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Abstract. Let ϕ and ψ be analytic self-maps of the open unit disk D . Using pseudo-hyperbolic
distance ρ(ϕ ,ψ) , we characterize the boundedness and compactness of the differences of gen-
eralized composition operators

(Cg
ϕ −Ch

ψ ) f (z) =
∫ z

0

[
f ′(ϕ(ξ ))g(ξ )− f ′(ψ(ξ ))h(ξ )

]
dξ , z ∈ D

between two Bloch-type spaces on D . The results generalize the corresponding results on the
single generalized composition operator and on the differences of generalized composition op-
erators on the Bloch space.

1. Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane, H(D) be the
space of all analytic functions on D and S(D) be the set of analytic self-maps of D .
For a ∈ D , let σa be the Möbius transformation of D defined by

σa(z) =
a− z
1−az

.

For w,z ∈ D , the pseudo-hyperbolic distance ρ(w,z) between z and w is given by

ρ(z,w) =
∣∣σw(z)

∣∣.
For ϕ ∈ S(D) and u ∈ H(D) , we denote by uCϕ the weighted composition oper-

ator, which is defined by (uCϕ f )(z) = u(z) f (ϕ(z)) . When u(z) ≡ 1, uCϕ becomes the
composition operator Cϕ , while if ϕ(z) = z , uCϕ becomes the multiplication operator
Mu .
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During the past few decades much effort has been devoted to the research of such
operators on different Banach spaces of analytic functions. The general idea is to ex-
plain the operator-theoretic behavior of uCϕ such as boundendness and compactness,
by the function-theoretic properties of the symbols ϕ and u . For a comprehensive
overview of the field, we refer to the books by Cowen and MacCluer [2] and Shapiro
[13].

For α > 0, recall that the Bloch type space Bα is the space of all f ∈ H(D)
satisfying

bα( f ) = sup
z∈D

(1−|z|2)α | f ′(z)| < ∞.

It is easy to see that Bα is a Banch space with the norm ‖ f‖ = | f (0)|+bα( f ). When
α = 1, we have B1 = B , the Bloch space. When 0 < α < 1, the spaces Bα can be
identified with the analytic Lipschitz spaces Lip1−α . See [15, 25] for details.

Motivated by the fact that composition operators and weighted composition op-
erators naturally come from isometries of some function spaces, for ϕ ∈ S(D) and
g ∈ H(D) , in [6], Li and Stević defined the generalized composition operator Cg

ϕ as
follows:

Cg
ϕ f (z) =

∫ z

0
f ′(ϕ(ξ ))g(ξ )dξ , f ∈ H(D), z ∈ D.

They characterized the boundedness and compactness of Cg
ϕ on Zygmund spaces and

Bloch type spaces. See also [7, 8, 9, 14, 17, 16, 10, 18, 19, 20, 21, 22, 24, 26, 27] for
the study of the operator Cg

ϕ and its generalizations.

The study of the differences of two composition operators was started on Hardy
spaces. The primary motivation for this is to understand the topological structure of the
set of composition operators C (H2) on Hardy space H2 . After that, such related prob-
lems have been studied on several spaces of holomorphic functions by many authors.
For example, in [11], Moorhouse characterized compact difference of two composition
operators on the standard weighted Bergman spaces. In [4] and [12], the boundedness
and compactness of the difference of two composition operators on the Bloch spaces
were characterized. In [1], the authors investigated the boundedness and compactness
of difference of two composition operators on weighted Banach spaces. In [23] and [3],
the difference of two weighted composition operators was investigated also.

In [5], Li investigated the difference of two generalized composition operators on
the Bloch space. In this note, we generalize the results in [5] and study the bounded-
ness and compactness of the differences of generalized composition operators between
Bloch type spaces.

Throughout this note, constants are denoted by C , they are positive and may differ
from one occurrence to the other. a � b means that there is a positive constant C such
that a � Cb . Moreover, if both a � b and b � a hold, then we write a � b .
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2. The boundedness of Cg
ϕ −Ch

ψ

To prove the main results of this paper, we need some lemmas. The first lemma
was proved in [25].

