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INEQUALITIES FOR THE p–CROSS–SECTION BODIES

WEIDONG WANG AND YANPING ZHOU

(Communicated by I. Perić)

Abstract. Gardner and Giannopoulos defined the p -cross-section body CpK ( p > −1) of con-
vex body K . In this paper, some inequalities for the volumes of CpK are shown. Further, the
Shephard type problem and a monotony inequality of CpK are obtained.

1. Introduction

Let K n denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space E

n , for the set of convex bodies containing the origin in
their interiors in E

n by K n
o . Write S n

o for the set of star bodies (about the origin)
in E

n . For the n -dimensional volume and the n− 1-dimensional volume of body K ,
denote by V (K) and Vn−1(K) , respectively. Let Sn−1 denote the unit sphere in E

n , as
for the standard unit ball B in E

n , denote V (B) = ωn .
In mid 1990s, Lutwak ([10, 11]) showed that the Firey sum ([2]) of convex bod-

ies led to the Brunn-Minkowski theory for each p � 1, and established an embryonic
Lp -Brunn-Minkowski theory. This theory has expanded rapidly (see [4, 5, 7–9, 12–18,
22–28]). Similar to the Firey sum of convex bodies, Uhrin in [21] introduced general
convex combination of two sets. Associated with this general combination, he estab-
lished lp -form of the Brunn-Minkowski-Lusternik inequality.

In 1999, Gardner and Giannopoulos in [4] showed the notion of p -cross-section
body as follows:

For K ∈ K n , the p -cross-section body CpK of K is defined for nonzero p > −1
by

ρCpK(u) =
(

1
V (K)

∫
K
Vn−1(K∩ (u⊥ + x))pdx

) 1
p

, (1.1)

for each u ∈ Sn−1 ; They also defined that for each u ∈ Sn−1 ,

ρC0K(u) = exp

(
1

V (K)

∫
K

logVn−1(K∩ (u⊥ + x))dx

)
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and
ρC∞K(u) = max

x∈K
Vn−1(K ∩ (u⊥ + x)).

Recall that the classical cross-section body CK of K ∈ K n is defined by (see [3])

ρCK(u) = max
x∈K

Vn−1(K ∩ (u⊥ + x)),

for each u ∈ Sn−1 .
Compare to above definitions of CK and C∞K , obviously,

C∞K = CK. (1.2)

For the classical cross-section body, Busemann’s theorem shows that if K is cen-
trally symmetric with center x , then CK is convex. Meyer (see [19]) proved that CK
is convex when n = 3, but Brehm in [1] showed that when n � 4, CK is not convex
when K is a simplex.

From the definition of p -cross-section body, Gardner and Giannopoulos in [4]
pointed that ρCpK is continuous for K ∈ K n . Further, they (see [4]) showed that C1K
is convex, and CpK is convex when n = 2 and p > 0 or n = 3 and p = ∞ .

The reports of p -cross-section bodies are few since this notion was introduced.
In this paper, we continuously research the p -cross-section bodies by Lp -dual mixed
volume. Our works belong to the Lp -Brunn-Minkowski theory. First, we establish
inequalities for the volumes of CpK and intersection body IK as follows:

THEOREM 1.1. If K ∈K n , p>−1 , then exists x0 ∈K such that for −1< p � n,

V (CpK) � V (I(K− x0)), (1.3)

for p � n,
V (CpK) � V (I(K− x0)). (1.4)

In every inequality with equality if and only if p = n or p �= n and CpK = I(K− x0) .

As the application of (1.3), we obtain the following inequality for the volume of
p -cross-section body CpK .

THEOREM 1.2. If K ∈ K n
o , −1 < p � n, then

V (CpK) �
ωn

n−1

ωn−2
n

V (K)n−1, (1.5)

with equality if and only if K is an ellipsoid.

