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WEIGHTED FORM OF A RECENT REFINEMENT
OF THE DISCRETE JENSEN’S INEQUALITY

LAszZLO HORVATH

(Communicated by C. P. Niculescu)

Abstract. Recently, Xiao, Srivastava and Zhang (see [10]) have introduced a new refinement of
the discrete Jensen’s inequality for mid-convex functions. We give and discuss the weighted
form of their results. This leads to some new inequlities and limit formulas. We illustrate the
scope of the results by applying them to introduce and study some new quasi-arithmetic means.

1. Introduction and the main results

The different forms of Jensen’s inequality have fundamental importance for many
developments in mathematics. In this paper we consider the discrete Jensen’s inequal-
ity:

THEOREM A. (see [1]) Let C be a convex subset of a real vector space X, and
{x1,...,xn} be a finite subset of C, where n > 1 is fixed. Let py,...,p, be nonnegative

n

numbers with P, := Z p;>0.If f:C— R is either a convex or a mid-convex function
Jj=1
and in the latter case the numbers p; (1 < j < n) are rational, then

1 & 1 &
g Xrwi | <5 2 pif(). (1)
noj—1 nj—1
The function f : C — R is called convex if

f(ax—f—(l—oc)y)<af(x)+(l—a)f(y), x,yEC, Ogaglv

and mid-convex if
F(2) < 2@+ 500). xyec
— | < zfx)+ = , X, .
2 2 IV B
We denote by N and N, the set of nonnegative integers, and positive integers,

respectively.
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Discrete distribution: this means that py,...,p, are nonnegative numbers with
n
2 pi=
j=1

Recently, Xiao, Srivastava and Zhang (see [10]) have introduced a new refinement
of the discrete Jensen’s inequality for mid-convex functions. Their results were moti-
vated by the reformulation of the classical refinements in the papers [8] and [9]. As an
illustration, consider the next inequality from [9]:

THEOREM B. Let C be a convex subset ofa real vector space X, andlet f:C —

R be a mid-convex function. If x; € C (i=1,...,n), and
n 1 X, +...+x;
Bun'=Gpry X f(%) keNy,

( k ) 1< <. <ik<n
then
1¢ _ _ B | o
f(;le) o KB n $<Bpn<...<By, = ;Zf(xz)
i=1 =

The expression Eh,, can be rewritten in the form

_ 1 1
=) f(g 211"“1’) :
( k ) i1+ tin=k Jj=1
ijEN; 1<j<n
Inspired by this interpretation of Ekﬁ, Xiao, Srivastava and Zhang have obtained the

following result:

THEOREM C. (see [10]) Let C be a convex subset of a real vector space X, and
{x1,...,xn} be a finite subset of C, where n > 1 is fixed. If f: C — R is a mid-convex
function, and

1
Fk7n = PPN Z ( lexj> k€N+7 (2)
(7{’71 )ll+ Fip=n+k—1 n+k
€N+ 1<j<n
then
n n
(a) f(% 2)6]) =F17n < <Fk,n <Fk+l7n < < % Zf(xj)
j=1 j=1

(b) Fk7n < Elgm ke N+~
The limit of the constructed increasing sequence is also determined. We recall this
result too:

THEOREM D. (see [10]) Let C be a convex subset of a real vector space X, and
{x1,...,xn} be a finite subset of C, where n > 1 is fixed. Suppose f:C — R isa
mid-convex function. Define the function g on the set

n—1
E,:= {(tl,...,tn—l) eRN N <1, 120, j= 1,~~~,n—1} 3)
=1
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n—1 n—1
gty styr):=f <2tjxj+ <1 — 21‘]) x,,) .
j=1 j=1

If g is integrable over E,, then

khm Fle = klimghn = (l’l— 1)!/g(l‘17...,ln,1)dl1 codt, .
Ey

In Theorem C and D the discrete uniform distribution is used. The purpose of this
paper to give and discuss the weighted versions of Theorem C and D for convex and
mid-convex functions.

