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THE SHARP INEQUALITIES RELATED TO WILKER TYPE

ZHEN-HANG YANG

(Communicated by I. Peric)

Abstract. 'Wu and Srivastava have shown that for # € (0,7/2) the inequalities

1 1
(\/cosz‘it+8+cosqt> e - sint - (\/coszl’t+8+cosf’t> /v
4 t 4

holdif ¢ <0 and p > 1. In this paper we find the largest ¢ =3/5 and the smallest p = 2(1#—21112)
such that these inequalities hold. Moreover, our results also imply a type of new inequalities for
trigonometric functions and give an anwser for a problem posed by Zhu.

1. Introduction and main results

Wilker [12] proposed two open problems, the first of which states that if 7 €

(0,7/2) then
sint\?  tant
<T) + T > 2, (1.1)

which was proved by Sumner et al. in [11].

Wilker inequality (1.1) and the second one have attracted great interest of many
mathematicians and have produced a batch of Wilker type ones by various generalizing
and improving as well as different methods and ideas (see [1], [2], [3], [7], [9], [&],
[151, [16], [13], [14], [18], [19], [20], [21], [22] and related references therein).

‘We now focus on the Wu and Srivastava’s results. In 2007, they proved a weighted
and exponential generalization of Wilker inequality in [13, Theorem 1]. As an applica-
tion, they obtained that for 0 < ¢ < 7/2 the inequality

sinz\? 4cosPt
D — (1.2)
t 1++/1+8cos?’t

holds true if p > 0 or p < —1 [13, Theorem 2], which was used to solve an open
problem posed by Sdndor and Bencze in [10]. Additionally, by replacing p with —p
they derived that the inequality

<sint)p _ Vcos2Pt + 8+ cosP ¢t

(1.3)
t 4
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holds for € (0,7/2) if p > 1 [13, Corollary 4].
In fact, the right hand side of (1.2) can be written as

4
cos Pt ++/cos 2Pt +8

and inequality (1.2) is equivalent to

(sint) P _ cos Pt ++/cosPt+8

1 4

Hence, Wu and Srivastava have shown actually that the inequality (1.3) holds true for
t€(0,m/2) if p <0 or p > 1. In other words, the inequality

- 1 (1.4)

1
sint - (\/coszl’t +8+ cos”t) v
holds for 7 € (0,7/2) if p <0 and its reverse holds if p > 1
The purpose of this paper is to determine the smallest (or largest) p such that
inequality (1.4) (or its reverse) holds for ¢ € (0, 7/2). Our main results are the following
two theorems.

THEOREM 1. The inequality (1.4) holds for t € (0,7/2) if and only if p < 3/5.
Moreover, the double inequality

5/3 5/3

cos®/57 + 8+ cos?/ ¢ P gine o1/ cos8/5¢ 48+ cos®/ 1 /

<—x< (1.5)
4 t T 4

with the best possible constant 2“/6/71: ~ 1.1343.

THEOREM 2. The reverse inequality of (1.4) holds for t € (0,7/2) if and only if
PZpo= m ~ 0.76746. Moreover, we have

! 1
3 (\/M—I—cospot) " _sine <m+cospo,> "

4 B 4

—1/po
\/ cos2P0 sP0 . . .
<08 tl+8+c°q dl sinty ~ 0.98213 is the best possible con-

where o = fl

stant, here t| ~ 1.4427 is the unique root of the equation

(sinzcost)v/cos?Por+ 8
Vcos2P0t + 8cos2t + cosPo ¢ sin®

—t=0

n (0,7/2).
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2. Lemmas

In order to prove Theorems 1 and 2, we need the following lemmas.

LEMMA 1. Let H be the function defined on (—eo,o0) X (0,0) by

(\/a2P+8+ap>l/p
4

H(p,a) = ifp#0and H(0,a) =a'>. 2.1)

Then H is increasing with respect to p on (—eo,0).

