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A WEIGHTED NORM INEQUALITY FOR

MULTILINEAR FOURIER MULTIPLIER OPERATOR

YULAN JIAO

(Communicated by J. Pečarić)

Abstract. In this paper, a weighted norm inequality with multiple-weight is established for the
multilinear Fourier multiplier operator.

1. Introduction

The study of the multilinear Fourier multiplier was originated by Coifman and
Meyer in their celebrated work [2], [3]. Let σ ∈ L∞(Rmn) . Define the multilinear
Fourier multiplier operator Tσ by

Tσ ( f1, . . . , fm)(x) =
∫

Rmn
exp(2π ix(ξ1 + . . .+ ξm))σ(ξ1, . . . ,ξ2) f̂1(ξ1) . . . f̂m(ξm)d�ξ

(1.1)
for f1, . . . , fm ∈ S (Rn) , where and in the following, d�ξ = dξ1 . . .dξm . Coifman and
Meyer [3] proved that if σ ∈Cs(Rnm\{0}) satisfying that

|∂ α1
ξ1

. . .∂ αm
ξm

σ(ξ1, . . . ,ξm)| � Cα1, ...αm(|ξ1|+ . . .+ |ξm|)−(|α1|+...+|αm|) (1.2)

for all |α1|+ . . .+ |αm|� s with s � 2mn+1, then Tσ is bounded from Lp1(Rn)× . . .×
Lpm(Rn) to Lp(Rn) for all 1 < p1, . . . , pm, p < ∞ with 1/p = ∑1�k�m 1/pk . For the
case of s � nm+1, Grafakos and Torres [7] improved the multiplier theorem of Coif-
man and Meyer to the indices 1/m � p � 1, using the multilinear Calderón-Zygmund
operator theory. A very important progress in this topics was given by Tomita. Let
Φ ∈ S (Rnm) such that suppΦ ⊂ {(ξ1, . . . , ξm) : 1/2 � |ξ1|+ . . .+ |ξm| � 2} and for
all (ξ1, . . . ,ξm) ∈ Rmn\{0}.

∑
l∈Z

Φ(2−lξ1, . . . , 2−lξm) = 1.

Set
σl(ξ1, . . . ,ξm) = Φ(ξ1, . . . ,ξm)σ(2lξ1, . . . ,2lξm), (1.3)
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and

‖σl‖Ws(Rmn) =
(∫

Rmn
(1+ |ξ1|2 + . . .+ |ξm|2)s|Fσl(ξ1, . . . , ξm)|2d�ξ

)1/2
,

with Fσl the Fourier transform of σl . Tomita [10] proved that if

sup
l∈Z

‖σl‖Ws(Rmn) < ∞, (1.4)

for some s∈ (mn/2, mn] , then Tσ is bounded from Lp1(Rn)× . . .×Lpm(Rn) to Lp(Rn)
provided that p1, . . . , pm, p ∈ (1, ∞) and 1/p = ∑1�k�m 1/pk . Grafakos and Si [6]
considered the mapping properties from Lp1(Rn)× . . .× Lpm(Rn) to Lp(Rn) for Tσ
when p � 1. Particularly, the argument used in [6] shows that if σ satisfies (1.4) for
some s > n , then Tσ is bounded from Lp1(Rn)× . . .× Lpm(Rn) to Lp(Rn) provided
that p1, . . . , pm ∈ (mn/s, ∞) and 1/p = ∑1�k�m 1/pk , see the proof of Theorem 1.1 in
[6].

Now we consider the weighted estimate for the operator Tσ . As it is well known,
when σ satisfies (1.2) for some s � mn+1, then Tσ is a standard multilinear Calderón-
Zygmund operator, and then by the weighted estimates with multiple weights for mul-
tilinear Calderón-Zygmund operators, which was established by Lerner [8], we know
that for any p1, . . . , pm ∈ [1, ∞) and p∈ (0, ∞) with 1/p = ∑1�k�m 1/pk , and weights
w1, . . . , wm such that �w = (w1, . . . ,wm) ∈ A�p(Rmn) (for the definition of A�p(Rmn) , see
Definition 1.1 below),

‖Tσ ( f1, . . . , fm)‖Lp,∞(Rn,ν�w) �
m

∏
k=1

‖ fk‖Lpk (Rn,wk),

where and in the following, for index p1, . . . , pm , we set �p = (p1, . . . , pm) and p ∈
(0, ∞) such that 1/p = 1/p1 + . . .+1/pm . By a suitable kernel estimate and the theory
of multilinear singular integral operator, Anh and Duong [1] established the weighted
estimates with multiple weights for Tσ when σ satisfies (1.2) for m = 2 and s∈ (n, 2n] .
Our purpose in this paper is to give a weighted norm inequality with multiple weights
for Tσ , which is a generalization of the result in [1]. To state our main result, we first
introduce a class of weights.