There are many papers on the refinements of the discrete Jensen’s inequality. In
particular, the weighted version of Theorem B has been discovered by Horvath and
Pecarié [4]:

THEOREM E. Let C be a convex subset of a real vector space X, and {xy,...,xn}
be a finite subset of C, where n > 1 is fixed. Let p,...,p, be a discrete distribution,
where p;j (1 < j<n) is positive. If f:C — R is either a convex or a mid-convex
function and in the latter case the numbers p (1 < j < n) are rational, and

1

k
Bin = v 1 D _ (Z Pi_,-) Il = zlpi_,-xz'_,-
=
Pi;

n ) 1 n )
(n+k—l) ) Z (Z l/p/> n Z LipjXj | > ke N+7
ST N S
j=

then
n n
f Epjxj <...gBk+17n<Bk7n<...<B17n:ijf(xj), ke Ny,
J=1 j=1

This result makes it possible to obtain the generalized form of Theorem C (b). A
method has been developed to refine the discrete Jensen’s inequality by Horvéth [3].
The results in [3] include those considered in [4], but the method can not be applied to
solve the present problem (for further details see [2]). In [2], a different approach led
to a parameter dependent refinement, whose construction is similar to (2) in Theorem
C. However, the treatment of the problem in [2] is totally different from that in [10].

Our main results in this paper are as follows. First, we generalize Theorem B.
Moreover, we compare the expressions Fy ,, By, and Gy, (see 4).
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THEOREM 1. Let C be a convex subset of a real vector space X, and {xy,...,x,}
be a finite subset of C, where n > 1 is fixed. Let p,...,p, be a discrete distribution.
Assume f:C — R is either a convex or a mid-convex function and in the latter case
the numbers p; (1 < j<n) are rational. Define

1 o 1 &
Grn = 7T > (ZUW) fl = 2 ipixi |, kEN @)
( k—1 ) ij+...+ip=n+k—1 \ j=1 Zl‘.p . j=1
ijeNy: ISjsn = JEJ
Jj=

Then

7 n

@ f Zp,-xj) =G1n <. <Gin < Gryrn <. < Y pif (7).
J=1 j=1

(b) Fin < Grn, keN,.

(¢) If the numbers py,...,pn are positive, then

Gin <Bin, keN,.

REMARK 2. Itis easy to see that in case p; = % (1<j<n)
Gk,n:Fk,na k€N+,
so Gy, is the weighted form of Fy .

Next, we extend Theorem D.

THEOREM 3. Let C be a convex subset of a real vector space X, and {xi,...,xn}
be a finite subset of C, where n > 2 is fixed. Let pi,...,p, be a discrete distribution
with positive p;’s (1 < j <n). Assume f:C — R is convex. Define the function h on
the set E, (see 3) by

n—1 n—1
h(ty,... ty—1) = (2{,’[9./4— (1 — fj) pn> &)
J=1 J=1

1 n—1 n—1
xf — — tipjxj+| 1— 2 tj | PuXn
j=1 j=1
S EAMCEG
J=1 Jj=1

(a) The function h is convex on E,,, and it is Riemann integrable over E,,.

(b) khm ka:]zimBkﬁ:n!/h(tl,...,tn_l)dtl...dt,,_l.
Ey
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2. Discussion and applications

Xiao, Srivastava and Zhang seems to have regarded it as evident that the proof of
Theorem D is valid for every integral concept. What does integrable mean in Theorem
D? The proof of Theorem 3 actually uses the Riemann integrability of /& over E,, but
then f is essentially convex as the following result shows.

For a fixed subset {xi,...,x,} of C, only the restriction of f to the set

n n
H:=SYox;eC|Yaj=1, >0, j=1,..n
Jj=1 j=1
is important in Theorem 1 and 3.

LEMMA 4. Let C be a convex subset of a real vector space X, and {xi,...,xn}
be a finite subset of C, where n > 2 is fixed. Let pi,...,p, be a discrete distribution
with positive p;’s (1 < j<n). Assume f:C — R is mid-convex. If the function h in
(5) is Riemann integrable over E,, then f is convex on the set

n n
H:= ZOCJ‘)CJ'EC‘ZOCJ‘ZI, OCj>0,j=1,...,n .
j=1 j=1
Proof. Let p:=min{py,...,pn}. Then p >0 and

n—1 n—1
lePjJr (1 - ZU) Pnz=p, (..t 1) €Ep.
j=1

j=1
Therefore, recalling the definition of &

f

1 n—1 n—1
— — <2tjpjxj+ (1— tj> pnx,,> (6)
i=1
1P+ (1— 2’;) pn
j=1 j=1
1

< ;h(th'"atn—l)’ (t17"'atn—1)6En'

By Lemma 9, the function

(ll,...,tn_l) —
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maps E, onto the set

n
o,...,04) € R oi=1, ;=20 j=1,....np,
J ]

J=1

and hence (6) and the Riemann integrability of /& over E, (h is bounded on E,,) show
that f is bounded above on H . B
Since f is mid-convex, the function 4 defined on E, by

h(ty,. . tho1) <thx, ( nzl )xn>

is also mid-convex on E,,. Because f is bounded above on H, h is bounded above on
E,. These two properties of /, together with the Bernstein-Doetsch theorem (see [5])
give that h is convex on the interior of E,, and therefore f is convex on H.

