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Abstract. Wu and Srivastava have shown that for t ∈ (0,π/2) the inequalities(√
cos2q t +8+ cosq t

4

)1/q

<
sin t
t

<

(√
cos2p t +8+ cosp t

4

)1/p

hold if q< 0 and p � 1 . In this paper we find the largest q= 3/5 and the smallest p = ln2
2(lnπ−ln2)

such that these inequalities hold. Moreover, our results also imply a type of new inequalities for
trigonometric functions and give an anwser for a problem posed by Zhu.

1. Introduction and main results

Wilker [12] proposed two open problems, the first of which states that if t ∈
(0,π/2) then (

sin t
t

)2

+
tant
t

> 2, (1.1)

which was proved by Sumner et al. in [11].
Wilker inequality (1.1) and the second one have attracted great interest of many

mathematicians and have produced a batch of Wilker type ones by various generalizing
and improving as well as different methods and ideas (see [1], [2], [3], [7], [9], [8],
[15], [16], [13], [14], [18], [19], [20], [21], [22] and related references therein).

We now focus on the Wu and Srivastava’s results. In 2007, they proved a weighted
and exponential generalization of Wilker inequality in [13, Theorem 1]. As an applica-
tion, they obtained that for 0 < t < π/2 the inequality(

sin t
t

)p

>
4cosp t

1+
√

1+8cos2p t
(1.2)

holds true if p > 0 or p � −1 [13, Theorem 2], which was used to solve an open
problem posed by Sándor and Bencze in [10]. Additionally, by replacing p with −p
they derived that the inequality(

sin t
t

)p

<

√
cos2p t +8+ cosp t

4
(1.3)
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holds for t ∈ (0,π/2) if p � 1 [13, Corollary 4].
In fact, the right hand side of (1.2) can be written as

4

cos−p t +
√

cos−2p t +8

and inequality (1.2) is equivalent to

(
sin t
t

)−p

<
cos−p t +

√
cos−p t +8

4
.

Hence, Wu and Srivastava have shown actually that the inequality (1.3) holds true for
t ∈ (0,π/2) if p < 0 or p � 1. In other words, the inequality

sin t
t

>

(√
cos2p t +8+ cosp t

4

)1/p

(1.4)

holds for t ∈ (0,π/2) if p < 0 and its reverse holds if p � 1.
The purpose of this paper is to determine the smallest (or largest) p such that

inequality (1.4) (or its reverse) holds for t ∈ (0,π/2). Our main results are the following
two theorems.

THEOREM 1. The inequality (1.4) holds for t ∈ (0,π/2) if and only if p � 3/5 .
Moreover, the double inequality

(√
cos6/5 t +8+ cos3/5 t

4

)5/3

<
sin t
t

<
211/6

π

(√
cos6/5 t +8+ cos3/5 t

4

)5/3

(1.5)

with the best possible constant 211/6/π ≈ 1.1343 .

THEOREM 2. The reverse inequality of (1.4) holds for t ∈ (0,π/2) if and only if
p � p0 = ln2

2(lnπ−ln2) ≈ 0.76746 . Moreover, we have

α

(√
cos2p0 t +8+ cosp0 t

4

)1/p0

<
sin t
t

<

(√
cos2p0 t +8+ cosp0 t

4

)1/p0

, (1.6)

where α = t−1
1

(√
cos2p0 t1+8+cosp0 t1

4

)−1/p0

sin t1 ≈ 0.98213 is the best possible con-

stant, here t1 ≈ 1.4427 is the unique root of the equation

(sin t cost)
√

cos2p0 t +8√
cos2p0 t +8cos2 t + cosp0 t sin2 t

− t = 0

on (0,π/2) .
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2. Lemmas

In order to prove Theorems 1 and 2, we need the following lemmas.

LEMMA 1. Let H be the function defined on (−∞,∞)× (0,∞) by

H (p,a) =

(√
a2p +8+ap

4

)1/p

if p �= 0 and H (0,a) = a1/3. (2.1)

Then H is increasing with respect to p on (−∞,∞) .