DEFINITION 1.1. Let m � 1 be an integer, w1, ..., wm be weights, p1, ..., pm, p∈
(0, ∞) with 1/p = ∑m

k=1 1/pk , rk ∈ (0, pk] (1 � k � m). Set �w = (w1, ..., wm) , �p =
(p1, ..., pm) and ν�w = ∏m

k=1 wp/pk
k . We say that �w ∈ A�p/�r(Rmn) if

sup
Q⊂Rn

( 1
|Q|

∫
Q

ν�w(x)dx
)1/p m

∏
k=1

( 1
|Q|

∫
Q

w
− 1

pk
rk

−1

k (x)dx
)1/rk−1/pk

< ∞,

when pk = rk ,
(

1
|Q|

∫
Q w

− 1
pk
rk

−1

k (x)dx
)1/rk−1/pk

is understood as (infx∈Q wk
)−1/pk
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REMARK 1.1. For the case of r1 = . . . = rm = 1, A�p/�r(Rmn) is denoted by A�p(Rmn) ,
which was introduced in [8], while when r1 = ... = rm = r > 1, A�p/�r(Rmn) was given
in [1].

Our main result in this paper is the following weighted norm inequality for Tσ .

THEOREM 1.1. Let σ be a multiplier which satisfies (1.4) for some s∈ (mn/2, mn] ,
t1, . . . , tm ∈ [1, 2) such that 1/t1 + . . . + 1/tm = s/n. If pk ∈ (tk, ∞) for k = 1, . . . , m
and the weights w1, . . . , wm satisfy �w ∈ A�p/�t(R

mn) , then

‖Tσ ( f1, . . . , fm)‖Lp(Rn,ν�w) �
m

∏
k=1

‖ fk‖Lpk (Rn,wk). (1.5)

REMARK 1.2. For the case of t1 = . . . = tm = mn/s , (1.5) was proved by Anh and
Duong [1].

We make some conventions. In what follows, C always denotes a positive constant
that is independent of the main parameters involved but whose value may differ from
line to line. We use the symbol A � B to denote that there exists a positive constant
C such that A � CB . For p ∈ [1, ∞) , Ap(Rn) denotes the Muckenhoupt class. For
any set E ⊂ Rn , χE denotes its characteristic function. For �p = (p1, . . . , pm) and
�t = (t1, . . . , tm) , we say that �t < �p if tk < pk for 1 � k � 2. For�t = (t1, . . . , tm) and a
δ > 0, set δ�t = (δ t1, . . . , δ tm).

2. A multi(sub)linear maximal operator

In this section, we will introduce a multi(sub)linear maximal operator which will
be useful in the proof of Theorem 1.1. Let r1, ..., rm ∈ (0, ∞) , and set �r = (r1, ..., rm) .
Define the maximal operator M�r by

M�r( f1, ..., fm)(x) = sup
B�x

m

∏
k=1

( 1
|B|

∫
B
| fk(x)|rk dx

)1/rk
,

where the sup is taken over all balls containing x . When r1 = ... = rm = 1, M�r is
the maximal operator which controls the multilinear Calderón-Zygmund operators and
introduced by Lerner et. in [8]. Our result in this section can be stated as follows.

THEOREM 2.1. Let m � 2 be an integer, w1, ..., wm be weights, p1, ..., pm, p ∈
(0, ∞) with 1/p = ∑m

k=1 1/pk , rk ∈ (0, pk] (1 � k � m). Then the following three
conditions are equivalent

(i) M�r is bounded from Lp1(Rn, w1)× ...×Lpm(Rn, wm) to Lp,∞(Rn, ν�w);

(ii) �w ∈ A�p/�r(Rmn);

(iii) ν�w ∈ Ap/r(Rn) , and for any k with 1 � k � m, w−1/(pk/rk−1)
k ∈ A pkrk

r(pk−rk)
(Rn) if

rk �= pk or wr/pk
k ∈ A1(Rn) if rk = pk , here 1/r = ∑1�k�m 1/rk .
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Moreover, if rk ∈ (0, pk) (1 � k � m) and �w ∈ A�p/�r(Rmn) , then M�r is bounded from
Lp1(Rn,w1)× ...×Lpm(Rn, wm) to Lp(Rn, ν�w) .

To prove Theorem 2.1, we will employ a preliminary lemma.

LEMMA 2.1. Let u, v1, ..., vm be weights, �r = (r1, ..., rm) with rk ∈ (0, ∞) and
�p = (p1, ..., pm) with pk ∈ [rk, ∞) . Let 1/p = ∑m

k=1 1/pk and 1/r = ∑m
k=1 1/rk . The

following conditions are equivalent

(a) M�r is bounded from Lp1(Rn, v1)× ...×Lpm(Rn, vm) to Lp,∞(Rn, u);

(b)

sup
Q⊂Rn

( 1
|Q|

∫
Q

u(x)dx
)1/p m

∏
k=1

( 1
|Q|

∫
Q

v
− 1

pk/rk−1

k (x)dx
)1/rk−1/pk

< ∞.