Further, we give the Shephard type problem for the p -cross-section bodies as fol-
lows:

THEOREM 1.3. For K,L ∈K n , nonzero p >−1 , if CpK ⊆CpL, then there exist
x0 ∈ K and y0 ∈ L such that

V (I(K− x0)) � V (I(L− y0)), (1.6)

with equality if and only if p = n and CpK = CpL or p �= n and CpK = CpL and
I(K− x0) = I(L− y0) .

From Theorem 1.3, let p → ∞ and together with (1.2), we easily get that
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COROLLARY 1.1. If K,L ∈ K n , and CK ⊆ CL, then there exist x0 ∈ K and
y0 ∈ L such that

V (I(K− x0)) � V (I(L− y0)),

with equality if and only if CK = CL and I(K− x0) = I(L− y0) .

Finally, a monotony inequality for the p -cross-section bodies is obtained:

THEOREM 1.4. For K,L ∈ K n , p > 0 , if K ⊆ L, then

V (K)
n
pV (CpK) � V (L)

n
pV (CpL), (1.7)

with equality if and only if K = L.

Let p → ∞ in Theorem 1.4 and use (1.2), we also can get that

COROLLARY 1.2. For K,L ∈ K n , if K ⊆ L, then

V (CK) � V (CL),

with equality if and only if K = L.

2. Preliminaries

2.1. Radial function

If K is a compact star-shaped (about the origin) in E
n , its radial function, ρK =

ρ(K, ·) , is defined by (see [3, 20])

ρ(K,u) = max{λ � 0 : λu ∈ K}, (2.1)

for all u ∈ Sn−1 . If ρK is positive and continuous, K will be called a star body (about
the origin). Let S n

o denote the set of star bodies (about the origin) in E
n . Two star

bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent
of u ∈ Sn−1 .

If K is a compact star-shaped with respect to x ∈ E
n , its radial function ρK(x, ·)

respect to x is defined, for all u ∈ Sn−1 such that the line through x parallel to u
intersects K , by (see [5])

ρK(x,u) = max{λ � 0 : x+ λu∈ K}. (2.2)

From (2.1) and (2.2), we easily know

ρK(x,u) = ρK−x(u), (2.3)

for u ∈ Sn−1 . We call that ρK(x, ·) is the extended radial function of K with respect to
x . If x is the origin o , then ρK(x,u) = ρK(u) for all u ∈ Sn−1 .
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2.2. Intersection body

For K ∈ S n
o , the intersection body IK of K is a centered body whose radial

function is defined by (see [3])

ρIK(u) = Vn−1(K∩u⊥) =
1

n−1

∫
Sn−1 ⋂

u⊥
ρK(v)n−1dv, (2.4)

for all u ∈ Sn−1 .
From definition (2.4), because of ρK is continuous, so ρIK is also continuous, i.e.,

IK ∈ S n
o . Intersection body IK of K is not generally convex even K is a convex body.

The fact is that if K ∈ K n , then there is a translate L ∈ K n
o of K , such that IL is not

convex. But if K is a centered convex body, then IK is also a centered convex body
(see [3]).

For the intersection bodies, the Busemann intersection inequality can be stated as
follows (see [3]): If K ∈ K n

o , then

V (IK) �
ωn

n−1

ωn−2
n

V (K)n−1, (2.5)

with equality if and only if K is a centered ellipsoid.

2.3. Lp -dual mixed volume

The notion of Lp -dual mixed volume was introduced by Grinberg and Zhang (see
[6]). For K,L ∈ S n

o and any real p , the Lp -dual mixed volume, Ṽp(K,L) , of K and L
is defined by

Ṽp(K,L) =
1
n

∫
Sn−1

ρ(K,u)n−pρ(L,u)pdu. (2.6)

From (2.6), we easily know that

Ṽp(K,K) =
1
n

∫
Sn−1

ρ(K,u)ndu = V (K), (2.7)

