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THE λ –INTERSECTION BODIES AND AN ANALYTIC

GENERALIZED BUSEMANN–PETTY PROBLEM

DENGHUI WU, TONGYI MA ∗ AND LILI ZHANG

(Communicated by M. A. Hernandez Cifre)

Abstract. In this paper, we obtain an extension of connections between an analytic generalization
of the Busemann-Petty problem and positive definite distributions. We show that the class of the
λ -intersection bodies is closely related to the analytic generalized Busemann-Petty problem.

1. Introduction

We call a compact set K with non-empty interior in Rn , n � 2, a star body if
tK ⊆K , ∀t ∈ [0,1], and the radial function ρK(θ ) = sup{λ � 0 : λ θ ∈K} is continuous
on the unit sphere Sn−1 . A compact, convex set in Rn is said to be a convex body if it
has non empty interior. To make the presentation simple, we introduce some symbols.
We denote by S n the set of all origin-symmetric star bodies in Rn , and by Gn,i the
Grassmann manifold of i-dimensional linear subspaces of Rn . We shall use voli(·) to
denote the i-dimensional volume function. Instead of voln(·) we usually write V (·) .
The volume of the standard unit ball Bn and unit sphere Sn−1 in R

n are denoted by
ωn and σn−1 , respectively. The Minkowski functional of a body K ∈ S n is defined by
‖x‖K = min{a � 0 : x ∈ aK} , so that ‖θ‖K = ρ−1

K (θ ) , θ ∈ Sn−1 .
The class of intersection bodies plays an important role in solving the Busemann-

Petty problem that was first posed in 1956 (see [4]): Suppose that K and L are origin-
symmetric convex bodies in Rn such that

voln−1(K ∩θ⊥) � voln−1(L∩θ⊥), ∀ θ ∈ Sn−1,

where θ⊥ = {x ∈ R
n : 〈x,θ 〉 = 0} is the central hyperplane orthogonal to θ . Does it

follow that
V (K) � V (L)?

Much work has been devoted to the study of the problem ([1, 2, 5, 6, 7, 8, 10,
14, 15, 16, 19, 20]; see [15] for the history of the solution). The problem was com-
pletely solved at the end of 1990’s, and the answer is affirmative if n � 4 and negative
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if n � 5. One of the main ingredients of the solution was a connection between inter-
section bodies and the Busemann-Petty problem established by Lutwak [15]: if K is
an intersection body, then the answer to the problem is affirmative for any star body L .
On the other hand, if L is a symmetric convex body but not an intersection body, then
one can construct K and L in Rn providing a counterexample.

We say that K ∈ S n is the intersection body of L ∈ S n if ρK(θ ) = voln−1(L∩
θ⊥) for every θ ∈ Sn−1 . A body K ∈ S n is said to be an intersection body if K
is the limit in the radial metric of intersection bodies of star bodies, i.e., there exists
a sequence of bodies {Ki}i∈N satisfying lim

j→∞
‖ρKj − ρK‖C(Sn−1) = 0, where Ki is the

intersection body of Li ∈ S n for all i ∈ N .
In [21], Zhang first considered the Generalized Busemann-Petty problem: For

each fixed 1 � i < n, let K and L be origin-symmetric convex bodies in Rn satisfying

voli(K ∩ξ ) � voli(L∩ξ ), ∀ξ ∈ Gn,i.

Does it follow that
V (K) � V (L)?

Zhang showed that the Generalized Busemann-Petty problem is related to Zhang’s
class which is a generalization of the class of intersection bodies (see [21]). It was
showed in [3] that the Generalized Busemann-Petty problem has a negative answer
when 3 < i < n (see also [11, 18]). For i = 2 and i = 3 (n � 5) the Generalized
Busemann-Petty problem is still open.

Another generalization of the concept of the intersection body was suggested in
[12] and described in detail in [11]. Namely, a body K ∈ S n is a k -intersection body
of L ∈ S n (we write K = IBk(L)) if

volk(K ∩ξ ) = voln−k(L∩ξ⊥) ∀ξ ∈ Gn,k. (1.1)

We denote by IBk,n the set of all bodies K ∈ S n satisfying (1.1) for some L ∈ S n .
An origin symmetric star body K is said to be a k -intersection body if K is the

limit in the radial metric of k -intersection bodies {Ki} of star bodies {Li} . The class
of k -intersection bodies in Rn is denoted by I n

k .

LEMMA 1.1. (see [11] Theorem 4.8) A body K ∈ S n is a k -intersection body
if and only if ‖ · ‖−k

K represents a positive definite tempered distribution on Rn , that is,
the Fourier transform (‖ · ‖−k

K )∧ is a positive tempered distribution on Rn .