Proof. Differentiation yields

2 1 0H pa? Va?P +8+aP
S S VI T L i ey S
PHOp ~ Var 13 4
8paPIn’a
Hp)=———373.
<\/a2p+8>

hence, h(p) > h(0) =0, then dH/dp > 0, which is the desired result. [J

LEMMA 2. Let G, be the function defined on (0,7 /2) by

G, (1) = InH (p,cost) — 1n%t 2.2)

\/cos2P t+8+cosP t int -
Llnu_ln¥,fp#o,

lncost — In S22 ““’ ifp=0.
Then
- Gp(r) _
Jm = 135 (5p=3), 23)
1 T

—5-In24+In7% if p >0,
lim G,(t)={ 2 (2.4)

t—m/2 —o0 zfp <0

Proof. Expanding in power series yields

Gy (1) = 321 (59— 3)+ 0(°),

which implies (2.3).
The first limit relation (2.4) is evident if p > 0. To obtain the second one, it suffices
to note that H (p,cos?) can be written as

— 1/p
H (p,cost) = <7VI+SCTZUH> cost if p < 0 and H (0,cost) = (cost)'/?,

which proves the lemma. [



1018 ZHEN-HANG YANG

3. Proof of Theorem 1

Proof of Theorem 1.
Necessity. If (1.4) holds for r € (0,7/2), then by Lemma 2 we have

. Gpy(1) 1
1 Pl — _—(5p—3)<0.
Jim =7 =135 0P —3)
Solving the inequality for p yields p < 3/5.
Sufficiency. Due to Lemma 1, it suffices to prove G, (t) < 0 forall r € (0,7/2) if
p=3/5.
Differentiation leads to

G (1) = 1 (cos?t) Vcos?Pt + 8+ cosP t sin’t
PR (costsint)vcos?Pt + 8

(cos?t) Vcos2Pt + 8+ cosP t sin* 0 a.1)
= 1 ) .
t (costsint)Vcos?’t + 8 8

where

0 (sintcost) Vcos?Pt + 8
g1 = - -
Vcos2Pt + 8cos?t + cosP 1 sin’ ¢

Differentiating g; (1) gives

(3.2)

) 2
—sin®t x g5 (cos’t
g1(1) = ( )2 : (3.3)
(\/ cos2P 1 + 8cos? + cosPt sin? t) Vecos?Pt + 8

where

g (x) =xP/? (2xP T+ xP 4+ 8(p+2)x+8(1—p)) — (Bx+ 24T —xP) VP + 8,
(3.4)
here x = cos*t € (0,1).
Clearly, if we can prove g (x) > 0 for x € (0,1), then g, (cos®t) > 0 for ¢ €
(0,7/2), and then g; is decreasing on (0,7/2). It follows that g;(r) < O, then
G’3/5 (t) < 0, which leads us to G35 (1) < G3/5(0%) = 0, thus the sufficiency will be

complete. For this end, we have to deal with g, (x). We define

€21 (x) = 22" + X+ 8(p+2)x+8(1 - p), (3.5)
g (x) = 8+2x" —x""\. (3.6)

Then g5 (x) can be written as
g2 (x) = xP/% g2y (x) — xV/xP + 8¢ (x). (3.7

Since
ghy (x) =2px’ '+ (1-p)x’ 2 >0
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if pe€(0,1) and g2 (0") = —oo, g22(17) =9 > 0, there is a xo; € (0,1) such that
g22(x) <0 for x € (0,x01) and g2 (x) > 0 for x € (xp1,1).

We now distinguish two cases to prove that g, (x) > 0 for x € (0,1).