Proof. Differentiation yields

p2 1
H

∂H
∂ p

=
pap

√
a2p +8

lna− ln

√
a2p +8+ap

4
:= h(p) ,

h′ (p) =
8pap ln2 a(√

a2p +8
)3 ,

hence, h(p) � h(0) = 0, then ∂H/∂ p > 0, which is the desired result. �

LEMMA 2. Let Gp be the function defined on (0,π/2) by

Gp (t) = lnH (p,cost)− ln
sin t
t

(2.2)

=

⎧⎨
⎩

1
p ln

√
cos2p t+8+cosp t

4 − ln sin t
t if p �= 0,

1
3 lncost− ln sin t

t if p = 0.
.

Then

lim
t→0+

Gp (t)
t4

=
1

135
(5p−3), (2.3)

lim
t→π/2−

Gp (t) =

{− 1
2p ln2+ ln π

2 if p > 0,

−∞ if p � 0.
(2.4)

Proof. Expanding in power series yields

Gp (t) =
1

135
t4 (5p−3)+O(t6),

which implies (2.3).
The first limit relation (2.4) is evident if p > 0. To obtain the second one, it suffices

to note that H (p,cost) can be written as

H (p,cost) =
(√

1+8cos−2p t+1
4

)1/p

cost if p < 0 and H (0,cost) = (cost)1/3 ,

which proves the lemma. �
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3. Proof of Theorem 1

Proof of Theorem 1.
Necessity. If (1.4) holds for t ∈ (0,π/2) , then by Lemma 2 we have

lim
t→0+

Gp (t)
t4

=
1

135
(5p−3) � 0.

Solving the inequality for p yields p � 3/5.
Sufficiency. Due to Lemma 1, it suffices to prove Gp (t) < 0 for all t ∈ (0,π/2) if

p = 3/5.
Differentiation leads to

G′
p (t) =

1
t
−
(
cos2 t

)√
cos2p t +8+ cosp t sin2 t

(cost sin t)
√

cos2p t +8

=

(
cos2 t

)√
cos2p t +8+ cosp t sin2 t

t (cost sin t)
√

cos2p t +8
g1 (t) , (3.1)

where

g1 (t) =
(sin t cost)

√
cos2p t +8√

cos2p t +8cos2 t + cosp t sin2 t
− t. (3.2)

Differentiating g1 (t) gives

g′1 (t) =
−sin2 t×g2

(
cos2 t

)
(√

cos2p t +8cos2 t + cosp t sin2 t
)2√

cos2p t +8
, (3.3)

where

g2 (x) = xp/2 (2xp+1 + xp +8(p+2)x+8(1− p)
)− (8x+2xp+1− xp)√xp +8,

(3.4)
here x = cos2 t ∈ (0,1) .

Clearly, if we can prove g2 (x) > 0 for x ∈ (0,1) , then g2
(
cos2 t

)
> 0 for t ∈

(0,π/2) , and then g1 is decreasing on (0,π/2). It follows that g1 (t) < 0, then
G′

3/5 (t) < 0, which leads us to G3/5 (t) < G3/5 (0+) = 0, thus the sufficiency will be
complete. For this end, we have to deal with g2 (x) . We define

g21 (x) = 2xp+1 + xp +8(p+2)x+8(1− p) , (3.5)

g22 (x) = 8+2xp− xp−1. (3.6)

Then g2 (x) can be written as

g2 (x) = xp/2g21 (x)− x
√

xp +8g22 (x) . (3.7)

Since
g′22 (x) = 2pxp−1 +(1− p)xp−2 > 0
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if p ∈ (0,1) and g22 (0+) = −∞ , g22 (1−) = 9 > 0, there is a x01 ∈ (0,1) such that
g22 (x) < 0 for x ∈ (0,x01) and g22 (x) > 0 for x ∈ (x01,1) .