By using the concept of k -intersection body, Koldobsky [12] generalized Lutwak’s
connections as follows:

THEOREM A. Let 1 � k < n, and let K,L be origin-symmetric (k− 1)-smooth
star bodies in Rn if k is odd and k -smooth if k is even. Suppose that the functions

‖ · ‖−k
K and ‖ · ‖−n+k

L −‖ · ‖−n+k
K

represent positive definite distributions in Rn \ {0} . Then

V (K) � V (L).
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THEOREM B. Let 1 � k < n, and suppose there exists an origin-symmetric convex
body D in Rn for which ‖ · ‖−k

D is not a positive definite distribution. Then there exist
origin-symmetric infinitely smooth convex bodies K and L so that ‖ ·‖−n+k

L −‖ ·‖−n+k
K

is a positive definite distribution in R
n \ {0}, but

V (K) > V (L).

Note that the condition that ‖ · ‖−k
K is a positive definition distribution in Rn \ {0}

can be replaced by K ∈ I n
k , and the condition that ‖ · ‖−n+k

L −‖ · ‖−n+k
K is a positive

definite distribution in Rn\{0} is equivalent to that the Fourier transform of ‖·‖−n+k
L −

‖ · ‖−n+k
K is a positive distribution in Rn \ {0} .
In [17], Rubin introduced a more general class of intersection bodies than the one

of the k -intersection bodies, namely λ -intersection bodies.
Let λ be a real number,

sλ =
{

1, if λ > 0, λ 
= n,n+2,n+4, · · ·;
Γ(λ/2), if λ < 0, λ 
= −2,−4,−6,−8, · · ·.

DEFINITION 1. For λ < n and λ 
= 0, the body K ∈S n is called a λ -intersection
body if there is a measure μ ∈Me+(Sn−1) such that sλ ρλ

K = M1−λ μ if λ 
=−2l, l ∈N ,
and ρλ

K = M̃1−λ μ , otherwise. The class of λ -intersection bodies is denoted by I n
λ .

The equality sλ ρλ
K = M1−λ μ means that for any ϕ ∈ D(Sn−1) ,

sλ

∫
Sn−1

ρλ
K (θ )ϕ(θ )dθ =

∫
Sn−1

(M1−λ ϕ)(θ )dμ(θ ),

where for λ � 1, (M1−λ ϕ)(θ ) is understood in the sense of analytic continuation.

REMARK 1. (1). If λ = k ∈ {1,2, · · · ,n−1} , then I n
λ coincides with the class of

k -intersection bodies which follows from Lemma 1.1 and Lemma 2.2(b) (see Section
2).

(2). The case λ > n is not so interesting, because by Lemma 2.2(c), I n
λ is either

empty (if Γ((n−λ )/2) < 0) or coincides with the whole class Sn (if Γ((n−λ )/2) >
0).

The generalized Minkowski-Funk transforms denoted by Mα f (M̃α f ) were also
introduced by Rubin [17] (see Section 2 for precise definitions).

In this paper, we give an analogue of Theorem A and Theorem B for the class
of λ -intersection bodies. Despite the fact that the geometric models of λ -intersection
bodies are clear (see [17]), our results are analytic ones. We extend the condition K ∈
I n

k ,k ∈ {1,2, · · · ,n−1} to K ∈ I n
λ , λ < n and λ 
= 0, and replace the condition that

the Fourier transform of ‖ · ‖−n+k
L −‖ · ‖−n+k

K is a positive distribution by the condition
that the generalized Minkowski-Funk transform of ‖ · ‖−n+k

L −‖ · ‖−n+k
K is a positive

distribution.
We now describe our main results.
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THEOREM 1. Let K,L be origin-symmetric infinitely smooth star bodies in Rn .
(1). Let 0 < λ < n, K ∈ I n

λ . Suppose that the function

M1−λ‖ · ‖−n+λ
L −M1−λ‖ · ‖−n+λ

K

represents a positive distribution in R
n \ {0} . Then

V (K) � V (L).

(2). Let λ < 0 , λ 
= −2l , l ∈ N , L ∈ I n
λ . Suppose that the function

sλ M1−λ‖ · ‖−n+λ
L − sλM1−λ‖ · ‖−n+λ

K

represents a positive distribution in Rn \ {0} . Then

V (K) � V (L).