Case I: x € (0,x01). In this case, we see that gy, (x) < 0, which together with

821 (x) > g2 (0+) =8(l—p)>0

if pe(0,1) yields g2 (x) > 0 for x € (0,x01).
Case 2: x € (xo1,1). In this case, since gz1 (x),g22 (x) > 0, we have sgngs (x) =
sgngs (x), where g3 is defined on (xo1, 1) by the formula

xP2g51 (x) +xV/xP + 8g2 (x)

8xP

g2 (x), (3.8)

g3 (x) =
here g»1, g2 are defined by (3.5), (3.6), respectively. Simplifying yields

&) =8(p—1+16(—p*>—p+3)x (3.9)
+8 (p* +4p— 1) +4pxP T2 +2(7— p) !
+x2P T —64x> P — (2p — 1)xP.

When p =3/5, we have
25g3 (x) = 816x+ 352x% — 5x*/5 — 1600x"/3 4 320x%/> + 25x!1/5 - 60x13/5 4 32.
With x — x° and factoring yield

2505 <x5> — 60x'% +25x ! 352410 4 3206% — 1600x7 + 816x° — 5.3 432

= (x—1)*(60x" 4 120x'" +-205x” 4 642x% 4+ 10797 4 1836x°
+993x° + 150x* + 123x° + 96x% 4 64x +32) > 0.

Case 1 and 2 indicate that g5 (x) > 0 for x € (0,1) and the sufficiency follows.
Using the monotonicity of G35, we get

T _
lnm :G3/5 (7'[/2 ) <G3/5(l) <G3/5 (O+) =0,

which implies (1.5) and the proof of Theorem 1 is finished. [

4. Proof of Theorem 2

Proof of Theorem 2.
Necessity. If the reverse inequality of (1.4) holds for all 7 € (0,7/2), then by
Lemma 2 we have

1
lim G, (1) = —51n2+lng >0if p>0,

t—m/2~
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which yields p > po = %

Sufficiency. We prove the condition p > pg = % is also sufficient. In view
of Lemma 1 it is enough to show that the reverse inequality of (1.4) holds if p = pg.
We shall prove now that there exits a xqy in (0,1) such that g5 (x) > 0 for x € (0,x¢2)
and g; (x) < 0 for x € (xg2,1) if p € (3/4,4/5). For this end, we need to prove the
following lemmas. [

LEMMA 3. For p € (3/4,4/5), let g3 be defined on (0,1) by (3.9). Then there is
a x3 € (0,1) such that g5' (x) <0 for x € (0,x3) and g5 (x) >0 for x € (x3,1).

Proof. Differentiation yields

gi(x) =16(—p*—p+3)+16 (p*+4p—1)x (4.1)
+4p(p+2)xPT 4 2(p+1)(7—p)xP
+2p+ D) —642—p)x' P —p2p—1)xL,

g5 (x) =16(p*+4p—1)+4p(p+2)(p+ )" +2p(p+1)(7—p)x"!
+2p2p+ )X —64(1—p)(2—p)x P+ p(1—p)(2p—1)x" 2,

P (x) = —p(2p—1)(1=p)(2—p)—2p(1—p)(p+1)(7—p)x
+4p? (p+1)(p+2)x* +64p (1 — p) (2— p)x*
2p2p—1)2p+ l)xp+1

D =84 (x)7

gh(x) = =2p(1=p)(p+1)(7—p)+8p* (p+1)(p+2)x
+128p(1—p)* (2—p)x' 2P +2p(2p—1)(p+1)(2p+ 1)x".
For x € (0,1) and pg € (3/4,4/5), since both the second and fourth terms of g/, (x) are

positive and the last member of the third term is greater than 1 due to 1 —2p < 0, we
easily get

gh(x) > =2p(1—p)(p+1)(7T—p)+128p(p—1)*(2—p)
= 130p(1-p) (55— p) (5 —p) >0,

which implies that g4 is increasing on (0, 1). Note that

sgngy (07) = sgn(—p(2p—1)(p—1)(p—2)) <0
g4 (17) =3p(35p* —63p+38) >0,

it is seen that there is a unique x3 € (0,1) such that g4 (x) <0, then g5’ (x) <0 for

x € (0,x3) and g4 (x) > 0, then g5’ (x) > 0 for x € (x3,1). This indicates that g5’ is

decreasing on (0,x3) and increasing on (x3,1). O
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REMARK 1. For p € (3/4,4/5), let g3 be defied on (0,1) by (3.9). It is easy
to check that the equation g4 (x) = 0 has three roots on (0,1) at least. To this end, it
suffices to verify that

g (0+) <0, g (678) >0, g (efz) <0, g (17) > 0.
In fact, from (4.1) it is derived that

sgngs (07) = sgn(—p(2p—1)) <0,
g (17) =27(5p—3)>0.