Proof. The proof is fairly standard. We first prove (b) implies (a). For each fixed
λ > 0, set

Ωλ = {x ∈ R
n : M�r( f1, ..., fm)(x) > λ}.

For each x ∈ Ωλ , we can choose a cube Qx containing x such that

m

∏
k=1

( 1
|Qx|

∫
Qx

| fk(y)|rk dy
)1/rk

> λ .

Thus,

|Qx|1/r � λ−1
m

∏
k=1

(∫
Qx

| fk(y)|pkvk(y)dy
)1/pk

(∫
Qx

v
− 1

pk/rk−1

k dy
)1/rk−1/pk

.

and so

|Qx| � λ−p
m

∏
k=1

(∫
Qx

| fk(y)|pkvk(y)dy
)p/pk

( 1
|Qx|

∫
Qx

v
− 1

pk/rk−1

k (y)dy
)p/rk−p/pk

.

Let K ⊂ Rn be a compact set. From the cubes {Qx}x∈Ωλ we can choose some cube
{Qi}N

i=1 with disjoint interiors, such that K ⊂ ∪N
i=12Qi . Therefore,

u(K) �
N

∑
i=1

u(2Qi)
|2Qi| |Qi| � λ−p

m

∏
k=1

(∫
Rn

| fk(y)|pkwk(y)dy
)p/pk

.

We then get that

u({x ∈ R
n : M�r( f1, ..., fm)(x) > λ}) � λ−p

m

∏
k=1

(∫
Rn

| fk(y)|pkvk(y)dy
)p/pk

.

Now we prove the converse. Observe that (a) implies that

( 1
|Q|

∫
Q

u(x)dx
)1/p m

∏
k=1

( 1
|Q|

∫
Q
| fk(x)|rk dx

)1/rk �
m

∏
k=1

( 1
|Q|

∫
Q
| fk(x)|pkvkdx

)1/pk
,
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for suitable functions f1, ..., fm . Setting ε > 0 and fk(x) = (vk(x) + ε)−
1

pk−rk with
1 � k � m then leads to that( 1

|Q|
∫

Q
u(x)dx

)1/p m

∏
k=1

( 1
|Q|

∫
Q
(vk(x)+ ε)

− 1
pk/rk−1 dx

)1/rk−1/pk � 1.

Taking ε → ∞ then leads to that the condition (b). �

Proof of Theorem 2.1. We will invoke the idea used in the proof of [8]. By Lemma
2.1, it suffices to prove that (ii)⇔ (iii), and M�r is bounded from Lp1(Rn, w1)× ...×
Lpm(Rn, wm) to Lp(Rn, ν�w) when min1�k�m pk/rk > 1 and �w ∈ A�p/�r(Rmn) .

(ii)⇒(iii). We assume that for some l with 0 � l < m , pk = rk for 1 � k � l ,
and pk > rk for k = l + 1, ..., m . Our first goal is to prove that for l + 1 � k � m ,

w−1/(pk/rk−1)
k ∈ A pkrk

r(pk−rk)
(Rn) , that is, for any cube Q ,

( 1
|Q|

∫
Q

w
− 1

pk
rk

−1

k (x)dx
)( 1

|Q|
∫

Q
w

p
pkqk
k (x)dx

) pkqk
p

1
pk
rk

−1 � 1, (2.2)

where
qk =

p
rk

( rk

r
−1+

rk

pk

)
.

To do this, set
q j =

p j
p j
r j
−1

qk

p
, l +1 � j � m, j �= k.

Note that
p

p jqk
q j =

1
p j
r j
−1

and

1
qk

+ ∑
l+1� j�m, j �=k

1
q j

=
1
qk

+
p
qk

(1
r
− 1

p
− 1

rk
+

1
pk

)
= 1

It follows from the Hölder inequality that

1
|Q|

∫
Q

w
p

pkqk
k (x)dx =

1
|Q|

∫
Q

m

∏
j=l+1

w
p

p jqk
j (x) ∏

l+1� j�m, j �=k

w
− p

p jqk
j (x)dx

�
( 1
|Q|

∫
Q

m

∏
j=l+1

w
p/p j
j

)1/qk ∏
l+1� j�m, j �=k

( 1
|Q|

∫
Q

w
− pq j

p jqk
j

)1/q j
.

(2.3)
The inequality (2.2) follows from (2.3) and the fact that �w ∈ A�p/�r(Rmn) .

