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WEIGHTED FORM OF A RECENT REFINEMENT

OF THE DISCRETE JENSEN’S INEQUALITY

LÁSZLÓ HORVÁTH

(Communicated by C. P. Niculescu)

Abstract. Recently, Xiao, Srivastava and Zhang (see [10]) have introduced a new refinement of
the discrete Jensen’s inequality for mid-convex functions. We give and discuss the weighted
form of their results. This leads to some new inequlities and limit formulas. We illustrate the
scope of the results by applying them to introduce and study some new quasi-arithmetic means.

1. Introduction and the main results

The different forms of Jensen’s inequality have fundamental importance for many
developments in mathematics. In this paper we consider the discrete Jensen’s inequal-
ity:

THEOREM A. (see [1]) Let C be a convex subset of a real vector space X , and
{x1, . . . ,xn} be a finite subset of C , where n � 1 is fixed. Let p1, . . . , pn be nonnegative

numbers with Pn :=
n

∑
j=1

p j > 0 . If f :C →R is either a convex or a mid-convex function

and in the latter case the numbers p j (1 � j � n) are rational, then

f

(
1
Pn

n

∑
j=1

p jx j

)
� 1

Pn

n

∑
j=1

p j f (x j). (1)

The function f : C → R is called convex if

f (αx+(1−α)y) � α f (x)+ (1−α) f (y), x,y ∈C, 0 � α � 1,

and mid-convex if

f

(
x+ y

2

)
� 1

2
f (x)+

1
2

f (y), x,y ∈C.

We denote by N and N+ the set of nonnegative integers, and positive integers,
respectively.

Mathematics subject classification (2010): 26D07, 26A51.
Keywords and phrases: convex, mid-convex, Jensen’s inequality, mean.
Supported by Hungarian National Foundations for Scientific Research Grant No. K101217.

c© � � , Zagreb
Paper MIA-17-69

947

http://dx.doi.org/10.7153/mia-17-69


948 L. HORVÁTH

Discrete distribution: this means that p1, . . . , pn are nonnegative numbers with
n

∑
j=1

p j = 1.

Recently, Xiao, Srivastava and Zhang (see [10]) have introduced a new refinement
of the discrete Jensen’s inequality for mid-convex functions. Their results were moti-
vated by the reformulation of the classical refinements in the papers [8] and [9]. As an
illustration, consider the next inequality from [9]:

THEOREM B. Let C be a convex subset of a real vector space X , and let f : C →
R be a mid-convex function. If xi ∈C (i = 1, . . . ,n) , and

Bk,n :=
1(n+k−1
k

) ∑
1�i1�...�ik�n

f

(
xi1 + . . .+ xik

k

)
, k ∈ N+,

then

f

(
1
n

n

∑
i=1

xi

)
� . . . � Bk+1,n � Bk,n � . . . � B1,n =

1
n

n

∑
i=1

f (xi) .

The expression Bk,n can be rewritten in the form

Bk,n =
1(n+k−1
k

) ∑
i1+...+in=k

i j∈N; 1� j�n

f

(
1
k

k

∑
j=1

i jx j

)
.

Inspired by this interpretation of Bk,n , Xiao, Srivastava and Zhang have obtained the
following result:

THEOREM C. (see [10]) Let C be a convex subset of a real vector space X , and
{x1, . . . ,xn} be a finite subset of C , where n � 1 is fixed. If f : C → R is a mid-convex
function, and

Fk,n :=
1(n+k−2

k−1

) ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

f

(
1

n+ k−1

n

∑
j=1

i jx j

)
, k ∈ N+, (2)

then

(a) f

(
1
n

n

∑
j=1

x j

)
= F1,n � . . . � Fk,n � Fk+1,n � . . . � 1

n

n

∑
j=1

f (x j) .

(b) Fk,n � Bk,n, k ∈ N+.

The limit of the constructed increasing sequence is also determined. We recall this
result too:

THEOREM D. (see [10]) Let C be a convex subset of a real vector space X , and
{x1, . . . ,xn} be a finite subset of C , where n � 1 is fixed. Suppose f : C → R is a
mid-convex function. Define the function g on the set

En :=

{
(t1, . . . ,tn−1) ∈ R

n−1 |
n−1

∑
j=1

t j � 1, t j � 0, j = 1, . . . ,n−1

}
(3)
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by

g(t1, . . . ,tn−1) := f

(
n−1

∑
j=1

t jx j +

(
1−

n−1

∑
j=1

t j

)
xn

)
.