We now distinguish two cases to prove that g2 (x) > 0 for x ∈ (0,1) .
Case 1: x ∈ (0,x01) . In this case, we see that g22 (x) < 0, which together with

g21 (x) > g21
(
0+)= 8(1− p) > 0

if p ∈ (0,1) yields g2 (x) > 0 for x ∈ (0,x01) .
Case 2: x ∈ (x01,1) . In this case, since g21 (x) ,g22 (x) > 0, we have sgng2 (x) =

sgng3 (x) , where g3 is defined on (x01,1) by the formula

g3 (x) =
xp/2g21 (x)+ x

√
xp +8g22 (x)

8xp g2 (x) , (3.8)

here g21 , g22 are defined by (3.5), (3.6), respectively. Simplifying yields

g3 (x) = 8(p−1)2 +16
(−p2− p+3

)
x (3.9)

+8
(
p2 +4p−1

)
x2 +4pxp+2 +2(7− p)xp+1

+x2p+1−64x2−p− (2p−1)xp.

When p = 3/5, we have

25g3 (x) = 816x+352x2−5x3/5−1600x7/5 +320x8/5 +25x11/5 +60x13/5 +32.

With x → x5 and factoring yield

25g3

(
x5
)

= 60x13 +25x11 +352x10 +320x8−1600x7 +816x5−5x3 +32

= (x−1)2 (60x11 +120x10 +205x9 +642x8 +1079x7 +1836x6

+993x5 +150x4 +123x3 +96x2 +64x+32)> 0.

Case 1 and 2 indicate that g2 (x) > 0 for x ∈ (0,1) and the sufficiency follows.
Using the monotonicity of G3/5 , we get

ln
π

211/6
= G3/5

(
π/2−

)
< G3/5 (t) < G3/5

(
0+)= 0,

which implies (1.5) and the proof of Theorem 1 is finished. �

4. Proof of Theorem 2

Proof of Theorem 2.
Necessity. If the reverse inequality of (1.4) holds for all t ∈ (0,π/2) , then by

Lemma 2 we have

lim
t→π/2−

Gp (t) = − 1
2p

ln2+ ln
π
2

� 0 if p > 0,
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which yields p � p0 = ln2
2(lnπ−ln2) .

Sufficiency. We prove the condition p � p0 = ln2
2(lnπ−ln2) is also sufficient. In view

of Lemma 1 it is enough to show that the reverse inequality of (1.4) holds if p = p0 .
We shall prove now that there exits a x02 in (0,1) such that g2 (x) > 0 for x ∈ (0,x02)
and g2 (x) < 0 for x ∈ (x02,1) if p ∈ (3/4,4/5). For this end, we need to prove the
following lemmas. �

LEMMA 3. For p ∈ (3/4,4/5), let g3 be defined on (0,1) by (3.9). Then there is
a x3 ∈ (0,1) such that g′′′3 (x) < 0 for x ∈ (0,x3) and g′′′3 (x) > 0 for x ∈ (x3,1) .

Proof. Differentiation yields

g′3 (x) = 16
(−p2− p+3

)
+16

(
p2 +4p−1

)
x (4.1)

+4p(p+2)xp+1 +2(p+1)(7− p)xp

+(2p+1)x2p−64(2− p)x1−p− p(2p−1)xp−1,

g′′3 (x) = 16
(
p2 +4p−1

)
+4p(p+2)(p+1)xp +2p(p+1)(7− p)xp−1

+2p(2p+1)x2p−1−64(1− p)(2− p)x−p + p(1− p)(2p−1)xp−2,

x3−pg′′′3 (x) = −p(2p−1)(1− p)(2− p)−2p(1− p)(p+1)(7− p)x
+4p2 (p+1)(p+2)x2 +64p(1− p)(2− p)x2−2p

+2p(2p−1)(2p+1)xp+1

: = g4 (x) ,

g′4 (x) = −2p(1− p)(p+1)(7− p)+8p2 (p+1)(p+2)x

+128p(1− p)2 (2− p)x1−2p +2p(2p−1)(p+1)(2p+1)xp.