LEMMA 1. For every positive integer n, f ∈Bα if and only if f (n) ∈ Bα+n , and
the following asymptotic relationship holds

‖ f‖Bα �
n

∑
k=0

| f (k)(0)|+ sup
z∈D

(1−|z|2)α+n| f (n+1)(z)|.

LEMMA 2. Let f ∈ Bα . Then, for all z,w ∈ D,

|(1−|z|2)α f ′(z)− (1−|w|2)α f ′(w)| � C‖ f‖Bα ρ(z,w). (1)

Proof. In [12, 3], it has been shown that

|(1−|z|2)α f (z)− (1−|w|2)α f (w)| � Cρ(z,w)sup
z∈D

(1−|z|2)α | f (z)|,

for every f ∈ H(D) . Then we obtain the desired inequality. �

REMARK 3. From the proof of Lemma 3.2 of [12], in fact, it follows that for every
f ∈ Bα ,

|(1−|z|2)α f ′(z)− (1−|w|2)α f ′(w)| � Cbr
α( f )ρ(z,w), z,w ∈ Dr, (2)

where Dr = {z ∈ D : |z| � r < 1} and

br
α( f ) = max{sup

z∈Dr

(1−|z|2)α | f ′(z)|, sup
z∈Dr

(1−|z|2)α+1| f ′′(z)|}.

The following criterion for compactness follows from standard arguments similar
to those outlined in Proposition 3.11 of [2]. We omit the details.

LEMMA 4. Let ϕ ,ψ ∈ S(D) and g,h ∈ H(D) . Then Cg
ϕ −Ch

ψ : Bα → Bβ is

compact if and only if Cg
ϕ −Ch

ψ : Bα → Bβ is bounded and for any bounded sequence
( fk)k∈N in Bα which converges to zero uniformly on compact subsets of D, ‖(Cg

ϕ −
Ch

ψ) fk‖Bβ → 0 as k → ∞ .

In order to characterize the boundedness of Cg
ϕ −Ch

ψ : Bα →Bβ , we will use the
following three conditions in this section:

sup
z∈D

∣∣Mϕ
g (z)

∣∣ρ(ϕ(z),ψ(z)) < ∞; (3)

sup
z∈D

∣∣Mψ
h (z)

∣∣ρ(ϕ(z),ψ(z)) < ∞; (4)

sup
z∈D

|Mϕ
g (z)−Mψ

h (z)| < ∞, (5)

where and henceforth

Mϕ
g (z) =

(1−|z|2)β g(z)
(1−|ϕ(z)|2)α , Mψ

h (z) =
(1−|z|2)β h(z)
(1−|ψ(z)|2)α .
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THEOREM 1. Let ϕ ,ψ ∈ S(D) and g,h ∈ H(D) . Then the following statements
are equivalent.

(a) Cg
ϕ −Ch

ψ : Bα → Bβ is bounded.
(b) (3) and (5) hold.
(c) (4) and (5) hold.

Proof. (a) ⇒ (b) . Suppose that Cg
ϕ −Ch

ψ : Bα → Bβ is bounded. Fix a point w
in D such that ϕ(w) 
= 0, let

lw(z) =
1

αϕ(w)
· 1−|ϕ(w)|2
(1−ϕ(w)z)α

, fw(z) =
αlw(z)
α +1

(σϕ(w)(z)+
1

αϕ(w)
), z ∈ D.