If g is integrable over En , then

lim
k→∞

Fk,n = lim
k→∞

Bk,n = (n−1)!
∫
En

g(t1, . . . ,tn−1)dt1 . . .dtn−1.

In Theorem C and D the discrete uniform distribution is used. The purpose of this
paper to give and discuss the weighted versions of Theorem C and D for convex and
mid-convex functions.

There are many papers on the refinements of the discrete Jensen’s inequality. In
particular, the weighted version of Theorem B has been discovered by Horváth and
Pečarić [4]:

THEOREM E. Let C be a convex subset of a real vector space X , and {x1, . . . ,xn}
be a finite subset of C , where n � 1 is fixed. Let p1, . . . , pn be a discrete distribution,
where p j (1 � j � n) is positive. If f : C → R is either a convex or a mid-convex
function and in the latter case the numbers p j (1 � j � n) are rational, and

Bk,n :=
1(n+k−1

k−1

) ∑
1�i1�...�ik�n

(
k

∑
j=1

pi j

)
f

⎛
⎜⎜⎜⎜⎝

1
k

∑
j=1

pi j

k

∑
j=1

pi j xi j

⎞
⎟⎟⎟⎟⎠

=
1(n+k−1

k−1

) ∑
i1+...+in=k

i j∈N; 1� j�n

(
n

∑
j=1

i j p j

)⎛⎜⎜⎜⎝ 1
n

∑
j=1

i j p j

n

∑
j=1

i j p jx j

⎞
⎟⎟⎟⎠ , k ∈ N+,

then

f

(
n

∑
j=1

p jx j

)
� . . . � Bk+1,n � Bk,n � . . . � B1,n =

n

∑
j=1

p j f (x j) , k ∈ N+.

This result makes it possible to obtain the generalized form of Theorem C (b). A
method has been developed to refine the discrete Jensen’s inequality by Horváth [3].
The results in [3] include those considered in [4], but the method can not be applied to
solve the present problem (for further details see [2]). In [2], a different approach led
to a parameter dependent refinement, whose construction is similar to (2) in Theorem
C. However, the treatment of the problem in [2] is totally different from that in [10].

Our main results in this paper are as follows. First, we generalize Theorem B.
Moreover, we compare the expressions Fk,n , Bk,n and Gk,n (see 4).
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THEOREM 1. Let C be a convex subset of a real vector space X , and {x1, . . . ,xn}
be a finite subset of C , where n � 1 is fixed. Let p1, . . . , pn be a discrete distribution.
Assume f : C → R is either a convex or a mid-convex function and in the latter case
the numbers p j (1 � j � n) are rational. Define

Gk,n :=
1(n+k−1

k−1

) ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

(
n

∑
j=1

i j p j

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
j=1

i j p j

n

∑
j=1

i j p jx j

⎞
⎟⎟⎟⎠ , k ∈ N+. (4)

Then

(a) f

(
n

∑
j=1

p jx j

)
= G1,n � . . . � Gk,n � Gk+1,n � . . . �

n

∑
j=1

p j f (x j) .

(b) Fk,n � Gk,n, k ∈ N+.

(c) If the numbers p1, . . . , pn are positive, then

Gk,n � Bk,n, k ∈ N+.

REMARK 2. It is easy to see that in case p j = 1
n (1 � j � n)

Gk,n = Fk,n, k ∈ N+,

so Gk,n is the weighted form of Fk,n .

Next, we extend Theorem D.

THEOREM 3. Let C be a convex subset of a real vector space X , and {x1, . . . ,xn}
be a finite subset of C , where n � 2 is fixed. Let p1, . . . , pn be a discrete distribution
with positive p j ’s (1 � j � n) . Assume f : C → R is convex. Define the function h on
the set En (see 3) by

h(t1, . . . ,tn−1) :=

(
n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

)
(5)

× f

⎛
⎜⎜⎜⎜⎝

1
n−1

∑
j=1

t j p j+

(
1−

n−1

∑
j=1

t j

)
pn

(
n−1

∑
j=1

t j p jx j+

(
1−

n−1

∑
j=1

t j

)
pnxn

)
⎞
⎟⎟⎟⎟⎠ .

(a) The function h is convex on En , and it is Riemann integrable over En .

