

Duong [1].

‘We make some conventions. In what follows, C always denotes a positive constant
that is independent of the main parameters involved but whose value may differ from
line to line. We use the symbol A < B to denote that there exists a positive constant
C such that A < CB. For p € [1,00), A,(R") denotes the Muckenhoupt class. For
any set £ C R", yg denotes its characteristic function. For p = (py, ..., pm) and
T=(t1,...,tm), we say that 7 < p if # < py for 1 <k<2. For7= (t{,...,%,) and a
6 >0,set 6= (8t1,...,0ty).

2. A multi(sub)linear maximal operator

In this section, we will introduce a multi(sub)linear maximal operator which will
be useful in the proof of Theorem 1.1. Let ry, ..., ry € (0, 00), and set 7= (ry, ..., ).
Define the maximal operator .#; by

1 1/ry
M frs s —/ nax)
(fis s i) g;k]‘[l ] J, o)

where the sup is taken over all balls containing x. When rj = ... =r, =1, #; is
the maximal operator which controls the multilinear Calderén-Zygmund operators and
introduced by Lerner et. in [8]. Our result in this section can be stated as follows.

THEOREM 2.1. Let m > 2 be an integer, wy, ..., Wy, be weights, py, ..., pm, P €
(0,00) with 1/p =30 1/px, rc € (0, pi] (1 <k <m). Then the following three
conditions are equivalent

(i) Az is bounded from LPL(R", wy) x ... x LPn(R" wy,) to LP=(R", vg);
(i) W € Ayp(R™);
(i) viyp € Ay (R"), and for any k with 1 <k <m, wy Vo= c o, (R™) if

r(pg—ry)
ry # pr or w,z/pk € A1 (R") if e = pi, here 1/r =Y <rm 1/ 1%
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Moreover, if r € (0, pr) (1 <k <m)and W € Ay/(R™), then M is bounded from
LPY R, wy) X .o X LPm(R" wy,) to LP(R™, vg).

To prove Theorem 2.1, we will employ a preliminary lemma.

LEMMA 2.1. Let u, vy, ..., viy be weights, 7 = (ry, ..., rm) with ri € (0,00) and

B=(p1, .., pm) With py € [rg,o°). Let 1/p=30"1/px and 1/r =3} | 1/ry. The
following conditions are equivalent

(a) Ay is bounded from LP1(R", vy) X ... x LPm(R" vy,) to LP=(R", u);

(b)
g, (g fyrman) " T (g fpw ™ )™ <

k=1

Proof. The proof is fairly standard. We first prove (b) implies (a). For each fixed
A >0, set
Q ={xeR": A(f1, ..., fm)(x) > A}

For each x € Q, , we can choose a cube Q, containing x such that

m

[ (g, 1R0ar) " > 2.

k=1
Thus,
UL 1/pi - 1/re—=1/py
V< AT! / Pryi(v)d / y, Pl g .
o IT(, Uo)mntar) ([ v ")
and so

" plk 1 - p/rk—p/pi
N < A—p / Pk d - /=1 d )
o <A TT( f, OIPn)ar) ™ (17 [, v )

Let K C R" be a compact set. From the cubes {Qy},cq, We can choose some cube
{Q;}Y.| with disjoint interiors, such that K C UY_2Q;. Therefore,

u

)P/I’k.

N .
“K) 53 Q])

(2 ‘ _ m i
sor 12152 TL( [ 1RGP way

i

We then get that
" < 3-p i o P/ Pk
u({x ER: Moo, o fi) (6) > A1) SATT] (/R )Py ay)” ™.
k=1
Now we prove the converse. Observe that (a) implies that

(ﬁ/Qu(x)d)Q l/pf[l <ﬁ /Q |fk(x>|rkdx> " sI1 <ﬁ/Q‘fk(X)‘kakdx> l/pk’

k=1
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o1
for suitable functions fi, ..., f,. Setting € > 0 and fi(x) = (ve(x) +€) P "% with

1 < k < m then leads to that

1 / 1/P / 1/rk=1/pi
— | u(x)dx vi(x)+ € T Ydx <1
(7g1 Jp @) " T (g f oo+ ) 7T

Taking € — oo then leads to that the condition (b). [

Proof of Theorem 2.1. We will invoke the idea used in the proof of [8]. By Lemma
2.1, it suffices to prove that (ii)< (iii), and .#; is bounded from LP! (R", w;) x ... X
LPn(R", wy) to LP(R", vig) when minj<i<,, pir/ri > 1 and w € Ap(R™).