For x ∈ (0,1) and p0 ∈ (3/4,4/5), since both the second and fourth terms of g′4 (x) are
positive and the last member of the third term is greater than 1 due to 1−2p < 0, we
easily get

g′4 (x) > −2p(1− p)(p+1)(7− p)+128p(p−1)2 (2− p)
= 130p(1− p)

( 11
13 − p

)( 11
5 − p

)
> 0,

which implies that g4 is increasing on (0,1) . Note that

sgng4
(
0+) = sgn(−p(2p−1)(p−1)(p−2)) < 0

g4
(
1−
)

= 3p
(
35p2−63p+38

)
> 0,

it is seen that there is a unique x3 ∈ (0,1) such that g4 (x) < 0, then g′′′3 (x) < 0 for
x ∈ (0,x3) and g4 (x) > 0, then g′′′3 (x) > 0 for x ∈ (x3,1) . This indicates that g′′′3 is
decreasing on (0,x3) and increasing on (x3,1) . �



THE SHARP INEQUALITIES RELATED TO WILKER TYPE 1021

REMARK 1. For p ∈ (3/4,4/5), let g3 be defied on (0,1) by (3.9). It is easy
to check that the equation g′3 (x) = 0 has three roots on (0,1) at least. To this end, it
suffices to verify that

g′3
(
0+)< 0, g′3

(
e−8)> 0, g′3

(
e−2)< 0, g′3

(
1−
)

> 0.

In fact, from (4.1) it is derived that

sgng′3
(
0+) = sgn(−p(2p−1)) < 0,

g′3
(
1−
)

= 27(5p−3) > 0.

We now show g′3
(
e−8
)

> 0. Clearly, g′3 (x) consists of seven terms. For convenience,
we denote in sequential order these terms by u0 and ui (x) , i = 1,2,3,4,5,6. Then for
p ∈ (3/4,4/5), we have

u0 = 16
(−p2− p+3

)
> 16

(
−( 4

5

)2− 4
5 +3

)
= 624

25 ,

ui
(
e−8) > 0, i = 1,2,3,4,

u5
(
e−8) = −64(2− p)e8p−8 > −64

(
2− (3

4

))
e8(4/5)−8 = −80e−8/5,

u6
(
e−8) = −p(2p−1)e8−8p0 > −(4

5

)(
2
(

4
5

)−1
)
e8−8(3/4) = − 12

25e2.

Hence,

g′3
(
e−8)= u0 +

6

∑
i=1

ui
(
e−8)> 624

25 −80e−8/5− 12
25

e2 ≈ 5.2615 > 0.

At last, we show that g′3
(
e−2
)

< 0. It is obtained that

u0 = 16
(−p2− p+3

)
< 16

(
−(3

4

)2 − (3
4

)
+3
)

= 27,

u1
(
e−2) = 16

(
p2 +4p−1

)
e−2 < 16

(( 4
5

)2 +4
(4

5

)−1
)

e−2 = 1136
25 e−2,

u2
(
e−2) = (2p+1)e−4p <

(
2
(

4
5

)
+1
)
e−4(3/4) = 13

5 e−3,

u3
(
e−2) = 4p(p+2)e−2p−2 < 4

(
4
5

)((
4
5

)
+2
)
e−2(3/4)−2 = 224

25 e−7/2,

u4
(
e−2) = 2(p+1)(7− p)e−2p < 2

(( 4
5

)
+1
)(

7− (3
4

))
e−2(3/4) = 45

2 e−3/2,

u5
(
e−2) = −64(2− p)e2p−2 < −64

(
2− (4

5

))
e2(3/4)−2 = − 384

5 e−1/2,

u6
(
e−2) = −p(2p−1)e2−2p < −( 3

4

)(
2
(3

4

)−1
)
e2−2(4/5) = − 3

8e2/5,

and therefore,

g′3
(
e−2) = u0 +

6

∑
i=1

ui
(
e−2)

< 27+ 1136
25 e−2 +

13
5

e−3 +
224
25

e−7/2 +
45
2

e−3/2− 384
5

e−1/2− 3
8
e2/5

≈ −8.5709 < 0.