The proof is complete. [

As an application we introduce some new quasi-arithmetic means (about means
see [7]) and study their monotonicity and convergence.

DEFINITION 5. Let I C R be aninterval, x; €I (1< j<n), pi,...,p, be adis-
crete distribution, and let ¢, v : I — R be continuous and strictly monotone functions.
We define the quasi-arithmetic means with respect to (4) by

~ 1
My (k) ==y~ (Giro) )y (ZUP;) 7
k—1 i1+...+ip=n+k—1
IEN+ 1<j<n
_ 1 &
x(yoo ) | X ipjolx;) | |, keN..

ip =1
2 ijpj’
=1
Some other means are also needed.

DEFINITION 6. Let I C R be an interval, x; €I (1< j<n),and py,...,p, be
a discrete distribution. For a continuous and strictly monotone function z: 7 — R we
introduce the following mean

M, =z <2pjzxj ) (8)

We now prove the monotonicity of the means (7) and give limit formulas.



REFINEMENT OF JENSEN’S INEQUALITY 953

PROPOSITION 7. Let I C R be an interval, let x; € I (1 < j<n),let pi,...,pn
be a discrete distribution, and let @, W : I — R be continuous and strictly monotone
Sfunctions. Then

(a) M(p_MW(l) SMyo(k) <...<My, keNy,
if either yo @~ is convex and v is increasing or yo @~ is concave and  is de-
creasing.

(b)y My =My o(1)=>...2Myek)>...2My, keN,
if either wo @~ is convex and v is decreasing or yo ¢!
increasing.

is concave and y is

(c) Moreover, in both cases

kILHOICMW(P(k) l//71 n!/h(ll,...,tn_l)dl‘l...dtn_1 ,
Ey,

where the function h is defined on the set E, (see 3) by

n—1
h(th Sln— l (lepj ( th> pn) X
j=1

1

n—1
<(woo )| — - (thpﬂpxj) (1 ' t;)pm(%))
Sonrt (1= o

— ~

Proof. Theorem 1 (a) can be applied to the function yo ¢!, ifitis convex (—yo
¢!, if it is concave) and the n-tuples (¢(x1),...,¢(x,)), then upon taking w~!, we
get (a) and (b). (c) comes from Theorem 3 (by). U

As a special case we consider the following example.

EXAMPLE 8. If 1 :=]0,e0[, ¥ :=1n and @(x) :=x (x €]0,0[), then by Proposi-
tion 7 (b), we have the following sharpened version of the weighted arithmetic mean —
geometric mean inequality: for every x; >0 (1< j<n) and k € Ny

n (nzrk T Z l./pj
n 2 LjPjXj
Jj=1 Dj
EIP,/X,/ > IT e Z L
Jj= i1+...+ip=nt+k—1 . J=
i_/eN+;n 1<j<n zl./p./
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Moreover, by Proposition 7 (c)
m Z ijpj

k—1 j=1

n
Z LiPjXj
Jj=1

lim -
i1+...+ip=n+k—1 El .
ij€N+; 1<j<n . pr

k—so0

= exp n!/h(ll,...,l},,l)dll...dl‘n,1 s
Ey

where the function % is defined on the set E, (see 3) by

h(t tnl

et

3. Preliminary results and the proofs

LEMMA 9. Let pi,...,pn be a discrete distribution with positive p;’s (1 < j <
n), andlet qy,...,q, be another discrete distribution. Then there is a discrete distribu-
tion ty,...,t, such that

t. .
P g i=1,...n. 9)

¥
2 1jpj
j=1

Proof. At this proof the Perron-Frobenius theory comes into play (see [6]).
Suppose g; >0 (1 < j < n). Consider the n x n matrix

q1 41 --- 41
Q9 .- 92
qn CIn CIn

n

Since A is positive and 2 q;j = 1, the Perron-Frobenius eigenvalue of A is 1. Then
j=1

there exists an eigenvector (vi,...,v,) of A corresponding to the eigenvalue 1 such
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that v; >0 (1 < j<n).Itfollows that (vi,...,v,) is a positive solution of the system
of equations

