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Abstract. In [3] the classical theorem of Minkowski on lattice points and convex bodies in Rn

was generalized to simply connected nilpotent Lie groups with a grading of length 2. In doing so
it was necessary to prove the triangle inequality for a certain natural homogeneous norm (with
respect to automorphisms) of the Lie algebra associated with the grading (the case of a grading
of length 1 being the Schwarz inequality). Here we shall extend the homogeneous norms for
which the triangle inequality holds to gradings of length 3 and 4. The results hold for any graded
real vector space of those lengths.

In [3] the classical theorem of Minkowski on lattice points and convex bodies in
Rn was extended to simply connected nilpotent Lie groups with a Q -structure whose
Lie algebra g admits a grading of length 2 (and in particular to 2 step nilpotent groups).
In doing so it was necessary to prove the triangle inequality for a certain natural homo-
geneous norm (with respect to automorphisms) of the Lie algebra associated with the
grading (the case of a grading of length 1 being the Schwarz inequality). Here we shall
extend the homogeneous norms for which the triangle inequality holds to gradings of
length 3 and 4. As the reader will see at the end of this note, further extension by this
method fails when r is 5 and by general principles must break down at some point. The
author does not know if the triangle inequality holds for r = 5.

A Lie algebra g is said to admit a grading (see [1]) if there is a finite family of
subspaces V1, . . . ,Vr with g = V1⊕ . . .⊕Vr satisfying [Vi,Vj] ⊆Vi+ j for all i, j . If g is
a graded Lie algebra, define for t ∈ R× ,

αt (v1, . . . ,vr) = (tv1,t
2v2 . . . ,trvr).

An easy check shows αt is a Lie algebra automorphism of g . Because of these auto-
morphisms the theorem of [2] implies that if a Lie algebra, g , admits a grading it must
be nilpotent.

As in [3] a homogeneous norm on a graded Lie algebra g is a function, ‖ · ‖: g →
R , satisfying the following conditions.

1. ‖ · ‖� 0 and is 0 only at 0 .

2. ‖ X ‖=‖ −X ‖ for all X ∈ g .
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3. ‖ αt(X) ‖= |t| ‖ X ‖ , for all t ∈ R and X ∈ g .

4. ‖ X +Y ‖�‖ X ‖ + ‖ Y ‖ for all X and Y ∈ g .

A graded Lie algebra, g , always possesses a natural candidate for homogeneous
norm, where ‖ · ‖i is the Euclidean norm on each Vi . (Henceforth we shall suppress
the subscript). For X = (v1, . . . ,vr) let

‖ X ‖= (‖ v1 ‖2r
1 + ‖ v2 ‖2r−2

2 + . . .+ ‖ vr ‖2
r )

1
2r ,

However, the subadditivity 4) and homogeneity 3) properties may not be valid. For
example, the reader can check that homogeneity is only valid when r � 2.

Our result here is the following: Its proof will proceed by successive reduction to
simpler and simpler inequalities.

THEOREM 1. ‖ X +Y ‖�‖ X ‖ + ‖ Y ‖ whenever r � 4 .

Proof. Let X = (v1, . . . ,vr) and Y = (w1, . . . ,wr) . Then

‖ X ‖2r=‖ v1 ‖2r + · · ·+ ‖ vr ‖2

and
‖ Y ‖2r=‖ w1 ‖2r + · · ·+ ‖ wr ‖2 .

That is,
‖ X ‖2r=‖ v1 ‖2r + ‖ X ′ ‖2r−2 . (0)

where X ′ = (v2, . . . ,vr) and similarly for Y and Y ′ .
Our objective is to prove

‖ v1 +w1 ‖2r + · · ·+ ‖ vr +wr ‖2� (‖ X ‖ + ‖ Y ‖)2r. (1)

By the Schwarz inequality it is sufficient (and necessary) to show

(‖ v1 ‖ + ‖ w1 ‖)2r + · · ·+(‖ vr ‖ + ‖ wr ‖)2 � (‖ X ‖ + ‖ Y ‖)2r. (2)

Now we will argue by induction (the initial case being proved for r = 2 in [3]) and
assume

(‖ v2 ‖ + ‖ w2 ‖)2r−2 + · · ·+(‖ vr ‖ + ‖ wr ‖)2 � (‖ X ′ ‖ + ‖ Y ′ ‖)2r−2, (3)

Hence it’s sufficient to prove

(‖ v1 ‖ + ‖ w1 ‖)2r +(‖ X ′ ‖ + ‖ Y ′ ‖)2r−2 � (‖ X ‖ + ‖ Y ‖)2r. (4)

We first show (4) is correct when either X ′ or Y ′ = 0. For suppose Y ′ = 0. Then
we have to verify

(‖ v1 ‖ + ‖ w1 ‖)2r +(‖ X ′ ‖)2r−2 � (‖ X ‖ + ‖ w1 ‖)2r. (5)
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The right side of (5) is �‖X ‖2r +2 ‖X ‖r‖w1 ‖r + ‖w1 ‖2r . Using (0), expanding
(‖ v1 ‖+ ‖w1 ‖)2r in a similar manner and cancelling appropriate terms, the verification
reduces to ‖ X ‖�‖ v1 ‖ . Similarly (5) is true if X ′ = 0.

