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NORMING MESHES BY BERNSTEIN–LIKE INEQUALITIES

MARCO VIANELLO

(Communicated by T. Erdélyi)

Abstract. We show that finite-dimensional univariate function spaces satisfying a Bernstein-like
inequality admit norming meshes. In particular, we determine meshes with “optimal” cardinality
for trigonometric polynomials on subintervals of the period. As an application we discuss the
construction of optimal bivariate polynomial meshes by arc blending.

1. From Bernstein inequalities to norming meshes

We begin with the following definition. Given a sequence {Sn} of finite dimen-
sional subspaces of C(K) (the space of continuous functions on a real or complex
d -dimensional compact subset K ), a sequence {An} of finite subsets of K is called a
{Sn} -norming mesh (in the sup-norm) if there exists a constant C > 0 such that

‖p‖K � C‖p‖An , ∀p ∈ Sn ; (1)

here and below, ‖ f‖X denotes the sup-norm of a function bounded on the set X . Ob-
serve that necessarily card(An) � dim(Sn) ; then, we may term “optimal” (with respect
to the cardinality) a norming mesh such that card(An) = O(dim(Sn)) as n → ∞ .

In recent years, several investigations have been devoted to the theory and applica-
tions of norming meshes in the polynomial case, Sn = Pd

n , with the additional require-
ment that card(An) = O(ns) for some s � d ; in such a case the sequence is called an
admissible mesh. An admissible mesh with s = d is called optimal; see [7, 12]. If in (1)
we have a sequence Cn instead of C , increasing at most polynomially with n , the mesh
is called weakly admissible [7]. Admissible and weakly admissible meshes are im-
portant structures in polynomial approximation theory: for example, in [7] it is shown
that they are nearly optimal for least squares approximation, and contain Fekete-like
interpolation sets with a slowly increasing Lebesgue constant. Algorithms for the ap-
proximate computation of such Fekete-like sets have been developed in [3, 4, 16]. For
a recent survey on the state of the art in polynomial interpolation and approximation in
Cd , we refer the reader to [1].
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In [7, Thm.5], it has been shown that any (real) compact set which satisfies a
Markov polynomial inequality with exponent r has an admissible mesh with O(nrd)
cardinality. On the other hand, existence of optimal (or near-optimal) admissible meshes
has been proved constructively for several families of bidimensional and multidimen-
sional compacts, such as for example polygons and polyhedra, euclidean spheres and
balls, subanalytic sets, convex bodies and starlike domains with smooth boundary; cf.,
e.g., [5, 11, 12, 13, 14].

Most of these results exploit, in some way, the basic fact that the one-dimensional
interval posesses optimal admissible meshes, see, e.g., [10, 15]. Recently [12], this
result has been extended to trigonometric polynomials on subintervals of the period,
where the construction of the optimal mesh has been obtained using together a Markov
and a Bernstein inequality.

In this note, we focus on the univariate case, showing that the availability of a
Bernstein-like inequality allows to construct directly a functional norming mesh. We
then discuss the result in the framework of optimal meshes for polynomials, and for
trigonometric polynomials on subintervals of the period. To this purpose, we first give
the following general:

PROPOSITION 1. Let {Sn} be a sequence of finite dimensional spaces of differen-
tiable functions defined in the compact interval [a,b] . Assume that for any p ∈ Sn and
x ∈ (a,b) the following Bernstein-like inequality holds

|p′(x)| � φn(x)‖p‖[a,b] , φn ∈ L1
+(a,b) , (2)

and define

Fn(x) =
∫ x

a
φn(t)dt . (3)

Consider m+1 equally spaced points in [0,Fn(b)] , where m > Fn(b)/2 , namely y j =
jFn(b)/m, j = 0,1, . . . ,m.

Then, the following functional inequality holds

‖p‖[a,b] �
1

1−Fn(b)/2m
‖p‖Xm , ∀p ∈ Sn , (4)

where Xm = {F−1
n (y0), . . . ,F−1

n (ym)} is constructed choosing one point in the inverse
image of each y j .