1022 ZHEN-HANG YANG

LEMMA 4. For p∈ (3/4,4/5), let g3 be defined on (0,1) by (3.9). Then g3 (x) >
0 for x ∈ (0,e−8

)
.

Proof. From (3.9) we see that g3 (x) is a sum of eight terms and denote in se-
quential order them by v0 and vi (x) , i = 1,2,3,4,5,6,7, respectively. Obviously, we
have

v0 = 8(p−1)2 > 8
(
1− 4

5

)2 = 8
25

vi (x) > 0, i = 2,3,4,5,6,

v7 (x) = −64e8p−16 > −64e8(4/5)−16 = −64e−48/5,

v8 (x) = −(2p−1)e−8p > −
(

2

(
4
5

)
−1

)
e−8(3/4) = − 3

5e−6,

and so

g3 (x) = v0 +
7

∑
i=1

ui (x) > v0 + v7 + v8

> 8
25 −64e−48/5− 3

5e−6 ≈ 0.31418 > 0,

which proves the lemma. �

LEMMA 5. For p ∈ (3/4,4/5), let g3 be defined on (0,1) by (3.9). Then there is
a x02 ∈ (0,1) so that g3 (x) > 0 for x ∈ (0,x02) and g3 (x) < 0 for x ∈ (x02,1) .

Proof. Lemma 3 tell us there is a x3 ∈ (0,1) such that g′′′3 (x) < 0 for x ∈ (0,x3)
and g′′′3 (x) > 0 for x ∈ (x3,1) , which implies that g′′3 (x) is decreasing on (0,x3) and
increasing on (x3,1) .

By Remark 1, g′3 (x) has three zero on (0,1) at least. Consequently, we claim that
g′′3 (x3) < 0. If not, that is, g′′3 (x3) � 0, which in combination with

sgng′′3
(
0+) = sgn(p(1− p)(2p−1)) > 0,

g′′3
(
1−
)

= −17p2 +279p−144> 0

leads to g′′3 (x) > 0 for x ∈ (0,1) , that is, g′3 is increasing on (0,1) . This together with
the facts

sgng′3
(
0+) = sgn(−p(2p−1)) < 0,

g′3
(
1−
)

= 27(5p−3) > 0

implies that the equation g′3 (x) = 0 has a unique solution on (0,1) , which yields a
contradiction.

Thus, there are two numbers x21 ∈ (0,x3) and x22 ∈ (x3,1) such that g′′3 (x) > 0
for x ∈ (0,x21)∪ (x22,1) and g′′3 (x) < 0 for x ∈ (x21,x22) , which shows that g′3 (x)
is increasing on (0,x21)∪ (x22,1) and decreasing on (x21,x22) . Also, application of
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Remark 1 again yields that g′3 (x21) > 0 and g′3 (x22) < 0. Because if g′3 (x22) > 0,
then g′3 (x) > g′3 (x22) > 0 for x ∈ (x21,x22)∪ (x22,1) , which together with g′3 (0+) < 0
yields that the equation g′3 (x) = 0 has a unique root on (0,1) which is in (0,x21) .
It is clearly impossible. Likewise, if g′3 (x21) < 0, then g′3 (x) < g′3 (x21) < 0 for x ∈
(0,x21)∪ (x21,x22) , which in conjunction with g′3 (1−) > 0 leads to that the equation
g′3 (x) = 0 also has a unique solution on (0,1) which is in (x22,1) . Clearly, it is in
contradiction with Remark 1.