It is easy to check that lw(z), fw(z) ∈ Bα . Moreover,

l′w(z) =
1−|ϕ(w)|2

(1−ϕ(w)z)α+1

and

f ′w(z) =
α

α +1

[
l′w(z)σϕ(w)(z)+ l′w(z)

1

αϕ(w)
+ lw(z)σ ′

ϕ(w)(z)
]

=
α

α +1

[
1−|ϕ(w)|2

(1−ϕ(w)z)α+1
· ϕ(w)− z

1−ϕ(w)z
+

1−|ϕ(w)|2
(1−ϕ(w)z)α+1

· 1

αϕ(w)

+
1

αϕ(w)
· 1−|ϕ(w)|2
(1−ϕ(w)z)α

· |ϕ(w)|2 −1

(1−ϕ(w)z)2

]

=
(1−|ϕ(w)|2)[αϕ(w)(ϕ(w)− z)+ (1−ϕ(w)z)+ (|ϕ(w)|2 −1)

]
(α +1)ϕ(w)(1−ϕ(w)z)α+2

=
1−|ϕ(w)|2

(1−ϕ(w)z)α+1
σϕ(w)(z).

Since the operator Cg
ϕ −Ch

ψ : Bα → Bβ is bounded and note (Cg
ϕ −Ch

ψ)l(0) = 0, for
any f ∈ H(D) , by Lemma 2, we have

∞ > ‖(Cg
ϕ −Ch

ψ)lw‖Bβ = sup
z∈D

(1−|z|2)β |l′w(ϕ(z))g(z)− l′w(ψ(z))h(z)|

� (1−|w|2)β |l′w(ϕ(w))g(w)− l′w(ψ(w))h(w)|

=
∣∣Mϕ

g (w)−Mψ
h (w)

(1−|ψ(w)|2)α(1−|ϕ(w)|2)
(1−ϕ(w)ψ(w))α+1

∣∣, (6)

and

∞ > ‖(Cg
ϕ −Ch

ψ) fw‖Bβ

= sup
z∈D

(1−|z|2)β | f ′w(ϕ(z))g(z)− f ′w(ψ(z))h(z)|
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� (1−|w|2)β | f ′w(ϕ(w))g(w)− f ′w(ψ(w))h(w)|

= (1−|w|2)β |h(w)|(1−|ϕ(w)|2)ρ(ϕ(w),ψ(w))
|1−ϕ(w)ψ(w)|α+1

= |Mψ
h (w)

(1−|ψ(w)|2)α (1−|ϕ(w)|2)
(1−ϕ(w)ψ(w))α+1

|ρ(ϕ(w),ψ(w)). (7)

Since the pseudo-hyperbolic metric ρ < 1, multiplying (6) by ρ(ϕ(w),ψ(w)) , from
(7) we obtain ∣∣Mϕ

g (w)
∣∣ρ(ϕ(w),ψ(w)) < ∞ (8)

holds for all w ∈ D with ϕ(w) 
= 0.
If ϕ(w) = 0, using test function kw(z) = (z−ψ(w))2/2, we see that

∞ > ‖(Cg
ϕ −Ch

ψ)kw‖Bβ � (1−|w|2)β |k′w(ϕ(w))g(w)− k′w(ψ(w))h(w)|
= (1−|w|2)β ∣∣g(w)ψ(w)

∣∣. (9)

Therefore, we get that (3) holds.
Using another triple test functions which come from lw(z) , fw(z) and kw(z) by

exchanging ϕ and ψ , we can get that (4) holds.
Next, we prove (5) holds. By (6), we also have

∞ > ‖(Cg
ϕ −Ch

ψ)lw‖Bβ

�
∣∣Mϕ

g (w)−Mψ
h (w)

(1−|ψ(w)|2)α(1−|ϕ(w)|2)
(1−ϕ(w)ψ(w))α+1

∣∣

=
∣∣Mϕ

g (w)−Mψ
h (w)+Mψ

h (w)(1− (1−|ψ(w)|2)α (1−|ϕ(w)|2)
(1−ϕ(w)ψ(w))α+1

)
∣∣

�
∣∣Mϕ

g (w)−Mψ
h (w)

∣∣
−∣∣Mψ

h (w)
∣∣ · ∣∣l′w(ϕ(w))(1−|ϕ(w)|2)α − l′w(ψ(w))(1−|ψ(w)|2)α ∣∣. (10)

From Lemma 2 and (4), we see that∣∣Mψ
h (w)