Proof. Fix x ∈ [a,b] : by construction, there exists xk ∈ Xm such that |Fn(x)−
Fn(xk)| � Fn(b)/2m . Now, for every p ∈ Sn we can write the chain of inequalities

|p(x)| � |p(xk)|+ |p(x)− p(xk)| � |p(xk)|+
∫ max{x,xk}

min{x,xk}
|p′(t)|dt

� |p(xk)|+‖p‖[a,b]

∫ max{x,xk}

min{x,xk}
φn(t)dt � |p(xk)|+ |Fn(x)−Fn(xk)|‖p‖[a,b] ,
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which gives

|p(x)| � |p(xk)|+ Fn(b)
2m

‖p‖[a,b] .

Taking the maximum for xk ∈ Xm on the right-hand side and then for x ∈ [a,b] on the
left hand-side, we get the inequality

‖p‖[a,b] � ‖p‖Xm +
Fn(b)
2m

‖p‖[a,b] ,

that is (4). �

REMARK 1. Inequality (4) clearly implies the existence of {Sn} -normingmeshes.
Indeed, it is sufficient to take

m = �μFn(b)/2� (5)

for a fixed μ > 1, to get a norming mesh An = Xm with O(Fn(b)) cardinality as n→∞ ,
and constant C = μ/(μ −1) .

Notice also that in the case when

φn(x) = nφ(x) , φ ∈ L1
+(a,b) , (6)

as it happens for example with polynomials and trigonometric polynomials (see the
discussion below), then in Proposition 1

Xm = {F−1( jF(b)/m)} , j = 0, . . . ,m , F(x) =
∫ x

a
φ(t)dt , (7)

and thus we have a norming mesh with O(n) cardinality, namely

An = X�μnF(b)/2� , card(An) =
⌈

μnF(b)
2

⌉
+1 , μ > 1 , (8)

and constant
C =

μ
μ −1

. (9)

Finally, it is worth observing that if φn in (2) is a.e. positive, then Fn is a strictly
increasing and thus invertible function, and Xm in Proposition 1 is uniquely determined.

1.1. Polynomials

In the case of polynomials, Sn = Pn , we can consider a reference interval, say
[a,b] = [−1,1] , since norming meshes, also called admissible meshes in the literature,
are preserved by affine transformations. By the classical Bernstein inequality (cf., e.g.,
[2]), that is (2) with

φn(x) =
n√

1− x2
, x ∈ (−1,1) , (10)

we get immediately in view of Remark 1 the existence of optimal admissible meshes,
i.e., admissible meshes with O(n) cardinality.
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Moreover, observing that in (7) F(x) = arcsin(x)+π/2, and thus F(b) = F(1) =
π and F−1(y) = sin(y−π/2) = −cos(y) , the mesh points Xm = {−cos( jπ/m)} , j =
0, . . . ,m , turn out to be nothing else than the classical m+1 Chebyshev-Lobatto points
for degree m , where m > nπ/2. This result, however, is already well-known, since
Ehlich and Zeller proved a sharper inequality (see [10] and [5, Rem.1]), where the
first factor on the right-hand side of (4) is 1/cos(nπ/2m) � 1/(1− nπ/2m) and the
corresponding inequality is valid for every m > n .

On the other hand, the general formulation of Proposition 1 can still give some
additional information on the generation of polynomial meshes. Indeed, observing
that

√
1− x2 �

√
1−|x| , x ∈ (−1,1) , and that 1/

√
1−| · | ∈ L1

+(−1,1) , we have a
Bernstein-like inequality in Pn with

φn(x) =
n√

1−|x| , x ∈ (−1,1) . (11)

Using the notation of Remark 1 we get F(x) = 2
√

1+ x for x ∈ [−1,0] , and F(x) =
4− 2

√
1− x for x ∈ [0,1] . Since F(1) = 4, we have that the polynomial inequality

(4) holds for every m > 2n , with Xm = {F−1(4 j/m)} , j = 0, . . . ,m , where F−1(y) =
y2/4−1 for y∈ [0,F(0)] = [0,2] , and F−1(y) =−y2/4+2y−3 for y∈ [F(0),F(1)] =
[2,4] . By Remark 1 we get a new family of optimal admissible meshes for the interval,
An = X�2μn� , with constant C = μ/(μ −1) .