The Minkowski’s inequality of Lp -dual mixed volume is that (see [6])
If K,L ∈ S n

o , p is any real, then for 0 � p � n,

Ṽp(K,L) � V (K)
n−p

n V (L)
p
n ; (2.8)

for p < 0 or p � n,

Ṽp(K,L) � V (K)
n−p

n V (L)
p
n . (2.9)

In every case, equality holds if and only if p = n or p �= n and K is a dilatate of L.
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3. Proofs of the Theorems

LEMMA 3.1. If K,L ∈ K n , p > −1 , then for any Q ∈ S n
o ,

Ṽp(Q,CpK) =
1

V (K)

∫
K
Ṽp(Q, I(K− x))dx. (3.1)

Proof. From (2.3) and (1.1), then for p > −1 (see [4]),

ρ(CpK,u) =
(

1
V (K)

∫
K
Vn−1((K− x)∩u⊥)pdx

) 1
p

,

=
(

1
V (K)

∫
K

ρI(K−x)(u)pdx

) 1
p

, (3.2)

Using (2.6) and (3.2), then for any Q ∈ S n
o and p > −1, we have that

Ṽp(Q,CpK) =
1
n

∫
Sn−1

ρQ(u)n−pρCpK(u)pdu

=
1

nV (K)

∫
Sn−1

∫
K

ρQ(u)n−pρI(K−x)(u)pdxdu

=
1

V (K)

∫
K
[
1
n

∫
Sn−1

ρQ(u)n−pρI(K−x)(u)pdu]dx

=
1

V (K)

∫
K
Ṽp(Q, I(K− x))dx. �

Proof of Theorem 1.1. Form (3.1) and together with the integral mean value theo-
rem, then exists xo ∈ K such that

Ṽp(Q,CpK) =
1

V (K)
Ṽp(Q, I(K− xo))

∫
K

dx = Ṽp(Q, I(K− xo)). (3.3)

Let Q = CpK in (3.3) and use (2.7), we have that

V (CpK) = Ṽp(CpK, I(K− xo)). (3.4)

Hence for 0 � p � n , from (3.4) and (2.8), we get that

V (CpK) � V (CpK)
n−p

n V (I(K− xo))
p
n ,

i.e.,
V (CpK)

p
n � V (I(K− xo))

p
n ,

this yields inequality (1.3).
For −1 < p < 0 or p � n , associated with (3.4) and inequality (2.9), then

V (CpK) � V (CpK)
n−p

n V (I(K− xo))
p
n ,
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i.e.,
V (CpK)

p
n � V (I(K− xo))

p
n .

Thus for −1 < p < 0,
V (CpK) � V (I(K− xo));

for p � n ,
V (CpK) � V (I(K− xo)).

From this, inequalities (1.3) and (1.4) are obtained, respectively.
According to the conditions of equality hold in inequalities (2.8) and (2.9), we see

that equality hold in (1.3) and (1.4) if and only if p = n or p �= n and CpK is a dilatate
of I(K − xo) . But CpK is a dilatate of I(K − xo) and V (CpK) = V (I(K − xo)) imply
CpK = I(K− xo) . Hence, equality hold in (1.3) and (1.4) if and only if p = n or p �= n
and CpK = I(K− xo) . �

Proof of Theorem 1.2. From (1.3), (2.5) and notice that V (K − x0) = V (K) , we
have that

V (CpK) � V (I(K− xo))

�
ωn

n−1

ωn−2
n

V (K− x0)n−1

=
ωn

n−1

ωn−2
n

V (K)n−1.

Combining with the cases of equality hold in (2.5) and (1.3), we see that equality
holds in (1.5) if and only if p = n and K − x0 is a centered ellipsoid or p �= n and
K− x0 is a centered ellipsoid and CpK = I(K− xo) .