∣∣ · ∣∣l′w(ϕ(w))(1−|ϕ(w)|2)α − l′w(ψ(w))(1−|ψ(w)|2)α ∣∣
� C‖lw‖Bα |Mψ

h (w)|ρ(ϕ(w),ψ(w)) < ∞,

which with (10) implies |Mϕ
g (w)−Mψ

h (w)| < ∞ holds for all w ∈ D with ϕ(w) 
= 0.
If ϕ(w) = 0 and |ψ(w)| � 1/2, then ρ(ϕ(w),ψ(w)) = |ψ(w)| � 1/2. From (3)

and (4), we can deduce directly that |Mϕ
g (w)−Mψ

h (w)| < ∞ holds for all w ∈ D with
ϕ(w) = 0 and |ψ(w)| � 1/2.

If ϕ(w) = 0 and |ψ(w)| < 1/2. Using test function I(z) = z , we see that

∞ > ‖(Cg
ϕ −Ch

ψ)I‖Bβ � (1−|w|2)β |I′(ϕ(w))g(w)− I′(ψ(w))h(w)|
= (1−|w|2)β ∣∣g(w)−h(w)

∣∣
� |Mϕ

g (w)−Mψ
h (w)|− |Mψ

h (w)|(1− (1−|ψ(w)|2)α ). (11)
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Since

|Mψ
h (w)|(1− (1−|ψ(w)|2)α) � C|Mψ

h (w)ψ(w)| = C|Mψ
h (w)|ρ(ϕ(w),ψ(w)),

from (4) and (11), we obtain |Mϕ
g (w)−Mψ

h (w)|< ∞ holds for all w∈D with ϕ(w) = 0
and |ψ(w)| < 1/2.

Thus we conclude that |Mϕ
g (w)−Mψ

h (w)|< ∞ holds for all w ∈D , which implies
(5) holds.

(b)⇒ (c) . Assume that the conditions (3) and (5) hold. Noticing that ρ(ϕ(z),ψ(z))
< 1, we have

∣∣Mψ
h (z)

∣∣ρ(ϕ(z),ψ(z)) =
(1−|z|2)β |h(z)|
(1−|ψ(z)|2)α ρ(ϕ(z),ψ(z))

� (1−|z|2)β |g(z)|
(1−|ϕ(z)|2)α ρ(ϕ(z),ψ(z))+

∣∣ (1−|z|2)β h(z)
(1−|ψ(z)|2)α − (1−|z|2)β g(z)

(1−|ϕ(z)|2)α

∣∣ρ(ϕ(z),ψ(z))

�
∣∣Mϕ

g (z)
∣∣ρ(ϕ(z),ψ(z))+

∣∣Mψ
h (z)−Mϕ

g (z)
∣∣ρ(ϕ(z),ψ(z)),

which implies (4) holds.
(c) ⇒ (a) . Suppose that (4) and (5) hold. For f ∈ Bα , by Lemmas 2 and 3, we

have

‖(Cg
ϕ −Ch

ψ) f‖Bβ = sup
z∈D

(1−|z|2)β |[(Cg
ϕ −Ch

ψ) f ]′(z)|

= sup
z∈D

(1−|z|2)β | f ′(ϕ(z))g(z)− f ′(ψ(z))h(z)|

� sup
z∈D

|Mϕ
g (z) f ′(ϕ(z))(1−|ϕ(z)|2)α −Mψ

h (z) f ′(ψ(z))(1−|ψ(z)|2)α |

� sup
z∈D

|Mϕ
g (z)−Mψ

h (z)|| f ′(ϕ(z))(1−|ϕ(z)|2)α |

+sup
z∈D

|Mψ
h (z)|| f ′(ϕ(z))(1−|ϕ(z)|2)α − f ′(ψ(z))(1−|ψ(z)|2)α |

� C‖ f‖Bα sup
z∈D

|Mϕ
g (z)−Mψ

h (z)|+C‖ f‖Bα sup
z∈D

|Mψ
h (z)|ρ(ϕ(z),ψ(z)).