(b) lim
k→∞

Gk,n = lim
k→∞

Bk,n = n!
∫
En

h(t1, . . . ,tn−1)dt1 . . .dtn−1.
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2. Discussion and applications

Xiao, Srivastava and Zhang seems to have regarded it as evident that the proof of
Theorem D is valid for every integral concept. What does integrable mean in Theorem
D? The proof of Theorem 3 actually uses the Riemann integrability of h over En , but
then f is essentially convex as the following result shows.

For a fixed subset {x1, . . . ,xn} of C , only the restriction of f to the set

H :=

{
n

∑
j=1

α jx j ∈C |
n

∑
j=1

α j = 1, α j � 0, j = 1, . . . ,n

}

is important in Theorem 1 and 3.

LEMMA 4. Let C be a convex subset of a real vector space X , and {x1, . . . ,xn}
be a finite subset of C , where n � 2 is fixed. Let p1, . . . , pn be a discrete distribution
with positive p j ’s (1 � j � n) . Assume f : C → R is mid-convex. If the function h in
(5) is Riemann integrable over En , then f is convex on the set

Ĥ :=

{
n

∑
j=1

α jx j ∈C |
n

∑
j=1

α j = 1, α j > 0, j = 1, . . . ,n

}
.

Proof. Let p := min{p1, . . . , pn} . Then p > 0 and

n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn � p, (t1, . . . ,tn−1) ∈ En.

Therefore, recalling the definition of h

f

⎛
⎜⎜⎜⎜⎝

1
n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

(
n−1

∑
j=1

t j p jx j +

(
1−

n−1

∑
j=1

t j

)
pnxn

)⎞⎟⎟⎟⎟⎠ (6)

� 1
p
h(t1, . . . ,tn−1) , (t1, . . . ,tn−1) ∈ En.

By Lemma 9, the function

(t1, . . . ,tn−1) →

⎛
⎜⎜⎜⎜⎝

t1p1

n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

,

. . . ,
tn−1pn−1

n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

,

(
1−

n−1

∑
j=1

t j

)
pn

n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

⎞
⎟⎟⎟⎟⎠
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maps En onto the set{
(α1, . . . ,αn) ∈ R

n |
n

∑
j=1

α j = 1, α j � 0, j = 1, . . . ,n

}
,

and hence (6) and the Riemann integrability of h over En (h is bounded on En ) show
that f is bounded above on H .

Since f is mid-convex, the function h defined on En by

h (t1, . . . ,tn−1) := f

(
n−1

∑
j=1

t jx j +

(
1−

n−1

∑
j=1

t j

)
xn

)

is also mid-convex on En . Because f is bounded above on H , h is bounded above on
En . These two properties of h , together with the Bernstein-Doetsch theorem (see [5])
give that h is convex on the interior of En , and therefore f is convex on Ĥ .

The proof is complete. �

As an application we introduce some new quasi-arithmetic means (about means
see [7]) and study their monotonicity and convergence.

DEFINITION 5. Let I ⊂R be an interval, x j ∈ I (1 � j � n) , p1, . . . , pn be a dis-
crete distribution, and let ϕ , ψ : I → R be continuous and strictly monotone functions.
We define the quasi-arithmetic means with respect to (4) by

Mψ,ϕ (k) := ψ−1

⎛
⎜⎜⎜⎝ 1(n+k−1

k−1

) ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

(
n

∑
j=1

i j p j

)
(7)

×(ψ ◦ϕ−1)

⎛
⎜⎜⎜⎝ 1

n

∑
j=1

i j p j

n

∑
j=1

i j p jϕ(x j)

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ , k ∈ N+.

Some other means are also needed.

DEFINITION 6. Let I ⊂ R be an interval, x j ∈ I (1 � j � n) , and p1, . . . , pn be
a discrete distribution. For a continuous and strictly monotone function z : I → R we
introduce the following mean

Mz := z−1

(
n

∑
j=1

p jz(x j)

)
. (8)

We now prove the monotonicity of the means (7) and give limit formulas.
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PROPOSITION 7. Let I ⊂ R be an interval, let x j ∈ I (1 � j � n) , let p1, . . . , pn

be a discrete distribution, and let ϕ , ψ : I → R be continuous and strictly monotone
functions. Then

(a) Mϕ = Mψ,ϕ(1) � . . . � Mψ,ϕ(k) � . . . � Mψ , k ∈ N+,
if either ψ ◦ϕ−1 is convex and ψ is increasing or ψ ◦ϕ−1 is concave and ψ is de-
creasing.