(ii)=>(iii). We assume that for some / with 0 <[ <m, pp =r; for 1 <k <1,
and py > rp for k=141, ...,m. Our first goal is to prove that for [ 4+ 1 < k < m,
wl:l/(p"/r"fl) €A nn (]R"), that is, for any cube Q,

To—rz)

» Prdk 1

1
1 / 7? P14 P Pk
ol e " Wd )( /wkk(>dx) e <, (22)
(IQ\ 0" 0]
where o .
qr =+ (" 1+—").
Tk Pk
To do this, set ‘
6= 1r1<i<m j#k
no P
Note that
p 1
pidk "’ o1
and
1 11 1 1 1 1
D M o g Il
Ak pii<iom k9 9k GkNT P Tk Pk

It follows from the Holder inequality that

1 kaﬂ P,‘Ik H W Pjdk (X) dx
k
|Q‘/Q ‘Q| Q, z+1 l+1</<m7/7£k !
p/m Var I / "ﬂk) 1/aj
‘Q| Q, I+1 1+1<j<m, j#k ‘Q|

(2.3)
The inequality (2.2) follows from (2.3) and the fact that w € A/z(R™).
To prove that vi; €A,/ (R"), let 5, = % % . Itis easy to verify that s; € (1, =)
and Y7’ | 1/sx = 1. Now write
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It then follows from the Holder inequality that for cube Q,

1
1

/( H wp/pk ) #dxg ﬁ (/ka%l(x)dx>§7

k=I1+1 k=141

and so

() G
(Lo g 1 P47

<1

We now prove that w,’c/ Pk e A{(R") for k=1, ...,1. Again by the Holder inequal-
ity, we have that

n

e (o B " fL7) ")

Jj=l+1 j=1+1
o1
" AN oty (=r/p)/s;
< /WP/Pk H WP H /W. i
<Q ¢ j=I+1 ! > jl+1< o’ >
o1
r/p (L " Hoi\(=r/p)/s; /
< /vw(x)dx (infw;) /i /W- ! infw)/ 7%
(Q > zl:Il [0} j:17£1< 0 J > [0} k
/b
S Infwi ™).

(iii) = (i1). Note that (iii) implies that

(131 94) (i1 v T wan)" s

and for each fixed k with 1 <k <m,

( / %71( ) )( 1 /ngk(l/r 1/rg)+1 (x)dx> —,(:,fikrk)—l <1
10| 10| ~

If we can prove that for any cube Q,

1 -1 l/r 1/ — L/r—1/r+1/
<@/Q"w P (x)dx P ‘Q|/ P 7)1 n/km )d) e

(2.4)
w € Aj/(R") then follows from (iii) directly. On the other hand, (2.4) is an easy
consequence of the Holder inequality. In fact, if we set

1 o — (m—1)/r+1/p
pm—1)/r+1" * 1r—1/r+1/p’

o=
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it is easy to verify that Y7 = 1, and then by the Holder inequality,
" ”’;”k /0, ﬁ 1/,
/ H(/ z ) k:H</ W=7+ (x)dx) ‘25
Q k=1 k=1

Let 7= a(p/r—1)+ 1. We also have by the Holder inequality that

<ﬁ/gva( >d>(|Q\/V*W )" IQ\/ Vel F vy () dx > 1.

(2.6)
Combining the inequalities (2.5) and (2.6) then gives (2.4).

It remains to prove that .#; is bounded from LI (R", wy) X ... X LPm(R", wy,) to
LP(R", vi) when minj<i<m pi/1x € (1,00] and w = (w1, ..., wp) € Ap/(R™). Again
we follows the idea used in the proof of [8, Theorem 3.7]. It suffices to prove that for
some g € (0, 1),

1/(apr)
| (2.7)

M S 06) S TT{ M5 ((517w5/vi)) ()

k=1

where My is the centred maximal operator defined by

M = s )
I-xthe center of7 Y
As we have proved, for each fixed &, w,?l/ P/ e A e (R™), and so there exists
r(pkfrk)
a positive constant oy > 1 such that for any cube Q,
= 1/ =
K1 GA 1
— [ w, " (wd / (2.8)
(\QI /Q k \QI
Let
Prk

0= min Oy, g= .
1<k<m 1 pre+ripr—r)(1—1/0)

An application of the Holder inequality gives us that

S
1/ - 1o
(fineara)”™ < ([ uomgvi )™ ([ (avie) ) @)

r(Prg—r1)

Let %= so-ni-g-

Note that 9% > 1. Again by the Holder inequality,

a7

P 1

/Q(wk( )vl 7(x )) Pk{} dx < (/ka 771( )dx)i(évw”/' l(x)dx)?