Therefore conditions (4) and (5) imply that Cg
ϕ −Ch

ψ : Bα → Bβ is bounded. The
proof is complete. �

From Theorem 1 with h(z) ≡ 0, we obtain the following corollary.

COROLLARY 2. Let ϕ ∈ S(D) and g ∈ H(D) . Then Cg
ϕ : Bα → Bβ is bounded

if and only if

sup
z∈D

(1−|z|2)β |g(z)|
(1−|ϕ(z)|2)α < ∞.

Taking α = β = 1, from Theorem 1, we get the next corollary (see [5]).
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COROLLARY 3. Let ϕ ,ψ ∈ S(D) and g,h∈ H(D) , then the following statements
are equivalent

(a) Cg
ϕ −Ch

ψ : B → B is bounded;

(b) sup
z∈D

∣∣Dϕ
g (z)

∣∣ρ(ϕ(z),ψ(z)) < ∞ and sup
z∈D

|Dϕ
g (z)−Dψ

h (z)| < ∞;

(c) sup
z∈D

∣∣Dψ
h (z)

∣∣ρ(ϕ(z),ψ(z)) < ∞ and sup
z∈D

|Dϕ
g (z)−Dψ

h (z)| < ∞,

where and henceforth

Dϕ
g (z) =

(1−|z|2)g(z)
1−|ϕ(z)|2 , D

ψ
h (z) =

(1−|z|2)h(z)
1−|ψ(z)|2 .

3. The compactness of Cg
ϕ −Ch

ψ

In order to characterize the compactness of Cg
ϕ −Ch

ψ : Bα → Bβ , we will use the
following three conditions in this section:

lim
|ϕ(z)|→1

∣∣Mϕ
g (z)

∣∣ρ(ϕ(z),ψ(z)) = 0; (12)

lim
|ψ(z)|→1

∣∣Mψ
h (z)

∣∣ρ(ϕ(z),ψ(z)) = 0; (13)

lim
|ϕ(z)|→1,|ψ(z)|→1

|Mϕ
g (z)−Mψ

h (z)| = 0. (14)

THEOREM 4. Let ϕ ,ψ ∈ S(D) and g,h∈H(D) such that Cg
ϕ ,Ch

ψ : Bα →Bβ are

bounded. Then Cg
ϕ −Ch

ψ : Bα → Bβ is compact if and only if Cg
ϕ −Ch

ψ : Bα → Bβ is
bounded and conditions (12),(13) and (14) hold.

Proof. First, we prove the sufficiency. Assume Cg
ϕ −Ch

ψ : Bα → Bβ is bounded,
then conditions (3), (4) and (5) hold. If conditions (12), (13) and (14) hold, then for any
ε > 0, there exists r ∈ (0,1) such that∣∣Mϕ

g (z)
∣∣ρ(ϕ(z),ψ(z)) < ε when |ϕ(z)| > r; (15)∣∣Mψ

h (z)
∣∣ρ(ϕ(z),ψ(z)) < ε when |ψ(z)| > r; (16)

|Mϕ
g (z)−Mψ

h (z)| < ε, when |ϕ(z)|, |ψ(z)| > r. (17)

Let ( fk)k∈N be a sequence in Bα such that ‖ fk‖Bα � 1 which converges to zero
uniformly on compact subsets of D . In order to prove Cg