To prove that ν�w ∈Ap/r(Rn) , let sk = pkrk
pk−rk

p−r
pr . It is easy to verify that sk ∈ (1, ∞)

and ∑m
k=1 1/sk = 1. Now write

( m

∏
k=l+1

wp/pk
k

)− 1
p/r−1 =

m

∏
k=l+1

w
− 1

pk
rk

−1
1
sk

k .
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It then follows from the Hölder inequality that for cube Q ,

∫
Q

( m

∏
k=l+1

wp/pk
k (x)

)− 1
p/r−1

dx �
m

∏
k=l+1

(∫
Q

w
− 1

pk
rk

−1

k (x)dx
) 1

sk ,

and so( 1
|Q|

∫
Q

ν�w(x)dx
)( 1

|Q|
∫

Q
ν
− 1

p/r−1

�w dx
)p/r−1

�
{( 1

|Q|
∫

Q
ν�w(x)dx

)1/p l

∏
j=1

{inf
Q

wj}−
1
p j

m

∏
k=l+1

( 1
|Q|

∫
Q

w
− 1

pk
rk

−1

k (x)dx
) 1

rk
− 1

pk
}p

� 1.

We now prove that wr/pk
k ∈ A1(Rn) for k = 1, ..., l . Again by the Hölder inequal-

ity, we have that∫
Q

wr/pk
k (x)dx �

(∫
Q

(
wr/pk

k

m

∏
j=l+1

w
r/p j
j

)p/r)r/p(∫
Q

( m

∏
j=l+1

w
−r/p j
j

)(p/r)′)1−r/p

�
(∫

Q
wp/pk

k

m

∏
j=l+1

w
p/p j
j

)r/p m

∏
j=l+1

(∫
Q

w

− 1
p j
r j

−1

j

)(1−r/p)/s j

�
(∫

Q
ν�w(x)dx

)r/p l

∏
i=1

(inf
Q

wi)−r/pi
m

∏
j=l+1

(∫
Q

w

− 1
p j
r j

−1

j

)(1−r/p)/s j
inf
Q

wr/pk
k

� inf
y∈Q

wr/pk
k (y).

(iii)⇒(ii). Note that (iii) implies that( 1
|Q|

∫
Q

ν�w(x)dx
)( 1

|Q|
∫

Q
ν
− 1

p/r−1

�w (x)dx
)p/r−1

� 1

and for each fixed k with 1 � k � m ,

( 1
|Q|

∫
Q

w
− 1

pk
rk

−1

k (x)dx
)( 1

|Q|
∫

Q
w

1
pk(1/r−1/rk )+1

k (x)dx
) pkrk

r(pk−rk)−1
� 1.

If we can prove that for any cube Q ,

( 1
|Q|

∫
Q

ν
− 1

p/r−1
�w (x)dx

)1/r−1/p m

∏
k=1

( 1
|Q|

∫
Q

w
1

pk(1/r−1/rk )+1

k (x)dx
)1/r−1/rk+1/pk � 1,

(2.4)
�w ∈ A�p/�r(Rn) then follows from (iii) directly. On the other hand, (2.4) is an easy
consequence of the Hölder inequality. In fact, if we set

α =
1

p(m−1)/r+1
, αk =

(m−1)/r+1/p
1/r−1/rk +1/pk

,
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it is easy to verify that ∑m
k=1

1
αk

= 1, and then by the Hölder inequality,

∫
Q

να
�w (x)dx �

m

∏
k=1

(∫
Q

w
α pαk

pk
k (x)dx

)1/αk
=

m

∏
k=1

(∫
Q

w
1

pk(1/r−1/rk )+1

k (x)dx
)1/αk

. (2.5)

Let τ = α(p/r−1)+1. We also have by the Hölder inequality that

( 1
|Q|

∫
Q

να
�w (x)dx

)( 1
|Q|

∫
Q

ν
− 1

p/r−1

�w (x)dx
)α(p/r−1)

� 1
|Q|

∫
Q

να/τ
�w (x)ν−α/τ

�w (x)dx � 1.

(2.6)
Combining the inequalities (2.5) and (2.6) then gives (2.4).

It remains to prove that M�r is bounded from Lp1(Rn, w1)× ...×Lpm(Rn, wm) to
Lp(Rn, ν�w) when min1�k�m pk/rk ∈ (1, ∞] and �w = (w1, ..., wm) ∈ A�p/�r(Rmn) . Again
we follows the idea used in the proof of [8, Theorem 3.7]. It suffices to prove that for
some q ∈ (0, 1) ,

M�r( f1, ..., fm)(x) �
m

∏
k=1

{
Mc

ν�w

(
(| f j|p jw j/ν�w)q

)
(x)

}1/(qpk)
, (2.7)

where Mc
ν�w

is the centred maximal operator defined by

Mc
ν�w

h(x) = sup
I:xthe center of I

1
ν�w(I)

∫
I
|h(y)|ν�w(y)dy.

As we have proved, for each fixed k , w−1/(pk/rk−1)
k ∈ A pkrk

r(pk−rk)
(Rn) , and so there exists

a positive constant σk > 1 such that for any cube Q ,

( 1
|Q|

∫
Q

w
− σk

pk
rk

−1

k (x)dx
)1/σk � 1

|Q|
∫

Q
w
− 1

pk
rk

−1

k (x)dx. (2.8)

Let
σ = min

1�k�m
σk, q =

prk

prk + r(pk − rk)(1−1/σ)
.