Hence, the equation g′3 (x) = 0 has three solutions which are x11 ∈ (0,x21) , x12 ∈
(x21,x22) and x13 ∈ (x22,1) such that g′3 (x) < 0 for x∈ (0,x11)∪(x12,x13) and g′3 (x) >
0 for x ∈ (x11,x12)∪ (x13,1) .

Clearly, g3 (0+) = 8(p−1)2 > 0, g3 (x13) < g3 (1−) = 0. On the other hand, it
is easy to see that x11 ∈

(
0,e−8

)
by virtue of Remark 1, and application of Lemma 4

leads to g3 (x11) > 0. Then g3 (x12) > g3 (x11) > 0. Thus the equation g3 (x) = 0 has
a unique solution x02 in (x12,x13) such that g3 (x) > 0 for x ∈ (0,x02) and g3 (x) < 0
for x ∈ (x02,1) .

This completes the proof of this lemma. �

LEMMA 6. For p ∈ (3/4,4/5), let g2 be defined on (0,1) by (3.4). Then there is
a x0 ∈ (0,1) such that g2 (x) > 0 for x ∈ (0,x0) and g2 (x) < 0 for x ∈ (x0,1) .

Proof. As mentioned by the Case 1 of proof of Theorem 1, if p ∈ (0,1) then there
is a x01 ∈ (0,1) such that g22 (x) < 0 for x ∈ (0,x01) and g22 (x) > 0 for x ∈ (x01,1) ,
and g2 (x) > 0 for x ∈ (0,x01) . We take x0 = max(x01,x02) and consider two cases:
x01 � x02 and x01 < x02 .

Case 1: x01 � x02 . Then x0 = x01 . When x ∈ (0,x01) we have shown that
g2 (x) > 0. While x∈ (x01,1)⊂ (x02,1) , since g21 (x) ,g22 (x) > 0, we have sgng2 (x) =
sgng3 (x) due to (3.7). Application of Lemma 5 yields g2 (x) < 0.

Case 2: x01 < x02 . Then x0 = x02 . If x ∈ (0,x01) then g2 (x) > 0. If x ∈
(x01,x02)⊂ (0,x02) , then it is obtained by Lemma 5 that g2 (x) > 0. While x∈ (x02,1) ,
Lemma 5 gives g2 (x) < 0.

This completes the proof. �

Now we continue proving Theorem 2.

Continuation of the proof of Theorem 2. For p ∈ (3/4,4/5), applying Lemma 6
and noting that x = cos2 t , we see that there is a unique t0 = arccos

√
x0 ∈ (0,π/2) such

that g2
(
cos2 t

)
> 0 for t ∈ (t0,π/2) and g2

(
cos2 t

)
< 0 for t ∈ (0,t0) , which implies

that g′1 (t) < 0 for t ∈ (t0,π/2) and g′1 (t) > 0 for t ∈ (0,t0) . Thus it can be seen that
g1 (t) > g1 (0−) = 0 for t ∈ (0,t0) and g1 (t) decreases from g1 (t0) to g1 (π/2−) =
−π/2 < 0 with t increases from t0 to π/2− , which means that the equation g1 (t) = 0
has a unique solution t1 on (0,π/2) which is in (t0,π/2) such that g1 (t) > 0 for
t ∈ (0, t1) and g1 (t) < 0 for t ∈ (t1,π/2) . By the relation between g1 (t) and G′

p (t)
given by (3.1), this yields that Gp is increasing on (0,t1) and decreasing on (t1,π/2) .
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When p = p0 = ln2
2(lnπ−ln2) ∈ (3/4,4/5), Gp0 (π/2−) = 0, we conclude that