ϕ −Ch
ψ is compact, using

Lemma 4, we need only to show ‖(Cg
ϕ −Ch

ψ) fk‖Bβ → 0.
It is easy to see that

‖(Cg
ϕ −Ch

ψ) fk‖Bα = sup
z∈D

(1−|z|2)β |[(Cg
ϕ −Ch

ψ) fk(z)]′|

= sup
z∈D

(1−|z|2)β | f ′k(ϕ(z))g(z)− f ′k(ψ(z))h(z)|



984 Y. WEIFENG, L. YIPING AND Z. XIANGLING

= sup
z∈D

∣∣Mϕ
g (z) f ′k(ϕ(z))(1−|ϕ(z)|2)α −Mψ

h (z) f ′k(ψ(z))(1−|ψ(z)|2)α ∣∣
�

(
sup

|ϕ(z)|�r,|ψ(z)|�r
+ sup

|ϕ(z)|�r,|ψ(z)|>r
+ sup

|ϕ(z)|>r,|ψ(z)|>r
+ sup

|ϕ(z)|>r,|ψ(z)|�r

)
∣∣Mϕ

g (z) f ′k(ϕ(z))(1−|ϕ(z)|2)α −Mψ
h (z) f ′k(ψ(z))(1−|ψ(z)|2)α ∣∣. (18)

We set

Mϕ
g (z) f ′k(ϕ(z))(1−|ϕ(z)|2)α −Mψ

h (z) f ′k(ψ(z))(1−|ψ(z)|2)α = J(k)
1 + J(k)

2 ,

where

J(k)
1 = (Mϕ

g (z)−Mψ
h (z)) f ′k(ϕ(z))(1−|ϕ(z)|2)α ,

J(k)
2 = Mψ

h (z)
[
f ′k(ϕ(z))(1−|ϕ(z)|2)α − f ′k(ψ(z))(1−|ψ(z)|2)α]

.

To estimate |J(k)
1 + J(k)

2 | , we distinguish four cases as last inequality in (18).

(i) If |ϕ(z)| � r and |ψ(z)| � r , by (5), we have |J(k)
1 | � C| f ′k(ϕ(z))| . From

Remark 3 and (4), we get

|J(k)
2 | � C|Mψ

h (z)|ρ(ϕ(z),ψ(z))br
α ( fk) � Cbr

α( fk).

(ii) If |ϕ(z)| � r and |ψ(z)| > r , with the same argument in case (i), we obtain

|J(k)
1 | � C| f ′k(ϕ(z))| . Applying Lemma 3 and (16), we can get

|J(k)
2 | � C‖ fk‖Bα |Mψ

h (z)|ρ(ϕ(z),ψ(z)) � Cε.

(iii) If |ϕ(z)| > r and |ψ(z)| > r , by Lemma 2 and (17), we have

|J(k)
1 | < C|Mϕ

g (z)−Mψ
h (z)|‖ fk‖Bα < Cε.

With the same argument in case (ii), we get |J(k)
2 | � Cε .

(iv) If |ϕ(z)| > r and |ψ(z)| � r , we reset J(k)
1 + J(k)

2 = −J(k)
3 − J(k)

4 , where

J(k)
3 = (Mψ

h (z)−Mϕ
g (z)) f ′k(ψ(z))(1−|ψ(z)|2)α ,

J(k)
4 = Mϕ

g (z)
[
f ′k(ψ(z))(1−|ψ(z)|2)α − f ′k(ϕ(z))(1−|ϕ(z)|2)α]

.

Using (5) again, we have |J(k)
3 |<C| f ′k(ψ(z))| . Applying Lemma 3 and (15), we obtain

|J(k)
4 | � C‖ fk‖Bα |Mϕ

g (z)|ρ(ϕ(z),ψ(z)) � Cε.

Therefore, from (18), we can get that

‖(Cg
ϕ −Ch

ψ) fk‖Bβ � Cbr
α( fk)+C sup

|ϕ(z)|�r
| f ′k(ϕ(z))|

+Cε +C sup
|ψ(z)|�r

| f ′k(ψ(z))|. (19)
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In view of the fact that {z ∈ D : |z| � r} is compact, and that

br
α( fk) = max{sup

z∈Dr

(1−|z|2)α | f ′k(z)|, sup
z∈Dr

(1−|z|2)α+1| f ′′k (z)|}

< max{sup
z∈Dr

| f ′k(z)|, sup
z∈Dr

| f ′′k (z)|},

then (19) implies that ‖(Cg
ϕ −Ch

ψ) fk‖Bβ → 0 as k → ∞ . So we obtain that Cg
ϕ −Ch

ψ is
compact by Lemma 4.