(2.10)
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On the other hand, we can verify that

an _ qr q(pr— 1)
peg—ri  r(pkg—ri) —r(p—r)(1=q)" (prg—r) —ne(p/r—1)(1 —q)

< Of.

Thus by the inequality (2.8),

/s

alp—ry)

. L/ - 1
4wk Pra/re—1 ()C) dx — /ka Pi/re—1 (pg—ri)—ri(p/r=1)(1=¢q) (x> dx
AL . AL
< ‘Q| C Pk (/Wk Pk/’kfl(x)dx> PRIk (211)
o

The inequalities (2.9)~(2.11), along with the fact that w € Az/x(R"™) then leads to our
desired conclusion (2.7). [

By Theorem 2.1, we deduce that

COROLLARY 2.1. If W= (w1, ..., wn) € Ay;(R™) for some p and 7 with p <7,
then there exists a constant & € (0, 1) such that w € Agy(R™).

3. Proof of Theorem 1.1

We begin with a weighted estimate for the multilinear singular integral operators.

Let m > 1 be a positive integer, K(x; y1, ..., ym) be a locally integrable function
defined away from the diagonal x = y; =y, = ... =y,, in (R")"*!. An operator T
defined on m-fold products of .7 (R") (Schwartz space) and taking values in the space
of tempered distributions, is said to be an m-linear singular integral operator with kernel
K if T is m-linear, and satisfies that

TG ) = [ K300 ). (3.1)

for bounded functions f7, ..., f;, with compact supports, and a. e. x € R\ ﬂ’}q: 1supp fj,
where and in the following, dy = dy...dy,,. For the mapping properties of this opera-
tor, see [7], [5], [8] and [1].

THEOREM 3.1. Let m > 2 be an integer; T be an m-linear singular integral
operator with kernel K in the sense of (3.1). For x,x', yy, ..., ym € R", set

V(x, X591, ooy Yim) = | K6 Y15 ooy Yim) — KX 591, ooy Y |-
Suppose that for some fixed ry, ..., rm € (1,00),

(i) T is boundedfrom L' (R") x ...x L'(R") to L"=(R"), with 1/r =¥ <j<m 1 /7%
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(ii) there exists a constant p > 0, such that for any ball B with radial R, and x,x' €

B, and nonnegative integers ji, ..., j,m With j* = max|<i<m jk > 2,
N
(/ </ |V(x,x’;yl,...,ym)\%dym) " ) ldy1> 1
Sj, (B) Sjm (B)
RP

< .
~ |2.f*B‘1/r1+~'~+1/"m+P/n

Then for any pi, ..., pm such that py € (rg, o), 1 <k < m, and weights Wiy eeey Wiy
such that w € Ay/(R™), T is bounded from LPY(R",wy) x ... x LP"(R", wm) to
Lp(Rn7 VW)'

Proof. For 8 € (0, min{1, r}), let Mg be the sharp maximal operator defined by

1/8
Mir) = swpint (- [ 1700 fofPay) "

BoxceC

where the sup is taken over all balls containing x, and fp denotes the mean value of f
on the ball B. We first claim that under the assumptions of Lemma 2.2,

ME(T(f1, ooy o)) (x) S A f1, ooy fin) (). (3.2)

To prove this, we will employ the ideas used in [1]. For any x € R", any ball B con-
taining x and suitable functions fi, ..., f;;, we decomposition fi,..., fi; as

RO) =0 xas0), f20) = fiy) xmmas ().

A trivial argument involving the fact that 7 is bounded from L™ (R") x ... x L' (R")
to L= (R"), and the argument used in the proof of Kolmogrov inequality, tells us that

|B|/' (o O ) 5ﬁ \B\/ o)

k=

S %V(fh 7fm)( )

Now let {i1, ..., i} C {1,2} suchthat iy =2 for some k with 1 <k < m. Without
loss of generality, we may assume that iy = 1 when 1 <k </ and iy =2 when £+ 1 <
k < m. Then by assumption (ii), for any y,y € B,

|T(f11’""fllvflz-&-lv"'vqu)(y)_T(flla~..7ﬁ17ﬁ2-&-17~..7fr%z)(y/)|
o o £ U "
S X X TT( [ laowtian) ™ TT ([ Laooran)

Jm L jm= =031 ~7Sj;(4B)

(o (s (L

J+1

mfl

V(¥ 915 ey ym)l’é’dym> dyl)

4B) /S, (4B)
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= o
1 " 1/
11§=1 z='11:[1<|4B| ABVk(yk)‘ dyk)
1/ |B|P/n
"l
) |S/1 4B |/ AGI dyl) ‘Sj*(43)‘1/"1+-~.+1/r[+p/n