=gqi, i=1,...,n. (10)

It is easy to see that we can abandon the supplementary hypothesis on ¢; (1 < j <
n):if g; >0 (1< j< n),then (10) has a nonnegative solution (vi,...,v,) different
from (0,...,0). In this case

(i)
p1’ 7 pa

is a solution of (9). We have from this that

1 Vi

iﬁpi7

j=1 Pj

ti= i=1,...,n

is appropriate.
The proof is complete. []

Proof of Theorem 1. We introduce the following set:

n
Skn = {(il,...,in)ENi | Eijzn-i-k—l}, ke N;.
=

(a) Since S;, ={(1,...,1)}

f (2 vav> = G17n~
v=1

Gin < Gy, kENL.
Let k € N be fixed. First we note that

n+k—1 B n+k\ k
k=1 )\ k Jn+k

n
k= 2 (u—1), (i1,---s0n) € Sktim

u=1

Next, we prove that

and therefore

implies

1 1 n n 1 n
Gi1n= mﬁ Z 2 (u—1) (2 ivpv) = Z Iy PyXy
(

k—1 i1yeeesin)ESpp1n | =1 v=1 2 ivpy v=1
v=1
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By introducing
ju ::iu_17 MZI,...,I’I, (i17"'ain)esk+l,n7

we have that

1 1 CER
Giy1p = W_l)m( Z Z]u (Z]vpﬁ-pu)

( k—1 J1eeesdn) €Sk | u=1 v=1

1

xf n—(Ejvpvxv+puxu> : (1
<2jvpv+pu> =

v=1

It is easy to observe that

Z,]u (Z]vpv+pu> :(n+k)2vav; (Jl?a.]n)eskl’u (12)

u=1 v=1 v=1

and
n n n
Zju (Zjvpvxv+puxu> :(n"‘k)z.ivpvxv» (15 sdn) € Skn- (13)
u=1 v=1 v=1
With the help of the discrete Jensen’s inequality (either Theorem A (a) or (b)) (11),
(12) and (13) yield

1 1 L
Giyin 2 mn_’_k( Z (n+k) Z]vpv

JLseesdn) ESkn v=1

1 - . o .
xf - Z]u (Zjvpvxv+puxu>
(n+k>2jvpv u=1 v=1

v=1

n l n
2 (2 jvpv) f n 2 JopvXy | = Gppe

_ i j =1 . =1
k—1 ) (J1sesdn) ESkn \V Z]va Vv
v=1

It remained to prove that

Gkv" < vaf(xv), ke N+.

v=1
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We can apply the discrete Jensen’s inequality (either Theorem A (a) or (b)) again,
which insures

n 1 n
G-t T (Sn)s| g Bons
(i1, v=1 z ivpv v=1
v=1
1 n
< (rz-i—Tl)(_ z Zivpvf(xv)

=— Y Y ipfln), keN,.

( k—Il) V=1(i1,.sin) ESk

Since the set Sy, has ("*’“2) elements

k—1
1 & 1 u +k—1
P 2 2 ivpvf (xv) i k—1 2 (nk 1 )pvf(xv)
( k—1 )Vzl(ilw':in)eskﬁ ( k—1 )v:l B

(b) Let m;(j) be the unique integer from {1,...,n} for which
m(j)=i+j—1 (modn), i,j=1,...,n.
Then the functions 7; (i =1,...,n) are permutations of the numbers 1, ... n. Clearly,
.zn"lp”f(j) =1 (=1,...,n),and m(j) = m;(i) (i,j=1,...,n).
j=

Fix k € N . The previous establishments imply

1 1 "
Fk, = n+k— f _ p - l X
' ( ﬁlz) (il.,.,%esk (lH-k—le1 (uzl 7y (u) v V>>
1 1 n "
= n — f p (v ix
( ﬁlz) (ll~m%€§kh <n+k IZ'I <v21 m(v)ty V>>
1 1 n .
= n+k—2 2 f n—’—k- 1 2 2 pﬂu(w)lw 2 . b7 (V) v -
( k=1 ) (i1+++in) €Sk u=1 | w=1 v=1 anu(w)lw
w=1
(14)
Noting that

w=1

Z ( pnu(w)iw> = Z iw=n+k—1,
1
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the discrete Jensen’s inequality (either Theorem A (a) or (b)) can be applied in (14),
and we get