Next we assume that Cg
ϕ −Ch

ψ : Bα →Bβ is compact. Then Cg
ϕ −Ch

ψ : Bα →Bβ

is bounded. Let {zk} be a sequence of points in D such that |ϕ(zk)| → 1 as k → ∞ .
Define

lk(z) =
1

αϕ(zk)
· 1−|ϕ(zk)|2
(1−ϕ(zk)z)α

, fk(z) =
αlk(z)
α +1

(σϕ(zk)(z)+
1

αϕ(zk)
), z ∈ D.

In view of ρ < 1, from (6) and (7), we can see that

‖(Cg
ϕ −Ch

ψ)lk‖Bβ �
∣∣∣∣Mϕ

g (zk)ρ(ϕ(zk),ψ(zk))

−Mψ
h (zk)ρ(ϕ(zk),ψ(zk))

(1−|ψ(zk)|2)α(1−|ϕ(zk)|2)
(1−ϕ(zk)ψ(zk))α+1

∣∣∣∣, (20)

‖(Cg
ϕ −Ch

ψ) fk‖Bβ �
∣∣∣∣Mψ

h (zk)ρ(ϕ(zk),ψ(zk))
(1−|ψ(zk)|2)α(1−|ϕ(zk)|2)

(1−ϕ(zk)ψ(zk))α+1

∣∣∣∣.
(21)

Since Cg
ϕ −Ch

ψ is compact, by Lemma 4, we have ‖(Cg
ϕ −Ch

ψ)lk‖Bβ → 0 and ‖(Cg
ϕ −

Ch
ψ) fk‖Bβ → 0 as k → ∞ . From (20) and (21), we conclude that (12) holds. Changing

test functions lk(z) and fk(z) by exchanging ϕ and ψ , we can prove that (13) holds.
From (10) in Section 3, we have

‖(Cg
ϕ −Ch

ψ)lk‖Bβ �
∣∣Mϕ

g (zk)−Mψ
h (zk)

∣∣
−∣∣Mψ

h (zk)
[
l′k(ϕ(zk))(1−|ϕ(zk)|2)α − l′k(ψ(zk))(1−|ψ(zk)|2)α]∣∣,

and that

∣∣Mψ
h (zk)

[
l′k(ϕ(zk))(1−|ϕ(zk)|2)α − l′k(ψ(zk))(1−|ψ(zk)|2)α]∣∣

� C‖lk‖Bα |Mψ
h (zk)|ρ(ϕ(zk),ψ(zk)) → 0

as |ψ(zk)|→ 1 from Lemma 2 and (13), we get |Mϕ
g (zk)−Mψ

h (zk)
∣∣→ 0 as |ϕ(zk)| → 1

and |ψ(zk)| → 1, which implies (14) holds. The whole proof is complete. �

From Theorem 4 with h(z) ≡ 0, we obtain the following corollary.
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COROLLARY 5. Let ϕ ∈ S(D) and g ∈ H(D) . Then Cg
ϕ : Bα → Bβ is compact

if and only if Cg
ϕ : Bα → Bβ is bounded and

lim
|ϕ(z)|→1

(1−|z|2)β |g(z)|
(1−|ϕ(z)|2)α = 0.

Taking α = β = 1, from Theorem 4, we get the next corollary.

COROLLARY 6. Let ϕ ,ψ ∈ S(D) and g,h ∈ H(D) such that Cg
ϕ ,Ch

ψ : B → B

are bounded. Then Cg
ϕ −Ch

ψ : B → B is compact if and only if Cg
ϕ −Ch

ψ : B → B is
bounded and the following three conditions hold

lim
|ϕ(z)|→1

∣∣Dϕ
g (z)

∣∣ρ(ϕ(z),ψ(z)) = 0;

lim
|ψ(z)|→1

∣∣Dψ
h (z)

∣∣ρ(ϕ(z),ψ(z)) = 0;

lim
|ϕ(z)|→1,|ψ(z)|→1

|Dϕ
g (z)−D

ψ
h (z)| = 0.
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