5 Q///;(fh...,fm)(x).

We can now conclude the proof of Theorem 3.1. By Theorem 2.1, we know that
Vi €A,/ (R"). If we choose & small enough, we then know that vz € A, /5(R"). Our
desired conclusion then follows from (3.2), Lemma 2.1 and the relationship of sharp
maximal operator and the Hardy-Littlewood maximal operator; see also [1]. [

To prove Theorem 1.1, we will also use some preliminary lemmas. For ¢ €
L=(R™"), let o; be the same as in (1.3). Define

ol omiomy = ([ (62 A& [GuEr, o &)

where (&) = (1+]&[)"/>.

LEMMA 3.1. Let qy,...,qm € [2,), and si,...,5n = 0. Then

1m
(Lo ([, 1eEr e gnae ) E)mag) ™™ ... Enmasn)

~ || GK ‘ ‘ W51 /@1 s-s5m/am (Rmn) .

0/ 0 93/q2
) )

For the proof of Lemma 3.1, see Appendix A in [4].

LEMMA 3.2. Let s1,...,sm €R, and oy ..., 04, € Z'L be multi-indices. Set
.... (gla gm) = 1 . éamcx(él,---’ém)-

Then

This lemma was given in [9, Remark 2.5].
Let o, ® € Y (R™) be the same as in Section 1. For [ € Z, set

Gi(Ery ey Gn) = 01, En) P78 27En),
For a positive integer N, let

GN(élauwém): 2 61(517 -~~7§m)

lll<N

and
KN(x;yl7 ’ym)_ lGN('x—yl7"'7x—ym)' (33)

For an integer k with 1 <k <m and x, y, y, ¥ € R", let

WY x5y, s ym) = KN (501 ey Ym) — KV (591, -y V)
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LEMMA 3.3. Let m and k be positive integers with 1 < k <m, ¢ be a multiplier
which satisfies (1.4). Let ry, ..., rm € (1,2] such that s € (n/ri+...+n/rm,n/r1 +

..++n/rm+1). Then for any ball B with radial R, x,x' € %B, integers ji, ..., jm with
J=maxi<kgm jk = 2,

(4

Proof. Forl € Z, set

/
"m—1

i ...dy1> <

Rsfn/rlf...fn/rm

27 B/
(3.4)

e

N /. r;n
(B).'.</S,-W(B)|W (6, X5 v1, e m)| dym>

J1

a—

Wi, X591, oy ym) = F 15;(x—y1,...,x—ym)—ﬁ_l@(x/—yl,...,x/—ym),
and

m—1

i :</ (/ Wi (x, X5 V1, ym)|md m) e
Lijyeosjm Sjl(B) S’(B)I l( Y1 y )| Y

72

~d)’1>é

where .# ~16; denote the inverse Fourier transform of 6;. Let ji, ..., j,, be nonnega-
tive integers such that max{jy, ..., jm} > 2. Without loss of generality, we may assume
that j; = max;<;<, ji. We have by Lemma 3.1 that

</s (B)".</S' (B)L?*l&l(x—yl, ...,x—ym)|/mdym> A dy1>
i im

, N
/ (/ (/ ( |§_10'l(zl,...,Zm)|rmdzm> m ...)rz
le Rn n Rll

'Jmfl 1
I,

( . (/ |97181(Z17 "'7Zm)|ﬂmd2m> " ) g |Z1| lsd21> 1 (2JIR)7‘S

(ZJIR) Us—n/r1—...=n/rm)

A
==

dz1>

A
h

b

where Cj, = {x: 2/172R < |x| < 2/1"2R}. Similarly, we have that

a1 1
(/ (/ |.Z 16, (x —y1, ...,x/—ym)|’;"dym> n ..dy1>'1
Sjl (B) Sjn1 (B)
< (2j1R)fszfl(sfn/rl7...7n/rm)'
Therefore,
Tojronin S QIR) 27N, (3.5)
Now write
F6(x—y1, o x =) = F Lo (K =1y X — )

15
=Z '6(x—y1, s x—ym) = F (X —y1,x =y, X Y)
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+g_16-l(xl_ylax_y27'”7x_ym)_g_la-l(xl_ylax/_y27x_y37"'7x_ym)
+...