‘We now show g’3 (e‘g) > 0. Clearly, g’3 (x) consists of seven terms. For convenience,
we denote in sequential order these terms by ug and u; (x), i = 1,2,3,4,5,6. Then for
p € (3/4,4/5), we have

—16(-p?—p+3) > 16(— ()7~ +3) =,

uo
ui (e ®) >0, i=1,2,34,
us (678) = —64(2—p)etP > 64 (2- (%)) S8 — _80e 8/,
Uug (678) = —p2p—1)edBro> (‘5—‘) (2(%) - 1)6878(3/4) = —%62.

6
gi(e®) =uo+ Y ui(e®) > & —80e 78/ — zie ~5.2615> 0.
i=1

At last, we show that g5 (e72) < 0. It is obtained that

uy = 16 (—p*— p+3) <16<
-2 1

ui (e 16 (p*+4p—1)e 2 <

e -2

)

(¢™)

( ):(2p+1 41’<(2(‘5‘ +1
uz (e7?) = p+2 2<4(%

(¢™)

(¢™)

2) o—20/49-2 _ %6—7/2

-2

wle 1) (7- () 2004 = P
us(e7?) = —64(2— p) 21’ 2< —6 (2—(%))62(3/4)72 —%671/2,
66 = ~pCp- D& <~ (3) (2(3) - 1) = 3

and therefore,

g’3 (efz) = up+ i U; (efz)

i=1

<27+ %672 + 2673 + %677/2 + E673/2 — ﬁflp - §e2/5

5 25 2 5 8
~ —8.5709 < 0.
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LEMMA 4. For p € (3/4,4/5), let g3 be defined on (0,1) by (3.9). Then g3 (x) >
0 for x € (O,e‘g).

Proof. From (3.9) we see that g3 (x) is a sum of eight terms and denote in se-
quential order them by vy and v; (x), i =1,2,3,4,5,6,7, respectively. Obviously, we
have

2
vo=8(p—17>8(1-%)" =%
vi(x) > 0, i=2,3,4,5,6,
vy (x) = —64e8P710 > 64849710 = _640748/5,

vg(x) = —(2p—1)e 3 > — (2 (g) - l) e 86/ — —%6767

and so

7
g3(x) =v+ Zui(x) >vo+v7+vg
i=1
> & 6475 — 26762031418 > 0,
which proves the lemma. [

LEMMA 5. For p € (3/4,4/5), let g3 be defined on (0,1) by (3.9). Then there is
a xpz € (0,1) so that g3 (x) > 0 for x € (0,x02) and g3 (x) <0 for x € (xp,1).

Proof. Lemma 3 tell us there is a x3 € (0,1) such that g§’' (x) < 0 for x € (0,x3)
and g4’ (x) > 0 for x € (x3,1), which implies that g5 (x) is decreasing on (0,x3) and
increasing on (x3,1).

By Remark 1, g% (x) has three zero on (0, 1) at least. Consequently, we claim that

g4 (x3) < 0. If not, that is, g5 (x3) > 0, which in combination with

sgngs (07) = sgn(p(1—p)(2p—1)) >0,
g8 (17) = —17p*+279p — 144> 0

leads to g4 (x) > 0 for x € (0,1), that is, g4 is increasing on (0,1). This together with
the facts

sgngs (07) =sgn(—p(2p—1)) <0,
g5(17) =27(5p—3)>0

implies that the equation g5 (x) = 0 has a unique solution on (0, 1), which yields a
contradiction.