(b) Mϕ = Mψ,ϕ (1) � . . . � Mψ,ϕ (k) � . . . � Mψ , k ∈ N+,
if either ψ ◦ ϕ−1 is convex and ψ is decreasing or ψ ◦ ϕ−1 is concave and ψ is
increasing.

(c) Moreover, in both cases

lim
k→∞

Mψ,ϕ (k) = ψ−1

⎛
⎝n!

∫
En

h(t1, . . . ,tn−1)dt1 . . .dtn−1

⎞
⎠ ,

where the function h is defined on the set En (see 3) by

h(t1, . . . ,tn−1) :=

(
n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

)
×

×(ψ ◦ϕ−1)
⎛
⎜⎜⎜⎜⎝

1
n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

(
n−1

∑
j=1

t j p jϕ(x j)+

(
1−

n−1

∑
j=1

t j

)
pnϕ(xn)

)⎞⎟⎟⎟⎟⎠ .

Proof. Theorem 1 (a) can be applied to the function ψ ◦ϕ−1 , if it is convex (−ψ ◦
ϕ−1 , if it is concave) and the n -tuples (ϕ(x1), . . . ,ϕ(xn)) , then upon taking ψ−1 , we
get (a) and (b). (c) comes from Theorem 3 (b1 ). �

As a special case we consider the following example.

EXAMPLE 8. If I :=]0,∞[ , ψ := ln and ϕ(x) := x (x ∈]0,∞[) , then by Proposi-
tion 7 (b), we have the following sharpened version of the weighted arithmetic mean –
geometric mean inequality: for every x j > 0 (1 � j � n) and k ∈ N+

n

∑
j=1

p jx j � ∏
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

⎛
⎜⎜⎜⎝

n

∑
j=1

i j p jx j

n

∑
j=1

i j p j

⎞
⎟⎟⎟⎠

1

(n+k−1
k−1 )

n

∑
j=1

i j p j

�
n

∏
j=1

x
p j
j .
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Moreover, by Proposition 7 (c)

lim
k→∞ ∏

i1+...+in=n+k−1
i j∈N+ ; 1� j�n

⎛
⎜⎜⎜⎝

n

∑
j=1

i j p jx j

n

∑
j=1

i j p j

⎞
⎟⎟⎟⎠

1

(n+k−1
k−1 )

n

∑
j=1

i j p j

= exp

⎛
⎝n!

∫
En

h(t1, . . . ,tn−1)dt1 . . .dtn−1

⎞
⎠ ,

where the function h is defined on the set En (see 3) by

h(t1, . . . ,tn−1)

:=

(
n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

)

× ln

⎛
⎜⎜⎜⎜⎝

1
n−1

∑
j=1

t j p j +

(
1−

n−1

∑
j=1

t j

)
pn

(
n−1

∑
j=1

t j p jx j +

(
1−

n−1

∑
j=1

t j

)
pnxn

)⎞⎟⎟⎟⎟⎠ .

3. Preliminary results and the proofs

LEMMA 9. Let p1, . . . , pn be a discrete distribution with positive p j ’s (1 � j �
n) , and let q1, . . . ,qn be another discrete distribution. Then there is a discrete distribu-
tion t1, . . . ,tn such that

ti pi
n

∑
j=1

t j p j

= qi, i = 1, . . . ,n. (9)

Proof. At this proof the Perron-Frobenius theory comes into play (see [6]).
Suppose q j > 0 (1 � j � n) . Consider the n×n matrix

A :=

⎛
⎜⎜⎜⎝

q1 q1 . . . q1

q2 q2 . . . q2
...

...
...

...
qn qn . . . qn

⎞
⎟⎟⎟⎠ .