1.2. Trigonometric polynomials

In the case of trigonometric polynomials on subintervals of the period we can
consider the reference interval [−ω ,ω ] , 0 < ω � π , that is Sn = Tn([−ω ,ω)]) , since
norming meshes are preserved by angle shifts. “Subperiodic” trigonometric approxi-
mation has received some attention in the recent literature, in view of the connection
with multivariate polynomial approximation on arc based domains; cf. [6, 12].

In the paper [12] on optimal polynomial meshes, A. Kroó has shown that Cheby-
shev-Lobatto points for suitable O(n) degree are norming meshes for Tn([−ω ,ω)]) .
The proof is based on the joint use of a Markov and of (a special formulation of) a
Bernstein inequality which are known to hold in the subperiodic case, cf. [2, Ch. 5].
These inequalities involve however constants that depend on ω and are not bounded
as ω → 0. In particular, the optimal meshes An , with constant C = 2, are mn + 1
Chebyshev-Lobatto points in [−ω ,ω ] , with m > π max{√A(ω),2B(ω)} , where A
and B appear in the Markov and Bernstein trigonometric inequality, respectively. In
particular, A(ω) = 1/k + c(π −ω)/ω → ∞ as ω → 0; it appears in the trigonometric
Markov inequality ‖t ′‖[−ω,ω] � A(ω)n2‖t‖[−ω,ω] , valid for n � k and for every t ∈
Tn([−ω ,ω)]) , where c � 16π is a suitable costant, cf. [2, E. 15, p. 238].

Here, we show that, in view of Proposition 1, an optimal trigonometric mesh An

on subintervals of the period, such that card(An)/n is bounded independently of ω ,
can be constructed directly by the trigonometric Bernstein inequality (also known as
Videnskii’s inequality in the literature, cf. [2, E. 19, p. 243])

|t ′(θ )| � n√
1− cos2(ω/2)/cos2(θ/2)

‖t‖[−ω,ω] , θ ∈ (−ω ,ω) , ∀t ∈ Tn . (12)
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Consider the primitive

G(θ ) = G(θ ;ω) =
∫

1√
1− cos2(ω/2)/cos2(θ/2)

dθ

= 2 arcsin

(
sin(θ/2)
sin(ω/2)

)
, 0 < ω � π . (13)

Observing that G(±ω) = ±π , and using the terminology of Remark 1 with [a,b] =
[−ω ,ω ] , we get

F(θ ) = G(θ )+ π , F(b) = 2π , (14)

which is a strictly increasing and thus invertible function, with inverse

F−1(y) = {2arcsin(−cos(y/2)sin(ω/2)) , y ∈ [0,2π ]} . (15)

Then, inequality (4) holds for every m > πn , with the m+1 angles

Xm = {F−1(2π j/m)} = {2arcsin(−cos( jπ/m)sin(ω/2)) , j = 0, . . . ,m} , (16)

that are the image of the classical m+ 1 Chebyshev-Lobatto points for degree m by
the nonlinear transformation f (u) = 2arcsin(usin(ω/2)) , u ∈ [−1,1] ; we recall that
this transformation plays a key role also in the construction of near optimal sets for
subperiodic trigonometric interpolation, cf. [6, 9]. By Remark 1 we get a new family
of optimal trigonometric norming meshes for subintervals of the period,

An = X�πμn� = {2arcsin(−cos(π j/�πμn�)sin(ω/2)) , j = 0, . . . ,�πμn�} , (17)

with constant C = μ/(μ−1) and cardinality �μπn�+1. For example, taking μ = 2 we
get an optimal subperiodic trigonometric mesh with C = 2, as in [12], but cardinality
of order O(n) bounded independently of ω .