Returning to (4) we may now assume both X ′ and Y ′ �= 0. Expand the terms being
raised to 2r power on both the left and right and take v2 = . . .vr = 0 = w2 = . . .wr in
the expansion on the right side. This yields each term of (‖ v1 ‖ + ‖ w1 ‖)2r being
dominated by the corresponding term of (‖ X ‖ + ‖ Y ‖)2r . Taking account of this for
all but the middle term gives

(2r)!
r!2

(‖ v1 ‖r‖ w1 ‖r)+ (‖ X ′ ‖ + ‖ Y ′ ‖)2r−2 � (2r)!
r!2

(‖ X ‖r‖ Y ‖r). (6)

But ‖ X ‖2r=‖ v1 ‖2r + ‖ X ′ ‖2r−2 and ‖ Y ‖2r=‖ w1 ‖2r + ‖ Y ′ ‖2r−2 .
Hence

(2r)!
r!2

‖ v1 ‖r‖ w1 ‖r +(‖ X ′ ‖ + ‖ Y ′ ‖)2r−2

� (2r)!
r!2

√
‖ v1 ‖2r + ‖ X ′ ‖2r−2

√
‖ w1 ‖2r + ‖ Y ′ ‖2r−2. (7)

Now square both sides of (7)

((2r)!
r!2

)2 ‖ v1 ‖2r‖ w1 ‖2r +(‖ X ′ ‖ + ‖ Y ′ ‖)4r−4

+2
(2r)!
r!2

‖ v1 ‖r‖ w1 ‖r (‖ X ′ ‖ + ‖ Y ′ ‖)2r−2

�
( (2r)!

r!2

)2
(‖ v1 ‖2r + ‖ X ′ ‖2r−2)(‖ w1 ‖2r + ‖ Y ′ ‖2r−2). (8)

Multiplying out the right side of (8) and cancelling yields

(‖ X ′ ‖ + ‖ Y ′ ‖)4r−4 +2
(2r)!
r!2

‖ v1 ‖r‖ w1 ‖r (‖ X ′ ‖ + ‖ Y ′ ‖)2r−2

�
( (2r)!

r!2

)2
(‖ v1 ‖2r‖ Y ′ ‖2r−2 + ‖ w1 ‖2r‖ X ′ ‖2r−2 +(‖ X ′ ‖‖ Y ′ ‖)2r−2). (9)

Hence it is sufficient to prove the following two inequalities

(‖ X ′ ‖ + ‖ Y ′ ‖)4r−4 �
( (2r)!

r!2

)2
(‖ X ′ ‖‖ Y ′ ‖)2r−2) (10)

and

2
(2r)!
r!2

‖ v1 ‖r‖ w1 ‖r (‖ X ′ ‖ + ‖ Y ′ ‖)2r−2

�
((2r)!

r!2

)2
(‖ v1 ‖2r‖ Y ′ ‖2r−2 + ‖ w1 ‖2r‖ X ′ ‖2r−2). (11)
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Since (11) is evidently true when w1 = 0, here we may assume w1 �= 0.
Now (10), or rather its square root, implies (11) since by cancelling and dividing

we get 2 � t + 1
t , where

t =
‖ v1 ‖r‖ Y ′ ‖r−1

‖ w1 ‖r‖ X ′ ‖r−1 .

Finally, we turn to the square root of (10) itself,

(‖ X ′ ‖ + ‖Y ′ ‖)2r−2 � (2r)!
r!2

(‖ X ′ ‖‖ Y ′ ‖)r−1. (12)

We show the left side (12) is maximal when ‖ X ′ ‖=‖Y ′ ‖ . Because we can ignore
the exponents, this is a question of maximizing the function φ(x,y) = x+y where x and
y > 0. Now consider the 1

4 circle, x2 +y2 = r2 . An application of Lagrange multipliers
shows that constrained to this, φ is maximized where gradφ = (1,1) = λ (2x,2y) so
x = y . Since these 1

4 circles fill out the first quadrant, this proves the claim. Similarly
the right side is minimized when ‖ X ′ ‖=‖ Y ′ ‖ . Here again we can ignore exponents.
The conclusion follows from a similar application of Lagrange multipliers considering
the function ψ(x,y) = xy , where x and y > 0, (viz. gradψ = (y,x) = λ (2x,2y) so that
y
x = x

y , and since x and y are positive, x = y). The net effect of this is to reduce the
proof of (10) to the following special case:

22r−2 � (2r)!
r!2

, (13)

which can be checked by hand. Evidently it is true for all r � 4 and false for r = 5. �

We remark that by Stirling’s formula n! is asymptotic to nn+ 1
2
√

2πe−n as the

positive integer n→ ∞ . Thus 22r−2/ (2r)!
r!2

is asymptotic to
√

r
√

π
4 which tends to infinity

as r does. Hence even if the inequality (13) were valid for r = 5, there would be no
possibility of extending Theorem 1 to high r by this method.
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