1

Fin <
) k1)

- Pm(iv

X . z Zi] Z Pr,(w lwf 2 7 —

(i150in) €Sk v=1 2 Pr(w)iw
w=1
1 1 n n ) n pn'u(v)iv
= n+k—l) Z 2 z Z pﬂu(w)lw‘f 2 n Xy
( k u=1 (ilr-win)esk‘n w=1 v=1 2 Pr (w)lw
w=1
Since m, ( 1,...,n) is a permutation of the numbers 1,...,n, and m,(Sk,) = Sk,
(u=1,...,n) we can see that for every fixed u € {1,...,n}

n . n Py i
2 X Paminf | X U

n
(1) St #=1 S i

= z (2 ivl’v) = ! z IyPyXy

(117 -l )Eskn =1

(c) Fix k € N, . By the definition of Gy,

1 n 1 n
Gk+l,n = (,,T 2 (2 ivpv) S 7 2 IyPyXy

k )(ila“" )esk+ln =1 Eivpv v=1
v=1

n

= n}-k 2 (i(iv_l)Pv‘f‘EPv)

( k ) (i1ein)ESkr1.0 \V=1 v=1

1 n n
xf n n <Z(iv_1)pvxv+ ZPv%)
> (i=Dp+ Y py V7! vl

v=1 v=1
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=— Y k(ijvpv+1>

( k ) it A= v=1
jIEN; 1<i<n

n ZJVPVXV
xf Elvpv n + Epvxv
2]Vpl/+l =1 Zjvpv =1
v=1

v=1

In this situation the discrete Jensen’s inequality (either Theorem A (a) or (b)) im-
plies that

1 n
Gk+1,n < (n+k) ‘ Z (Z jvpv) f +f (Z Pv%)
e\ Elfvpv -
v=
1 n 1 n (n-‘r/]i—l) n
= (}’l+k) ) 2 Zj"p" f n . + (n+k) f vaxv .
AR Zieps™! e)
y=

From this, by means of Theorem E, we get

() ; L g

Gk-‘rl,n < (n+k) l+ (n+k71) 2 ZijV f n
k k—1 /1+ A=k \v=1 Zjvpv v=1

v=1

1<i<n
= By

9

Combining this and (a) yields finally
Gin < Gip10 < Bry, k€N,
The proof is complete. [

Proof of Theorem 3. (a) E, is obviously a convex set, and by using the convexity
of f, some elementary computation shows that % is convex. Since f is bounded on the
convex set

{Zajxjex Yoaj=1, o;>0, j:l7...,n}7
=1 j=1

h is bounded too. The convexity of & implies that it is continuous on the interior of
E,. The previous two establishments, together with the fact that the measure of the
boundary of E, is 0, yield that /& is Riemann integrable over E, .

(b) Fix ke N.



960 L. HORVATH

By the definition of Gy ,,, elementary considerations show that

1 o &
Gien = [Gi) > (Z lﬂh’) Fla— i
e D ipi 7!
j=1
(n4k—2)"2 1

TSy P R —— T

k ktl—ipk+2—(i1+ia)  ntk=2—(i1+..+in-2) (n 1

x2 X X X Zﬁ

i1=1 =1 iz=1 in—1=1 1
-1
(g )
n—1 ij n-1 i
2 it (1 2 ﬁ) P
n—1 ij n-1 i
Empﬁ (1_ 2 +k—l>

Since /4 is Riemann integrable, the result for the sequence (ka) follows from
this and from

i—1 i i
< < ;
n+k—2 n+k—1 n+k-2

i=1,... .k

Similarly, according to the definition of By, , we have

1 o 1 &
Bin = Gl 2 (Z’f”f) S 2 il
k=1 g, VT 2 ipi !
(k+1)"! 1

T k=) ()t

k k—iyk—(i1+i)  k—(i+...+ip_2) lj nill’j
DS RS N R G
J=

i1=0ip= iz= ip,—1=0

n— l n—1 i
2 pjxj 2 E, PnXn
j:

{Fme

—_ | =

?V‘|\
|<
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By taking into account the Riemann integrability of 4 and

i i i+l
L T
il Sk Skrr Tk

we have the result for the sequence (By,). O
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