Thus, there are two numbers x»; € (0,x3) and x; € (x3,1) such that g5 (x) >0
for x € (0,x21) U (x22,1) and g5 (x) < O for x € (x21,x22), which shows that g4 (x)
is increasing on (0,x21) U (x22,1) and decreasing on (x21,x27). Also, application of
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Remark 1 again yields that g5 (x2;) > 0 and g5 (x22) < 0. Because if g5(x22) >0,
then g4 (x) > g5 (x22) > 0 for x € (x21,%22) U (x22, 1), which together with g5 (07) <0
yields that the equation g5 (x) = 0 has a unique root on (0,1) which is in (0,x2;).
It is clearly impossible. Likewise, if g5 (x21) <0, then g5 (x) < g5 (x21) <0 for x €
(0,2x21) U (x21,x22) , which in conjunction with g5 (17) > 0 leads to that the equation
g4 (x) = 0 also has a unique solution on (0,1) which is in (x,1). Clearly, it is in
contradiction with Remark 1.

Hence, the equation g4 (x) = 0 has three solutions which are x;; € (0,x21), x12 €
(le,xzz) and x3 € ()C22, 1) such that g’3 (x) <0forxe (O,xu)U(xlg,xn) and g’3 (x) >
0 for x € (xu,xlz) U ()C13, 1) .

Clearly, g3(07) =8(p—1)> >0, g3(x13) < g3(17) = 0. On the other hand, it
is easy to see that xy; € (0,¢™%) by virtue of Remark 1, and application of Lemma 4
leads to g3 (x11) > 0. Then g3 (x12) > g3 (x11) > 0. Thus the equation g3 (x) =0 has
a unique solution xg in (x12,x13) such that gz (x) > 0 for x € (0,x02) and g3 (x) <0
for x € ()C()z, 1) .

This completes the proof of this lemma. [

LEMMA 6. For p € (3/4,4/5), let g» be defined on (0,1) by (3.4). Then there is
a xo € (0,1) such that g (x) > 0 for x € (0,x0) and g, (x) <0 for x € (xp,1).

Proof. As mentioned by the Case 1 of proof of Theorem 1, if p € (0,1) then there
is a xo; € (0,1) such that g2 (x) <0 for x € (0,x01) and g2 (x) > 0 for x € (xo1, 1),
and g; (x) > 0 for x € (0,xp1). We take xo = max (xo1,%02) and consider two cases:
Xo1 = Xo2 and xg; < X02.-

Case 1: xo1 = xo2. Then xp = xo;. When x € (0,x9;) we have shown that
g2 (x) > 0. While x € (xp1,1) C (x02,1), since g21 (x),g22 (x) >0, we have sgng, (x) =
sgng3 (x) due to (3.7). Application of Lemma 5 yields g2 (x) < 0.

Case 2: xo1 < xop. Then xog = xp3. If x € (0,x01) then go(x) > 0. If x €
(xo01,%02) C (0,x02), then it is obtained by Lemma 5 that g5 (x) > 0. While x € (xo,1),
Lemma 5 gives g2 (x) <O0.

This completes the proof. [

Now we continue proving Theorem 2.

Continuation of the proof of Theorem 2. For p € (3/4,4/5), applying Lemma 6
and noting that x = cos?#, we see that there is a unique #, = arccos /%o € (0,7/2) such
that g, (cos®) > 0 for ¢ € (19, 7/2) and g, (cos?t) < 0 for ¢ € (0,7), which implies
that g} (1) <0 for 7 € (t,m/2) and g} (r) > 0 for ¢ € (0,79). Thus it can be seen that
g1(t) > g1(07) =0 for r € (0,79) and g (¢) decreases from g; (tp) to g; (w/27) =
—m/2 <0 with 7 increases from 7y to 7/2, which means that the equation g; () =0
has a unique solution #; on (0,7/2) which is in (fo,7/2) such that g, (¢) > 0 for
t € (0,11) and g (1) <O for t € (#1,7/2). By the relation between g; (t) and G, ()
given by (3.1), this yields that G, is increasing on (0,7;) and decreasing on (r1,7/2).
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When p = pg = % €(3/4,4/5), Gy, (m/27) =0, we conclude that