Since A is positive and
n

∑
j=1

q j = 1, the Perron-Frobenius eigenvalue of A is 1 . Then

there exists an eigenvector (v1, . . . ,vn) of A corresponding to the eigenvalue 1 such
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that v j > 0 (1 � j � n) . It follows that (v1, . . . ,vn) is a positive solution of the system
of equations

xi
n

∑
j=1

x j

= qi, i = 1, . . . ,n. (10)

It is easy to see that we can abandon the supplementary hypothesis on q j (1 � j �
n) : if q j � 0 (1 � j � n) , then (10) has a nonnegative solution (v1, . . . ,vn) different
from (0, . . . ,0) . In this case (

v1

p1
, . . . ,

vn

pn

)
is a solution of (9). We have from this that

ti =
1

n

∑
j=1

v j

p j

vi

pi
, i = 1, . . . ,n

is appropriate.
The proof is complete. �

Proof of Theorem 1. We introduce the following set:

Sk,n :=

{
(i1, . . . , in) ∈ N

n
+ |

n

∑
j=1

i j = n+ k−1

}
, k ∈ N+.

(a) Since S1,n = {(1, . . . ,1)}

f

(
n

∑
v=1

pvxv

)
= G1,n.

Next, we prove that
Gk,n � Gk+1,n, k ∈ N+.

Let k ∈ N+ be fixed. First we note that(
n+ k−1

k−1

)
=
(

n+ k
k

)
k

n+ k
,

and therefore

k =
n

∑
u=1

(iu −1) , (i1, . . . , in) ∈ Sk+1,n

implies

Gk+1,n =
1(n+k−1

k−1

) 1
n+k ∑

(i1,...,in)∈Sk+1,n

⎛
⎜⎜⎜⎝

n

∑
u=1

(iu−1)

(
n

∑
v=1

ivpv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

ivpv

n

∑
v=1

ivpvxv

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .



956 L. HORVÁTH

By introducing

ju := iu−1, u = 1, . . . ,n, (i1, . . . , in) ∈ Sk+1,n,

we have that

Gk+1,n =
1(n+k−1

k−1

) 1
n+ k ∑

( j1,..., jn)∈Sk,n

⎛
⎜⎜⎜⎜⎝

n

∑
u=1

ju

(
n

∑
v=1

jv pv + pu

)

× f

⎛
⎜⎜⎜⎜⎝

1(
n

∑
v=1

jv pv + pu

)
(

n

∑
v=1

jv pvxv + puxu

)⎞⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ . (11)

It is easy to observe that

n

∑
u=1

ju

(
n

∑
v=1

jv pv + pu

)
= (n+ k)

n

∑
v=1

jv pv, ( j1, . . . , jn) ∈ Sk,n, (12)

and
n

∑
u=1

ju

(
n

∑
v=1

jv pvxv + puxu

)
= (n+ k)

n

∑
v=1

jv pvxv, ( j1, . . . , jn) ∈ Sk,n. (13)

With the help of the discrete Jensen’s inequality (either Theorem A (a) or (b)) (11),
(12) and (13) yield

Gk+1,n � 1(n+k−1
k−1

) 1
n+ k ∑

( j1,..., jn)∈Sk,n

⎛
⎜⎜⎜⎝(n+ k)

n

∑
v=1

jv pv

× f

⎛
⎜⎜⎜⎝ 1

(n+ k)
n

∑
v=1

jv pv

n

∑
u=1

ju

(
n

∑
v=1

jv pvxv + puxu

)⎞⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

=
1(n+k−1

k−1

) ∑
( j1,..., jn)∈Sk,n

(
n

∑
v=1

jv pv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

jv pv

n

∑
v=1

jv pvxv

⎞
⎟⎟⎟⎠= Gk,n.

It remained to prove that

Gk,n �
n

∑
v=1

pv f (xv) , k ∈ N+.
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We can apply the discrete Jensen’s inequality (either Theorem A (a) or (b)) again,
which insures

Gk,n =
1(n+k−1

k−1

) ∑
(i1,...,in)∈Sk,n

(
n

∑
v=1

iv pv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

iv pv

n

∑
v=1

iv pvxv

⎞
⎟⎟⎟⎠

� 1(n+k−1
k−1

) ∑
(i1,...,in)∈Sk,n

n

∑
v=1

ivpv f (xv)

=
1(n+k−1

k−1

) n

∑
v=1

∑
(i1,...,in)∈Sk,n

ivpv f (xv) , k ∈ N+.

Since the set Sk,n has
(n+k−2

k−1

)
elements

1(n+k−1
k−1

) n

∑
v=1

∑
(i1,...,in)∈Sk,n

ivpv f (xv) =
1(n+k−1

k−1

) n

∑
v=1

(
n+ k−1

k−1

)
pv f (xv)

=
n

∑
v=1

pv f (xv) , k ∈ N+.