+§7161(x/_y17"'ax/_ym—1ax_ym) -7 IGZ(X/_yla"'rx/_ym)

m
= 2 LT(xayla"' JZ;X/)-
7=1

A trivial computation leads to that

‘ﬁilgl(zly "'7Zm)_ﬁ7161(zl7 ---,Zml,Zm‘Fh)‘
:zmnl

F o2z, ..., 2%2) — F o2y, ... 21, 2+ 2'0)

1
<2m2n Yy / 10%0¢ 7 o202y, .. 2 21, 22 + 210R)|dO
=170

Take h = x — x'. An application of Lemma 3.1, Lemma 3.2 then gives us that

n—1 1

" 1
</S (B)...</S » |y (x, 1, ...,ym;x/)|/mdym> m ...dy1>',1
1

jm (

m—1 1

_ (/C</ (/ \y—lgl(zl,...,zm)—ﬁ—la(zh...,zm+h)|fé1dzm) " ...)dzl)’i
jl n n

1 ’/m rr,n,—l
<y / ( / ( / o / 900 F o2z, 2 a1, 2 2+ 2'00)| " )

laj=170 /€M /R !

1/7
...dzl> 'd62™IR
0,000 r—1 — (7l NG el DL

<y (/ (/ (/ 9000 =1 oz lz dzm> 2 ...dzl> 2mninlR

‘O(IZI le n n

FELo) (221, ., 2 m)

< 2,0, (L (L

4 .
~ <Zl>s 1d21> 7 ZIR(Z“R)f.\'zfl(.\'fn/rl7...7n/rm)

r;"dzm> i )

5 ZIR(2j1R)—Sz—l(s—n/rl—...—n/r,,,)'

Similarly, we have the desired estimates for L; with 1 <k <m — 1. Thus,

ijirenju SLRQNR) 271N,
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Combining the estimates (3.5) and (3.6) then yields

(/ (/ \WN(x,x’;yl,m,ym)\/”dym> " -~-dy1>q
Sj) (B) Sjm(B)
Rs—n/rl—...—n/rm
2 Jl7./17~-~7./m+ 2 JZlew-meN ‘2]13|\/n )

I:2!R<1 1:2IR>1

and then completes the proof of Lemma 3.3. [

Proof of Theorem 1.1. Let Ts n be the bilinear singular integral operator with
associated kernel KV defined by (3.3). Note that for fi, ..., f,, € .7 (R"),

ITo(fis s f) = Ton(fis ooy fi) l=eny) S (6= ™) fi ---E”LI(R") — 0, N — co.

Recall that .(R") is dense in LI(R") for any 1 < g < e. By a standard density
argument, it suffices to prove that the conclusion of Theorem 1.1 is true for 75 y, with
bounded independent of N.

To prove Theorem 1.1, we first claim that if o satisfies (1.4) for s € (mn/2, mn],
Fly...orm € (1,2] such that 1/r; 4 ...+ 1/r, < s/n, then for p; € (r;, ), ..., pm €
(rm, °°) and w = (Wl, R Wm) S Aﬁ/p(Rmn),

HT(fh . 7fm ”Ll’ R™, vg) H ‘fk”L”k R, wy)- (3'7)

In fact, if o satisfies (1.4) for some s € (mn/2,mn], ry,...,rm € (1,2] such that
I/ri+...4+1/rym < s/n, we can take sy, ..., s, > n/2 such that s; + ...+ s, <,
riL > n/si, ..., > n/sy. This together with Theorem 6.1 in [4] states that T y is
bounded from LP1(R") x ... x LPm(R") to LP(R") with bounded independent of N.
Thus by Theorem 3.1 and Lemma 3.3, we know that (3.7) holds.
We now prove Theorem 1.1 for the case that #1, ..., %, € (1,2) such that 1/¢ +
.+ 1/ty=s/n.For pi € (t1,0), ..., pm € (tm, >) and W € A5 z(R™), by Corollary
2.1, we can choose 6 € (0, 1) which is close to 1, such that #,/90,...,1,/0 € (1,2),
pr>1te/6 for k=1,...,m, and w € Asj;(R™). Note that 8/t1 +...+8/tw <s/n.
Our desired conclusion then follows from (3.7).
We turn our attention to the case 1y = 1 and tp, ..., t,, > 1, I /t1+...+1/t,,=s/n.
For py € (t1,%), px € (12,0) (2 <k <m)and W € Az 7(R™), we choose 71 € (1, 2]
such that p; >?1 > 1. Thus, /i +1/ta+...+ 1/t < s/n, wEA W(Rm") with

= G, t,.. . We know from our claim (3.7) that (1.8) hold.
The case that min;<x<, pr = 1 can be considered in a way similar to the case that
ty =1and t, ..., 1, > 1. This completes the proof of Theorem 1.1. [
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