An application of the Hölder inequality gives us that

(∫
Q
| fk(x)|rk dx

)1/rk �
(∫

Q
| fk|qpkwq

kν1−q
�w

) 1
qpk

(∫
Q

(
wq

kν1−q
�w

)− 1
pkq
rk

−1
) 1

rk
− 1

qpk . (2.9)

Let γk = r(pkq−rk)
rk(p−r)(1−q) . Note that γk > 1. Again by the Hölder inequality,

∫
Q

(
wq

k(x)ν
1−q
�w (x)

)− 1
pkq
rk

−1 dx �
(∫

Q
w
− qγ′k

pkq
rk

−1

k (x)dx
) 1

γ′k
(∫

Q
ν
− 1

p/r−1
�w (x)dx

) 1
γk .

(2.10)
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On the other hand, we can verify that

qγ ′k
pkq− rk

=
qr

r(pkq− rk)− rk(p− r)(1−q)
,

q(pk − rk)
(pkq− rk)− rk(p/r−1)(1−q)

� σk.

Thus by the inequality (2.8),

∫
Q

w
− qγ′k

pkq/rk−1

k (x)dx =
∫

Q
w
− 1

pk/rk−1
q(pk−rk )

(pkq−rk)−rk (p/r−1)(1−q)
k (x)dx

� |Q|1−
qγ′k(pk−rk)

pkq−rk

(∫
Q

w
− 1

pk/rk−1

k (x)dx
) qγ′k(pk−rk)

pkq−rk . (2.11)

The inequalities (2.9)–(2.11), along with the fact that �w ∈ A�p/�r(Rmn) then leads to our
desired conclusion (2.7). �

By Theorem 2.1, we deduce that

COROLLARY 2.1. If �w= (w1, . . . , wm)∈A�p/�t(R
mn) for some �p and�t with �p <�t ,

then there exists a constant δ ∈ (0, 1) such that �w ∈ Aδ�p/�t(R
mn) .

3. Proof of Theorem 1.1

We begin with a weighted estimate for the multilinear singular integral operators.
Let m � 1 be a positive integer, K(x; y1, . . . , ym) be a locally integrable function

defined away from the diagonal x = y1 = y2 = . . . = ym in (Rn)m+1 . An operator T
defined on m-fold products of S (Rn) (Schwartz space) and taking values in the space
of tempered distributions, is said to be an m-linear singular integral operator with kernel
K if T is m-linear, and satisfies that

T ( f1, ..., fm)(x) =
∫

(Rn)m
K(x; y1, ..., ym) f (y1)... f (ym)d�y, (3.1)

for bounded functions f1, ..., fm with compact supports, and a. e. x∈Rn\∩m
j=1 supp f j ,

where and in the following, d�y = dy1...dym . For the mapping properties of this opera-
tor, see [7], [5], [8] and [1].

THEOREM 3.1. Let m � 2 be an integer, T be an m-linear singular integral
operator with kernel K in the sense of (3.1). For x, x′, y1, ..., ym ∈ Rn , set

V (x, x′; y1, ..., ym) = |K(x; y1, ..., ym)−K(x′; y1, ..., ym)|.

Suppose that for some fixed r1, ..., rm ∈ (1, ∞) ,

(i) T is bounded from Lr1(Rn)× ...×Lrm(Rn) to Lr,∞(Rn) , with 1/r = ∑1�k�m 1/rk ;
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(ii) there exists a constant ρ > 0 , such that for any ball B with radial R, and x, x′ ∈
B, and nonnegative integers j1, ..., jm with j∗ = max1�k�m jk > 2 ,

(∫
S j1

(B)
...

(∫
S jm (B)

|V (x, x′; y1, ...,ym)|r′mdym

) r′m−1
r′m ...

) r′2
r′1 dy1

) 1
r′1

� Rρ

|2 j∗B|1/r1+...+1/rm+ρ/n
.

Then for any p1, ..., pm such that pk ∈ (rk, ∞) , 1 � k � m, and weights w1, ..., wm

such that �w ∈ A�p/�r(Rmn) , T is bounded from Lp1(Rn, w1) × ... × Lpm(Rn, wm) to
Lp(Rn, ν�w) .

Proof. For δ ∈ (0, min{1, r}) , let Mδ be the sharp maximal operator defined by

M�
δ f (x) = sup

B�x
inf
c∈C

( 1
|B|

∫
B
| f (y)− fB|δ dy

)1/δ
,

where the sup is taken over all balls containing x , and fB denotes the mean value of f
on the ball B . We first claim that under the assumptions of Lemma 2.2,

M�
δ (T ( f1, ..., fm))(x) � M�r( f1, ..., fm)(x). (3.2)

To prove this, we will employ the ideas used in [1]. For any x ∈ Rn , any ball B con-
taining x and suitable functions f1, ..., fm , we decomposition f1 ,..., fm as

f 1
k (y) = fk(y)χ4B(y), f 2

k (y) = fk(y)χRn\4B(y).