(b) Let πi( j) be the unique integer from {1, . . . ,n} for which

πi( j) ≡ i+ j−1 (mod n), i, j = 1, . . . ,n.

Then the functions πi (i = 1, . . . ,n) are permutations of the numbers 1, . . . ,n . Clearly,
n

∑
j=1

pπi( j) = 1 (i = 1, . . . ,n) , and πi( j) = π j(i) (i, j = 1, . . . ,n) .

Fix k ∈ N+ . The previous establishments imply

Fk,n =
1(n+k−2

k−1

) ∑
(i1,...,in)∈Sk,n

f

(
1

n+ k−1

n

∑
v=1

(
n

∑
u=1

pπv(u)ivxv

))

=
1(n+k−2

k−1

) ∑
(i1,...,in)∈Sk,n

f

(
1

n+ k−1

n

∑
u=1

(
n

∑
v=1

pπu(v)ivxv

))

=
1(n+k−2

k−1

) ∑
(i1,...,in)∈Sk,n

f

⎛
⎜⎜⎜⎝ 1

n+ k−1

n

∑
u=1

⎛
⎜⎜⎜⎝

n

∑
w=1

pπu(w)iw
n

∑
v=1

pπu(v)iv
n

∑
w=1

pπu(w)iw

xv

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

(14)

Noting that
n

∑
u=1

(
n

∑
w=1

pπu(w)iw

)
=

n

∑
w=1

iw = n+ k−1,
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the discrete Jensen’s inequality (either Theorem A (a) or (b)) can be applied in (14),
and we get

Fk,n � 1(n+k−2
k−1

)
(n+ k−1)

× ∑
(i1,...,in)∈Sk,n

n

∑
u=1

⎛
⎜⎜⎜⎝

n

∑
w=1

pπu(w)iw f

⎛
⎜⎜⎜⎝

n

∑
v=1

pπu(v)iv
n

∑
w=1

pπu(w)iw

xv

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

=
1(n+k−1
k

) 1
n

n

∑
u=1

⎛
⎜⎜⎜⎝ ∑

(i1,...,in)∈Sk,n

n

∑
w=1

pπu(w)iw f

⎛
⎜⎜⎜⎝

n

∑
v=1

pπu(v)iv
n

∑
w=1

pπu(w)iw

xv

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

Since πu (u = 1, . . . ,n) is a permutation of the numbers 1, . . . ,n , and πu(Sk,n) = Sk,n

(u = 1, . . . ,n) we can see that for every fixed u ∈ {1, . . . ,n}

∑
(i1,...,in)∈Sk,n

n

∑
w=1

pπu(w)iw f

⎛
⎜⎜⎜⎝

n

∑
v=1

pπu(v)iv
n

∑
w=1

pπu(w)iw

xv

⎞
⎟⎟⎟⎠

= ∑
(i1,...,in)∈Sk,n

(
n

∑
v=1

iv pv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

iv pv

n

∑
v=1

iv pvxv

⎞
⎟⎟⎟⎠ .

(c) Fix k ∈ N+ . By the definition of Gk+1,n

Gk+1,n =
1(n+k
k

) ∑
(i1,...,in)∈Sk+1,n

(
n

∑
v=1

ivpv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

ivpv

n

∑
v=1

ivpvxv

⎞
⎟⎟⎟⎠

=
1(n+k
k

) ∑
(i1,...,in)∈Sk+1,n

(
n

∑
v=1

(iv −1) pv +
n

∑
v=1

pv

)

× f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

(iv −1) pv +
n

∑
v=1

pv

(
n

∑
v=1

(iv −1) pvxv +
n

∑
v=1

pvxv

)⎞⎟⎟⎟⎠
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=
1(n+k
k

) ∑
j1+...+ jn=k
jl∈N; 1�l�n

(
n

∑
v=1

jv pv +1

)

× f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

jv pv +1

⎛
⎜⎜⎜⎝

n

∑
v=1

jv pv

n

∑
v=1

jv pvxv

n

∑
v=1

jv pv

+
n

∑
v=1

pvxv

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

In this situation the discrete Jensen’s inequality (either Theorem A (a) or (b)) im-
plies that

Gk+1,n � 1(n+k
k

) ∑
j1+...+ jn=k
jl∈N; 1�l�n

⎛
⎜⎜⎜⎝
(

n

∑
v=1

jv pv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

jv pv

n

∑
v=1

jvpvxv

⎞
⎟⎟⎟⎠+ f

(
n

∑
v=1

pvxv

)⎞⎟⎟⎟⎠

=
1(n+k
k

) ∑
j1+...+ jn=k
jl∈N; 1�l�n

(
n

∑
v=1

jv pv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

jv pv

n

∑
v=1

jv pvxv

⎞
⎟⎟⎟⎠+

(n+k−1
k

)
(n+k

k

) f

(
n

∑
v=1

pvxv

)
.