0 = Gp
(
0+)< Gp0 (t) < Gp0 (t1) if t ∈ (0, t1) ,

0 = Gp
(
π/2−

)
< Gp0 (t) < Gp0 (t1) if t ∈ (t1,π/2) ,

that is, 0 < Gp0 (t) < Gp0 (t1) if t ∈ (0,π/2) .
Solving the equation g1 (t)= 0 by mathematical computation software we find that

t1 ∈ (1.4427,1.4428), and exp
(−Gp0 (t1)

) ≈ 0.98213, which proves the sufficiency
and the proof of Theorem 2 is completed. �

5. Remarks

REMARK 2. The following sharp inequality is contained in [21, Theorem 1] (see
also [17]):

sin t
t

>

(
2
3

+
1
3

cos4/5 t

)5/4

(5.1)

for t ∈ (0,π/2). However, our sharp lower bound for (sin t)/t given by (1.5), denote
by Y , is superior to the Zhu’s, denote by Z . For proving Y > Z , we set cos1/5 t = x ,
then x ∈ (0,1) . Thus it suffices to show that for x ∈ (0,1)

D(x) := Y 12/5 (x)−Z12/5 (x) =

(√
x6 +8+ x3

4

)4

−
(

1+x4

2

)3
> 0.

Rearranging yield

32D(x) = x3
(
x6 +4

)√
x6 +8− l (x) ,

where
l (x) = 3x12 +12x8−8x6 +12x4−4.

Differentiation leads to

l′ (x) = 12x3 (3x8 +8x4 +4
(
1− x2))> 0,

which together with l (3/4) < 0 and l (1) > 0 yields that there is a unique z0 ∈ (3/4,1)
such that l (x) < 0 for x ∈ (0,z0) and l (x) > 0 for x ∈ (z0,1) .

In the case of x ∈ (0,z0) , it is clear that D(x) > 0.
In the case of x ∈ (z0,1) , we define

u(x) : = 32D(x)×
(
x3
(
x6 +4

)√
x6 +8+ l (x)

)
: = 8

(
1− x2)v(x) ,

where

v(x) = w(x)+10x4−2x2−2,

w(x) = x22 + x20 +10x18 +2x16 +29x14 +5x12 +36x10 +12x8 +18x6.
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Since z0 > 3/4, so w(x) > w(3/4) = 7.1887 > 7, then

v(x) = w(x)+10x4−2x2−2 > 10x4−2x2 +5 > 0.

Thus it can be seen that D(x) > 0 for x ∈ (0,1) , that is, Y (x) > Z (x) .

It is easy to verify that((
sin t
t

)p

−
√

cos2p t +8+ cosp t
4

)((
sin t
t

)p

+

√
cos2p t +8− cosp t

4

)

=
(

sin t
t

)2p

− 1
2

(cosp t)
(

sin t
t

)p

− 1
2
,

and therefore our main results can be restated as a equivalent assertion.

PROPOSITION 1. For t ∈ (0,π/2) the inequality

(
sin t
t

)2p

>
1
2

((
sin2t
2t

)p

+1

)
(5.2)

holds if and only if 0 < p � 3/5 . While its reverse is valid if and only if p � p0 =
ln2

2(lnπ−ln2) or p < 0 .

REMARK 3. The inequality 5.2 seems to be a new type of inequality for trigono-
metric functions.

We easily check that the identity

(
sin t
t

)2p √cos2p t +8+ cosp t
4

(( t
sin t

)2p
+
( t

tant

)p
−2

)

=

(√
cos2p t +8+ cosp t

4
−
(

sin t
t

)p
)(

1+

√
cos2p t +8+ cosp t

2

(
sin t
t

)p
)

is true, and so our Theorems 1 and 2 are in fact equivalent to the following assertion:

PROPOSITION 2. For t ∈ (0,π/2) the inequality

( t
sin t

)2p
+
( t

tant

)p
> 2

holds true if and only if p � p0 = ln2
2(lnπ−ln2) or p < 0 . Its reverse holds if and only if

0 < p � 3/5 .

REMARK 4. Clearly, the proposition gives an answer for a problem posed by Zhu
in [20].
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