A trivial argument involving the fact that T is bounded from Lr1(Rn)× ...×Lrm(Rn)
to Lr,∞(Rn) , and the argument used in the proof of Kolmogrov inequality, tells us that

( 1
|B|

∫
B
|T ( f 1

1 , ..., f 1
m)(y)|δ dy

)1/δ
�

m

∏
k=1

( 1
|B|

∫
4B
| fk(y)|rkdy

)1/rk

� M�r( f1, ..., fm)(x).

Now let {i1, ..., im}⊂ {1, 2} such that ik = 2 for some k with 1 � k � m . Without
loss of generality, we may assume that ik = 1 when 1 � k � � and ik = 2 when �+1 �
k � m . Then by assumption (ii), for any y, y′ ∈ B ,

|T ( f 1
1 , ..., f 1

l , f 2
l+1, ..., f 2

m)(y)−T ( f 1
1 , ..., f 1

l , f 2
l+1, ..., f 2

m)(y′)|

�
∞

∑
j�+1=1

...
∞

∑
jm=1

�

∏
k=1

(∫
4B
| fk(yk)|rkdyk

)1/rk m

∏
l=�+1

(∫
S jl

(4B)
| fl(yl)|rl dyl

)1/rl

(∫
4B

...
(∫

4B

(∫
S j�+1

(4B)
...

∫
S jm (4B)

|V (y, y′; y1, ..., ym)|r′mdym

) r′m−1
r′m ...dy1

) 1
r′1
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�
∞

∑
j�+1=1

...
∞

∑
jm=1

�

∏
k=1

( 1
|4B|

∫
4B
| fk(yk)|rkdyk

)1/rk

×
m

∏
l=�+1

( 1
|S jl (4B)|

∫
S jl

(4B)
| fl(yl)|rl dyl

)1/rl |B|ρ/n

|S j∗(4B)|1/r1+...+1/r�+ρ/n

� M�r( f1, ..., fm)(x).

We can now conclude the proof of Theorem 3.1. By Theorem 2.1, we know that
νw ∈ Ap/r(Rn) . If we choose δ small enough, we then know that ν�w ∈ Ap/δ (Rn) . Our
desired conclusion then follows from (3.2), Lemma 2.1 and the relationship of sharp
maximal operator and the Hardy-Littlewood maximal operator; see also [1]. �

To prove Theorem 1.1, we will also use some preliminary lemmas. For σ ∈
L∞(Rmn) , let σl be the same as in (1.3). Define

‖σκ‖Ws1 ,...,sm (Rnm) =
(∫

Rnm
〈ξ1〉2s1 . . . 〈ξm〉2sm |σ̂κ(ξ1, . . . ,ξm)|2d�ξ

)1/2
,

where 〈ξk〉 = (1+ |ξk|2)1/2 .

LEMMA 3.1. Let q1, . . . ,qm ∈ [2,∞) , and s1, . . . ,sm � 0 . Then(∫
Rn

. . .
(∫

Rn
|σ̂κ(ξ1, . . .ξm)|q1〈ξ1〉s1dξ1

)q2/q1〈ξ2〉s2dξ2

)q3/q2
. . . 〈ξm〉smdξm

)1/qm

� ‖σκ‖Ws1/q1,...,sm/qm (Rmn).

For the proof of Lemma 3.1, see Appendix A in [4].

LEMMA 3.2. Let s1, . . . ,sm ∈ R , and α1 . . . ,αm ∈ Zn
+ be multi-indices. Set

ζ α1,...,αm
κ (ξ1, . . . ,ξm) := ξ α1

1 . . .ξ αm
m σκ(ξ1, . . . ,ξm).

Then
‖ζ α1,...,αm

κ ‖Ws1,...,sm (Rmn) � sup
l∈Z

‖σl‖Ws1,...,sm (Rmn).

This lemma was given in [9, Remark 2.5].
Let σ , Φ ∈ S (Rnm) be the same as in Section 1. For l ∈ Z , set

σ̃l(ξ1, . . . , ξm) = σ(ξ1, . . . , ξm)Φ(2−lξ1, . . . , 2−lξm),

For a positive integer N , let

σN(ξ1, . . . , ξm) = ∑
|l|�N

σ̃l(ξ1, . . . , ξm)

and
KN(x; y1, . . . , ym) = F−1σN(x− y1, . . . , x− ym). (3.3)

For an integer k with 1 � k � m and x, y1, y2, x′ ∈ Rn , let

WN(x, x′; y1, . . . , ym) = KN(x; y1, . . . , ym)−KN(x′; y1, . . . , ym).
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LEMMA 3.3. Let m and k be positive integers with 1 � k � m, σ be a multiplier
which satisfies (1.4). Let r1, . . . , rm ∈ (1, 2] such that s ∈ (n/r1 + . . .+ n/rm, n/r1 +
. . .+n/rm +1) . Then for any ball B with radial R, x, x′ ∈ 1

4B, integers j1, . . . , jm with
j∗ = max1�k�m jk � 2 ,

(∫
S j1

(B)
...