InT—In2

0=G,(0") <Gp,(t) <Gy, (1) ift € (0,11),
0=G,(m/27) <Gy, (t) < Gp, (11) if 1 € (11,7/2),
thatis, 0 < Gp, (1) < Gp, (1) if t € (0,7/2).
Solving the equation g; (1) = 0 by mathematical computation software we find that

1 € (1.4427,1.4428), and exp (—G, (1)) ~ 0.98213, which proves the sufficiency
and the proof of Theorem 2 is completed. [J

5. Remarks

REMARK 2. The following sharp inequality is contained in [21, Theorem 1] (see

also [17]):
sint (2 1 s\
— -+ = .1
p > <3 + 3.cos t) 5.1

for € (0,7/2). However, our sharp lower bound for (sinz) /¢ given by (1.5), denote
by Y, is superior to the Zhu’s, denote by Z. For proving Y > Z, we set cos!/St =x,
then x € (0, 1). Thus it suffices to show that for x € (0, 1)

4
D)1= Y15 (1) = 2126 () = (@) (5) 0

4 2
Rearranging yield
32D (x) =x° <x6—|—4> Vx0+8—1(x),
where

[(x) =3x"2 4 12x% - 8x0 4 124* — 4.
Differentiation leads to
U (x) =12 (3x* +8x* +4 (1 -x%)) >0,

which together with (3/4) < 0 and I (1) > 0 yields that there is a unique zo € (3/4,1)
such that / (x) < 0 for x € (0,z0) and /(x) > 0 for x € (zp,1).

In the case of x € (0,zp), it is clear that D (x) > 0.

In the case of x € (zp, 1), we define

u(x) : =32D(x) x (x3 (x6—|—4> \/x6+8—|—l(x)>
:=8(1—x2)v(x),
where

v(x) = w(x)+ 10x* — 2% — 2,
w(x) = x22 + 2704 10x"8 + 2x10 4 20x!% + 5x12 4 36x10 1243 + 18x°.
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Since z9 > 3/4,s0 w(x) > w(3/4) =7.1887 > 7, then
v(x) =w(x)+10x* — 26> =2 > 10x* — 2% +5 > 0.
Thus it can be seen that D (x) > 0 for x € (0,1), thatis, ¥ (x) > Z(x).

It is easy to verify that

((sint)p Vecos?Pt + 8 +c0s1’t>< smt \/coszl’t+8—cosl’t>
1
2’

t 4

sint\ 1 (cos”1) sint
=|— — —(cos — ) -
t 2 t
and therefore our main results can be restated as a equivalent assertion.

PROPOSITION 1. Fort € (0,7/2) the inequality

sint\ 2?1 sin2¢\”
(7) >§<< " ) +1> 5.2)

holds if and only if 0 < p < 3/5. While its reverse is valid if and only if p > py =

In2
Anr-tma) 07 P <0.

REMARK 3. The inequality 5.2 seems to be a new type of inequality for trigono-
metric functions.

We easily check that the identity

(sint)zp Vcos2Pt + 8+ cos’ t ((L)Zp—f—( ! )p—2>

t 4 sint tant
_ <VC052PI+8+COSPI <sint>p> ( Vcos2Pt 4+ 8+ cos’t (smt) )
o 4 S\ 2 t

is true, and so our Theorems 1 and 2 are in fact equivalent to the following assertion:

PROPOSITION 2. Fort € (0,7/2) the inequality

r \2pr r \P
(f> + () 22
sint tant

holds true if and only if p > m or p < 0. Its reverse holds if and only if

0<p<3/s.

REMARK 4. Clearly, the proposition gives an answer for a problem posed by Zhu
in [20].
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