1.3. Optimal polynomial meshes by arc blending

We discuss now an application of optimal subperiodic trigonometricmeshes, namely
the construction of optimal polynomial meshes on bidimensional domains which can
be parametrized by linear blending of elliptical arcs. Let

P(θ ) = A1 cos(θ )+B1 sin(θ )+C1 , Q(θ ) = A2 cos(θ )+B2 sin(θ )+C2 , (18)

θ ∈ [α,β ] , be two trigonometric planar curves of degree one,

Ai = (ai1,ai2) , Bi = (bi1,bi2) , Ci = (ci1,ci2) , i = 1,2 , (19)

being suitable bidimensional vectors (with Ai,Bi not all zero), with the important prop-
erty that the curves are both parametrized on the same angular interval [α,β ] , 0 <
β −α � 2π . It is not difficult to show, by a possible reparameterization with a suitable
angle shift when Ai and Bi are not orthogonal, that these curves are arcs of two ellipses
centered at C1 and C2 , respectively.
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Consider the domain

Ω = {(x,y) = σ(t,θ ) = tP(θ )+ (1− t)Q(θ ) , (t,θ ) ∈ [0,1]× [α,β ]} , (20)

which is the transformation of the rectangle [0,1]× [α,β ] obtained by convex combi-
nation (linear blending) of the arcs P(θ ) and Q(θ ) . This transformation can describe
directly or by finite union several types of domain obtained as section of a disk (ellipse)
by straight lines, such as for example circular (elliptical) segments, sectors (even asym-
metric), zones, lenses. For an overview we refer the reader to [8], where arc blending
is considered in the framework of numerical cubature (differently from [8], we do not
need here that the transformation σ be also injective, but only surjective).

In the present context, the key observation is that a bivariate polynomial p ∈ P2
n

becomes by the change of variables (20) a mixed algebraic-trigonometric polynomial
in a tensor product-space,

p(σ(t,θ )) ∈ Pn([0,1])
⊗

Tn([α,β ]) . (21)

Consider the optimal polynomial mesh in [0,1] , given by νn+ 1 Chebyshev-Lobatto
points (ν > 1)

Tn = {(cos( jπ/νn)+1)/2 , j = 0, . . . ,νn} , (22)

with constant C1 = 1/cos(π/2ν) ; cf. [5, 10]. Moreover, consider also the optimal
trigonometric mesh in [α,β ] , given by the �πμn�+1 angles (μ > 1)

Θn = {2arcsin(−cos(π j/�πμn�)sin((β −α)/2))− (α + β )/2 , j = 0, . . . ,�πμn�} ,
(23)

with constant C2 = μ/(μ −1) ; cf. (17). Then we can write

‖p‖Ω = ‖p ◦σ‖[0,1]×[α ,β ] � C1C2 ‖p ◦σ‖Tn×Θn = ‖p‖σ(Tn×Θn) , (24)

i.e., σ(Tn×Θn) is an optimal polynomial mesh for Ω , since it has cardinality O(n2) ,
with constant C =C1C2 . For example, taking μ = ν = 2, we get an optimal polynomial
mesh for Ω with constant C = 2

√
2 and cardinality not greater than (2n+1)(�2πn�+

1) .
In Figure 1 below we show an example of such optimal polynomial meshes in two

different sections of the unit disk, an annular sector and a circular segment, at degree
n = 4; the blending transformation (20) is σ(t,θ ) = (tr1 +(1− t)r2)(cos(θ ),sin(θ )) ,
r1 = 0.3, r2 = 1, [α,β ] = [−π/4,π/4] for the annular sector, and σ(t,θ ) = (cos(θ ),
(2t−1)sin(θ )) , [α,β ] = [0,3π/4] for the circular segment (notice that in the latter case
the right cardinality is obtained by subtracting the 2n repetitions of the point (1,0)).

REMARK 2. As already observed in [12], the availability of optimal subperiodic
trigonometricmeshes allows to construct optimal multivariate polynomialmeshes, when-
ever algebraic polynomials on a multidimensional domain or manifold, by a suitable
change of variables, belong to tensor-product spaces involving univariate trigonometric
(and possibly algebraic) polynomials on suitable intervals.
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Figure 1: Optimal polynomial meshes at degree n = 4 for an annular sector (left, 9×27 = 243
points), and a circular segment (right, 9×27−8 = 235 points).

For example, it is clear that a polynomial on the 2-sphere, in spherical coordi-
nates, belongs to the tensor-product space of univariate trigonometric polynomials with
respect to the longitude and the (co)latitude. Then, with the same reasoning developed
above we can construct, by cartesian product of the angular meshes, optimal polyno-
mial meshes on standard subregions of the sphere which are lat-long rectangles (up to
rotations), such as for example spherical caps and spherical zones.
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