From this, by means of Theorem E, we get

Gk+1,n �
(

1(n+k
k

)
(

1+

(n+k−1
k

)
(n+k−1

k−1

)
))

∑
j1+...+ jn=k
jl∈N; 1�l�n

(
n

∑
v=1

jv pv

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
v=1

jv pv

n

∑
v=1

jv pvxv

⎞
⎟⎟⎟⎠

= Bk,n.

Combining this and (a) yields finally

Gk,n � Gk+1,n � Bk,n, k ∈ N+.

The proof is complete. �

Proof of Theorem 3. (a) En is obviously a convex set, and by using the convexity
of f , some elementary computation shows that h is convex. Since f is bounded on the
convex set {

n

∑
j=1

α jx j ∈ X |
n

∑
j=1

α j = 1, α j � 0, j = 1, . . . ,n

}
,

h is bounded too. The convexity of h implies that it is continuous on the interior of
En . The previous two establishments, together with the fact that the measure of the
boundary of En is 0 , yield that h is Riemann integrable over En .

(b) Fix k ∈ N+ .
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By the definition of Gk,n , elementary considerations show that

Gk,n =
1(n+k−1

k−1

) ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

(
n

∑
j=1

i j p j

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
j=1

i j p j

n

∑
j=1

i j p jx j

⎞
⎟⎟⎟⎠

= n!
(n+ k−2)n−2

k (k+1) . . . (n+ k−3)
· 1

(n+ k−2)n−1

×
k

∑
i1=1

k+1−i1

∑
i2=1

k+2−(i1+i2)

∑
i3=1

. . .
n+k−2−(i1+...+in−2)

∑
in−1=1

(
n−1

∑
j=1

i j

n+ k−1
p j

+

(
1−

n−1

∑
j=1

i j

n+ k−1

)
pn

)

× f

⎛
⎜⎜⎜⎜⎝

n−1

∑
j=1

i j

n+ k−1
p jx j +

(
1−

n−1

∑
j=1

i j

n+ k−1

)
pnxn

n−1

∑
j=1

i j

n+ k−1
p j +

(
1−

n−1

∑
j=1

i j

n+ k−1

)
pn

⎞
⎟⎟⎟⎟⎠ .

Since h is Riemann integrable, the result for the sequence
(
Gk,n

)
follows from

this and from
i−1

n+ k−2
<

i
n+ k−1

<
i

n+ k−2
, i = 1, . . . ,k.

Similarly, according to the definition of Bk,n , we have

Bk,n =
1(n+k−1

k−1

) ∑
i1+...+in=k

i j∈N; 1� j�n

(
n

∑
j=1

i j p j

)⎛⎜⎜⎜⎝ 1
n

∑
j=1

i j p j

n

∑
j=1

i j p jx j

⎞
⎟⎟⎟⎠

= n!
(k+1)n−1

(k+1) . . . (n+ k−1)
· 1

(k+1)n−1

×
k

∑
i1=0

k−i1

∑
i2=0

k−(i1+i2)

∑
i3=0

. . .
k−(i1+...+in−2)

∑
in−1=0

(
n−1

∑
j=1

i j

k
p j +

(
1−

n−1

∑
j=1

i j

k

)
pn

)

× f

⎛
⎜⎜⎜⎜⎝

n−1

∑
j=1

i j

k
p jx j +

(
1−

n−1

∑
j=1

i j

k

)
pnxn

n−1

∑
j=1

i j

k
p j +

(
1−

n−1

∑
j=1

i j

k

)
pn

⎞
⎟⎟⎟⎟⎠ .
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By taking into account the Riemann integrability of h and

i
k+1

<
i
k

<
i+1
k+1

, i = 0, . . . ,k,

we have the result for the sequence
(
Bk,n
)
. �
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