(∫
S jm (B)

|WN(x,x′; y1, . . . ,ym)|r′mdym

) r′m−1
r′m ...dy1

) 1
r′1 � Rs−n/r1−...−n/rm

|2 j∗B|s/n
.

(3.4)

Proof. For l ∈ Z , set

Wl(x, x′; y1, . . . , ym) = F−1σ̃l(x− y1, . . . ,x− ym)−F−1σ̃l(x′ − y1, . . . ,x
′ − ym),

and

Jl; j1..., jm =
(∫

S j1
(B)

...
(∫

S j2
(B)

|Wl(x,x′; y1, . . . ,ym)|r′mdym

) r′m−1
r′m . . .dy1

) 1
r′1

where F−1σ̃l denote the inverse Fourier transform of σ̃l . Let j1, . . . , jm be nonnega-
tive integers such that max{ j1, . . . , jm}� 2. Without loss of generality, we may assume
that j1 = max1�i�m ji . We have by Lemma 3.1 that

(∫
S j1

(B)
...

(∫
S jm (B)

|F−1σ̃l(x− y1, . . . ,x− ym)|r′mdym

) r′m−1
r′m . . .dy1

) 1
r′1

�
(∫

Cj1

(∫
Rn

(∫
Rn

. . .
(∫

Rn
|F−1σ̃l(z1, . . . , zm)|r′mdzm

) r′m−1
r′m . . .

) r′1
r′2 dz1

) 1
r′1

�
(∫

Cj1

(
. . .

(∫
Rn

|F−1σ̃l(z1, . . . , zm)|r′mdzm

) r′m−1
r′m . . .

) r′1
r′2 |z1|r1sdz1

) 1
r′1 (2 j1R)−s

� (2 j1R)−s2−l(s−n/r1−...−n/rm),

where Cj1 = {x : 2 j1−2R � |x| � 2 j1+2R} . Similarly, we have that

(∫
S j1 (B)

...
(∫

S jm (B)
|F−1σ̃l(x′ − y1, . . . ,x′ − ym)|r′mdym

) r′m−1
r′m . . .dy1

) 1
r′1

� (2 j1R)−s2−l(s−n/r1−...−n/rm).

Therefore,
Jl, j1, ..., jm � (2 j1R)−s2−l(s−n/r1−...−n/rm). (3.5)

Now write

F−1σ̃l(x− y1, . . . , x− ym)−F−1σ̃l(x′ − y1, . . . , x′ − ym)
= F−1σ̃l(x− y1, . . . , x− ym)−F−1σ̃l(x′ − y1, x− y2, . . . ,x− ym)
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+F−1σ̃l(x′ − y1,x− y2, . . . ,x− ym)−F−1σ̃l(x′ − y1,x
′ − y2,x− y3, . . . ,x− ym)

+ . . .

+F−1σ̃l(x′ − y1, . . . ,x
′ − ym−1,x− ym)−F−1σ̃l(x′ − y1, . . . ,x

′ − ym)

=
m

∑
τ=1

Lτ (x,y1, . . . ,y2,x
′).

A trivial computation leads to that

|F−1σ̃l(z1, . . . , zm)−F−1σ̃l(z1, . . . ,zm1 , zm +h)|
= 2mnl

∣∣∣F−1σl(2lz1, . . . , 2lzm)−F−1σκ(2lz1, . . . , 2lzm−1, 2lzm +2lh)
∣∣∣

� 2mnl2lh ∑
|α |=1

∫ 1

0
|∂ 0,...,0,αF−1σl(2lz1, . . . ,2

lzm−1, 2lzm +2lθh)|dθ

Take h = x− x′ . An application of Lemma 3.1, Lemma 3.2 then gives us that

(∫
S j1

(B)
...

(∫
S jm (B)

|Lm(x,y1, . . . ,ym; x′)|r′mdym

) r′m−1
r′m ...dy1

) 1
r′1

=
(∫

Cj1

(∫
Rn

. . .
(∫

Rn
|F−1σ̃l(z1, . . .,zm)−F−1σ̃l(z1, . . .,zm+h)|r′mdzm

) r′m−1
r′m . . .

