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THE TRIANGLE INEQUALITY FOR GRADED
REAL VECTOR SPACES OF LENGTH 3 AND 4
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(Communicated by J. Marshall Ash)

Abstract. In [3] the classical theorem of Minkowski on lattice points and convex bodies in R”
was generalized to simply connected nilpotent Lie groups with a grading of length 2. In doing so
it was necessary to prove the triangle inequality for a certain natural homogeneous norm (with
respect to automorphisms) of the Lie algebra associated with the grading (the case of a grading
of length 1 being the Schwarz inequality). Here we shall extend the homogeneous norms for
which the triangle inequality holds to gradings of length 3 and 4. The results hold for any graded
real vector space of those lengths.

In [3] the classical theorem of Minkowski on lattice points and convex bodies in
R" was extended to simply connected nilpotent Lie groups with a Q-structure whose
Lie algebra g admits a grading of length 2 (and in particular to 2 step nilpotent groups).
In doing so it was necessary to prove the triangle inequality for a certain natural homo-
geneous norm (with respect to automorphisms) of the Lie algebra associated with the
grading (the case of a grading of length 1 being the Schwarz inequality). Here we shall
extend the homogeneous norms for which the triangle inequality holds to gradings of
length 3 and 4. As the reader will see at the end of this note, further extension by this
method fails when r is 5 and by general principles must break down at some point. The
author does not know if the triangle inequality holds for r =5.

A Lie algebra g is said to admit a grading (see [1]) if there is a finite family of
subspaces Vi,...,V, with g =V, @& ... &V, satisfying [V;,V;] C Vi, forall i,j. If g is
a graded Lie algebra, define for 7 € R*,

(V.o Vp) = (tvl,tzvz...,t’v,).

An easy check shows ¢ is a Lie algebra automorphism of g. Because of these auto-
morphisms the theorem of [2] implies that if a Lie algebra, g, admits a grading it must
be nilpotent.

As in [3] a homogeneous norm on a graded Lie algebra g is a function, || - ||: g —
R, satisfying the following conditions.

I. ||-]|>0 andis O only at 0.
2. [|X ||=|| —X || forall X € g.
Mathematics subject classification (2010): 17B70, 22E25, 26D15.
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1028 M. MOSKOWITZ
3. log(X) [|=1e] | X ||, forall € R and X € g.
4. | X4+Y|I<||X||+||Y | forall X and ¥ € g.

A graded Lie algebra, g, always possesses a natural candidate for homogeneous
norm, where || - ||; is the Euclidean norm on each V;. (Henceforth we shall suppress
the subscript). For X = (vq,...,v,) let

2 2r—2 2\ L
IX (= vl + T2 [+ v )7

However, the subadditivity 4) and homogeneity 3) properties may not be valid. For
example, the reader can check that homogeneity is only valid when r < 2.

Our result here is the following: Its proof will proceed by successive reduction to
simpler and simpler inequalities.

THEOREM 1. || X+Y ||[<||X || + || Y || whenever r < 4.

Proof. Let X = (vi,...,v,) and Y = (wy,...,w,). Then

IX P =l v P v P

and

1Y 1P =[Fw 12w |2
That is,

X P =l 2+ 11X )2 (0)
where X' = (v,,...,v,) and similarly for ¥ and Y’.

Our objective is to prove
i 4w 27 v [P X+ Y1 (1)
By the Schwarz inequality it is sufficient (and necessary) to show
(v 1w D2 e [ lwe 1D < X+ 1Y ) 2

Now we will argue by induction (the initial case being proved for » =2 in [3]) and
assume

2r-2 2 2r-2
vz [+ Fwz D74+ Uve T+ e D <AXTHTYD50 B
Hence it’s sufficient to prove
2 2r-2 2
(Uve =+ Fwe D7+ WX T+ 1Y DT =< AX T+ 1Y D™ )

We first show (4) is correct when either X’ or Y’ = 0. For suppose Y’ = 0. Then
we have to verify

v+ Twe D2+ LX< X+ w D (5)
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The right side of (5)is >|| X [|2" 42 || X ||"|| w1 ||” + || w1 ||*". Using (0), expanding
(|| vi ||+ | w1 [|)*" in a similar manner and cancelling appropriate terms, the verification
reduces to || X ||=|| vy || Similarly (5) is true if X’ =0.

Returning to (4) we may now assume both X’ and Y’ # 0. Expand the terms being
raised to 2r power on both the left and right and take vo =...v, =0=wy =...w, in
the expansion on the right side. This yields each term of (|| vi || + || wy ) being
dominated by the corresponding term of (|| X || 4 || Y ||)*". Taking account of this for
all but the middle term gives

(2r)!
r12

, . — 2n)!
o e I+ 1+ 0 2 < 8

(XY . ©)

But || X [[2=]| vy I+ [| X" 12 and || ¥ []2=[ wy >+ [ Y [1P2.

Hence
(2r)! 2r—2
2 o I 1710+ ¥
2r)!
<L im0

Now square both sides of (7)

(2r)1\2 _
(S5 ) I Il 2 X+ 1y

r12
(27’)' r r r—
+2 = v M | (X" 1+ [y (>
2r)1\2 _ _
< (C (o 0 P 1P ®

Multiplying out the right side of (8) and cancelling yields

r— (21")' r r r—
(PRSP AN 4+2r7 Fva 7w 7 (EX A+ Y )2

(Zr)! 2 r r— r r— r—
<< e ) (Fve [P 12772 w2122 (X Y D> 2). ©)

Hence it is sufficient to prove the following two inequalities

_ (2r)1\2 _
X+ =< (550) A iy =) (10)
and
(2r)! -
22 o I I (X 4+ (1 )2

(2r)! 2 r r— r r—
< (SF) U Py 2w P X3 an
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Since (11) is evidently true when w; = 0, here we may assume w; # 0.
Now (10), or rather its square root, implies (11) since by cancelling and dividing
we get 2 <1+ %, where
_ e !
w7 X =t

Finally, we turn to the square root of (10) itself,

2n)!
r?

X"+ 1Y )2 < A"y = (12)

We show the left side (12) is maximal when || X’ ||=|| Y’ || . Because we can ignore
the exponents, this is a question of maximizing the function ¢(x,y) =x-+y where x and
y > 0. Now consider the % circle, x> +y> = 2. An application of Lagrange multipliers
shows that constrained to this, ¢ is maximized where grad¢ = (1,1) = A(2x,2y) so
x =1y. Since these i circles fill out the first quadrant, this proves the claim. Similarly
the right side is minimized when || X’ ||=]|| Y’ ||. Here again we can ignore exponents.
The conclusion follows from a similar application of Lagrange multipliers considering
the function y(x,y) = xy, where x and y > 0, (viz. grady = (y,x) = A(2x,2y) so that
% =2 and since x and y are positive, x = y). The net effect of this is to reduce the
proof of (10) to the following special case:

13)

which can be checked by hand. Evidently it is true for all » <4 and false for r=5. [

. 1. . . 1
We remark that by Stirling’s formula n! is asymptotic to n"*2+/2me™ as the

positive integer n — oo. Thus 222/ @ is asymptotic to % which tends to infinity

as r does. Hence even if the inequality (13) were valid for r = 5, there would be no
possibility of extending Theorem 1 to high r by this method.
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