Since if K− x0 is a centered ellipsoid E then (see [3])

I(K− x0) =
ωn−1

ωn
V (E)E∗ = CpK,

thus K − x0 is a centered ellipsoid with x0 ∈ K implies CpK = I(K − xo) , this mean
K is an ellipsoid with o ∈ intK . To sum up, we know that equality hold in (1.5) if and
only if K is an ellipsoid with o ∈ intK , i.e., K is an ellipsoid and K ∈ K n

o . �

Proof of Theorem 1.3. Since CpK ⊆CpL , by (2.6) then for p > 0 and any Q ∈
S n

o , we have that
Ṽp(Q,CpK) � Ṽp(Q,CpL). (3.5)

with equality if and only if CpK = CpL . Using (3.3), there exist x0 ∈ K and y0 ∈ L
such that

Ṽp(Q, I(K− x0)) � Ṽp(Q, I(L− y0)). (3.6)

For 0 < p � n , let Q = I(K− x0) in (3.6) where x0 ∈ K , this together with (2.7)
and (2.8), then

V (I(K− x0)) � Ṽp(I(K− x0), I(L− y0))

� V (I(K− x0))
n−p

n V (I(L− y0))
p
n .
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Hence,
V (I(K− x0))

p
n � V (I(L− y0))

p
n .

This gives inequality (1.6).
For p � n , taking Q = I(L− y0) in (3.6) where y0 ∈ L , and using (2.7) and in-

equality (2.9), we have that

V (I(L− y0)) � Ṽp(I(L− y0), I(K− x0))

� V (I(L− y0))
n−p

n V (I(K− x0))
p
n .

This also yields inequality (1.6).
For −1 < p < 0, from CpK ⊆ CpL and (2.6), we know that inequality (3.5) is

reverse. Using (3.3), there exist x0 ∈ K and y0 ∈ L such that

Ṽp(Q, I(K− x0)) � Ṽp(Q, I(L− y0)). (3.7)

Let Q = I(K− x0) in (3.7) where x0 ∈ K , and according to (2.9), we have that

V (I(K− x0))
p
n � V (I(L− y0))

p
n .

Since −1 < p < 0, thus

V (I(K− x0)) � V (I(L− y0)).

This is just inequality (1.6).
From the conditions of equality hold in inequalities (3.5) and (2.8) (or (2.9)), we

know that with equality in (1.6) if and only if p = n and CpK = CpL or p �= n and
CpK = CpL and I(K− x0) = I(L− y0) . �

Proof of Theorem 1.4. Since K ⊆ L , then K− x⊆ L− x where x ∈ K . According
to the definition (2.4) of intersection body, we have that

ρI(K−x)(u) =Vn−1((K− x)∩u⊥) � Vn−1((L− x)∩u⊥) = ρI(L−x)(u),

for all u ∈ Sn−1 . Thus I(K − x) ⊆ I(L− x) with x ∈ K . This together with (2.6), we
know that for p > 0,

Ṽp(Q, I(K− x)) � Ṽp(Q, I(L− x)),

hence ∫
K
Ṽp(Q, I(K− x))dx �

∫
K
Ṽp(Q, I(L− x))dx �

∫
L
Ṽp(Q, I(L− x))dx,

using (3.1), then
Ṽp(Q,CpK)V (K) � Ṽp(Q,CpL)V (L). (3.8)

For 0 < p � n , let Q = CpK in (3.8) and together (2.7) with (2.8), we get that

V (K)V (CpK) � V (L)Ṽp(CpK,CpL) � V (L)V (CpK)
n−p

n V (CpL)
p
n ,
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this yields the result (1.7).
For p > n , let Q = CpK in (3.8) and together with (2.7) and (2.9), we obtain that

V (L)V (CpL) � V (K)Ṽp(CpL,CpK) � V (K)V (CpL)
n−p

n V (CpK)
p
n ,

this gives the desired result.
Obviously, from the equality condition of Theorem 1.4, we see that equality holds

in inequality (1.7) if and only if K = L . �
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