)
dz1

) 1
r′1

� ∑
|α |=1

∫ 1

0

(∫
Cj1

(∫
Rn

. . .
(∫

Rn

∣∣∣∂ 0,...,0,αF−1σl(2lz1, . . .,2
lzm−1,2

lzm+2lθh)
∣∣∣r′mdzm

) r′m−1
r′m

. . .dz1

)1/r′1
dθ2mnl2lR

� ∑
|α |=1

(∫
Cj1

(∫
Rn

. . .
(∫

Rn

∣∣∣∂ 0,...,0,αF−1σl(2lz1, . . .,2
lzm)

∣∣∣r′mdzm

) r′m−1
r′2 . . .dz1

)1/r′1
2mnl2lR

� ∑
|α |=1

(∫
Cj1

(∫
Rn

. . .
(∫

Rn

∣∣∣F−1(ξ α
m σl)(2lz1, . . . ,2l zm)

∣∣∣r′mdzm

) r′m−1
r′m . . .

)

×〈z1〉sr′1dz1

) 1
r′1 2lR(2 j1R)−s2−l(s−n/r1−...−n/rm)

� 2lR(2 j1R)−s2−l(s−n/r1−...−n/rm).

Similarly, we have the desired estimates for Lk with 1 � k � m−1. Thus,

Jl, j1, ..., jm � 2lR(2 j1R)−s2−l(s−n/r1−...−n/rm). (3.6)
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Combining the estimates (3.5) and (3.6) then yields

(∫
S j1 (B)

...
(∫

S jm (B)
|WN(x,x′; y1, . . . ,ym)|r′mdym

) r′m−1
r′m ...dy1

) 1
r′1

� ∑
l:2lR<1

Jl, j1, ..., jm + ∑
l:2lR�1

Jl, j1, ..., jm � Rs−n/r1−...−n/rm

|2 j1B|s/n
,

and then completes the proof of Lemma 3.3. �

Proof of Theorem 1.1. Let Tσ ,N be the bilinear singular integral operator with
associated kernel KN defined by (3.3). Note that for f1, . . . , fm ∈ S (Rn) ,

‖Tσ ( f1, . . . , fm)−Tσ ,N( f1, . . . , fm)‖L∞(Rn) � ‖(σ −σN) f̂1 . . . f̂m‖L1(Rn) → 0, N → ∞.

Recall that S (Rn) is dense in Lq(Rn) for any 1 � q < ∞ . By a standard density
argument, it suffices to prove that the conclusion of Theorem 1.1 is true for Tσ ,N , with
bounded independent of N .

To prove Theorem 1.1, we first claim that if σ satisfies (1.4) for s ∈ (mn/2, mn] ,
r1, . . . , rm ∈ (1, 2] such that 1/r1 + . . .+1/rm < s/n , then for p1 ∈ (r1, ∞) , . . . , pm ∈
(rm, ∞) and �w = (w1, . . . , wm) ∈ A�p/�r(Rmn) ,

‖T ( f1, . . . , fm)‖Lp(Rn,ν�w) �
m

∏
k=1

‖ fk‖Lpk (Rn,wk). (3.7)

In fact, if σ satisfies (1.4) for some s ∈ (mn/2, mn] , r1, . . . , rm ∈ (1, 2] such that
1/r1 + . . . + 1/rm < s/n , we can take s1, . . . , sm > n/2 such that s1 + . . . + sm � s ,
r1 > n/s1, . . . , rm > n/sm . This together with Theorem 6.1 in [4] states that Tσ ,N is
bounded from Lp1(Rn)× . . .× Lpm(Rn) to Lp(Rn) with bounded independent of N .
Thus by Theorem 3.1 and Lemma 3.3, we know that (3.7) holds.

We now prove Theorem 1.1 for the case that t1, . . . , tm ∈ (1, 2) such that 1/t1 +
. . .+1/tm = s/n . For p1 ∈ (t1, ∞) , . . . , pm ∈ (tm, ∞) and �w ∈ A�p/�t(R

mn) , by Corollary
2.1, we can choose δ ∈ (0, 1) which is close to 1, such that t1/δ , . . . , tm/δ ∈ (1, 2) ,
pk > tk/δ for k = 1, . . . , m , and �w ∈ Aδ�p/�t(R

mn) . Note that δ/t1 + . . .+ δ/tm < s/n .
Our desired conclusion then follows from (3.7).

We turn our attention to the case t1 = 1 and t2, . . . , tm > 1, 1/t1+ . . .+1/tm = s/n .
For p1 ∈ (t1, ∞) , pk ∈ (t2, ∞) (2 � k � m) and �w ∈ A�p/�t(R

mn) , we choose t̃1 ∈ (1, 2]
such that p1 > t̃1 > 1. Thus, 1/t̃1 + 1/t2 + . . . + 1/tm < s/n , �w ∈ A

�p/�̃t
(Rmn) with

t̃ = (̃t1, t2, . . . , tm) . We know from our claim (3.7) that (1.8) hold.
The case that min1�k�m pk = 1 can be considered in a way similar to the case that

t1 = 1 and t2, . . . , tm > 1. This completes the proof of Theorem 1.1. �
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