(3). Let λ = −2l , l ∈ N, and L ∈ I n
λ . Suppose that the function

M̃1−λ‖ · ‖−n+λ
L − M̃1−λ‖ · ‖−n+λ

K

represents a positive distribution in Rn \ {0} . Then

V (K) � V (L).

If K 
∈ I n
λ (or L 
∈ I n

λ ), the solution of Theorem 1 does not hold. In those cases,
we construct a counterexample to the Analytic Busemann-Petty problem.

THEOREM 2. (1). Let 0 < λ < n, L 
∈ I n
λ . There are origin-symmetric star

bodies K,L in Rn such that

M1−λ‖ · ‖−n+λ
L −M1−λ‖ · ‖−n+λ

K

is a positive distribution in Rn \ {0} , but

V (K) > V (L).

(2). Let λ < 0 , λ 
=−2l , l ∈N , K 
∈I n
λ . There are origin-symmetric star bodies

K,L in R
n such that

sλ M1−λ‖ · ‖−n+λ
L − sλM1−λ‖ · ‖−n+λ

K

is a positive distribution in Rn \ {0} , but

V (K) > V (L).

(3). Let λ = −2l , l ∈ N, K 
∈ I n
λ . There are origin-symmetric star bodies K,L

in Rn , such that
M̃1−λ‖ · ‖−n+λ

L − M̃1−λ‖ · ‖−n+λ
K

is a positive distribution in Rn \ {0} , but

V (K) > V (L).
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REMARK 2. The classical Lutwak’s connection is the special case λ = 1 in The-
orem 1 and Theorem 2. In fact, λ = 1, I n

λ will be the class of intersection bodies.
From the properties of generalized Minkowski-Funk transforms (2.3), it follows:

lim
λ→1

M1−λ‖θ‖−n+λ
K = Cn−1M‖θ‖−n+1

K

= Cn−1

∫
Sn−1∩θ⊥

‖u‖−n+1
K dθu,

=
(n−1)Cn−1

σn−1

∫
Sn−1∩θ⊥

‖u‖−n+1
K du,

=
(n−1)Cn−1

σn−1
voln−1(K ∩θ⊥),

where Cn−1 = σn−2

2π(n−2)/2 . Therefore, if λ = 1, Theorem 1 and Theorem 2 will be two
parts of Lutwak’s connection.

In this paper, we consider all cases λ < n , λ 
= 0 for the connection between
λ -intersection bodies and Analytic Busemann-Petty problem. The classical Lutwak’s
connection is only the case λ = 1 in our results. Koldobsky’s extension, Theorem A
and Theorem B, only considered the cases λ ∈ {1,2, · · · ,n−1} . Therefore, our results
are more general. We have not considered the case λ > n , because by Remark 1 (2),
I n

λ (λ > n) is not so useful.

In the proof of theorem 1 and theorem 2, the first step is different. In the proof of
Theorem 1, from the meaning of the positive distribution in the condition, we should
choose a proper φ(x) at first. In the proof of Theorem 2, we construct K (or L ) from
L 
∈ I n

λ (or K 
∈ I n
λ ) satisfying the conditions of Theorem 2. We use the same method

in the second step. Using the properties of generalized Minkowski-Funk transforms
and Hölder integral inequality, we obtain the results of Theorem 1 and Theorem 2.

We “split” three cases in the proofs of Theorem 1 and Theorem 2. Since the
generalized Minkowski-Funk transforms are defined as Mα in the case λ 
=−2l , l ∈N,
and as M̃α in the case λ = −2l , l ∈ N, we consider them separately. Since we need
to choose different φ(x) in the cases 0 < λ < n and λ < 0 in the proof of Theorem 1,
and since we need to construct K from L 
∈I n

λ for 0 < λ < n , but L from K 
∈I n
λ for

λ < 0 in the proof of Theorem 2, we prove the case λ 
= −2l , l ∈ N by considering
two situations 0 < λ < n and λ < 0. Therefore, we have three cases: (1) 0 < λ < n ,
(2) λ < 0, λ 
= −2l , l ∈ N , (3) λ = −2l , l ∈ N .

We now describe the structure of this paper. We give some notation and prelimi-
naries in Section 2. In Section 3, we will establish Theorem 1 and Theorem 2. From
Theorem 1 and Lemma 2.3, we obtain Corollary 3.1, which is the affirmative answer to
the analytic generalized Busemann-Petty problem. Furthermore, we obtain Corollary
3.2 as a direct consequence of Theorem 1 and Theorem 2.



1052 D. WU, T. MA AND L. ZHANG

2. Notation and preliminaries

D(Sn−1) stands for the space of C∞ -functions on Sn−1 with the standard topology,
and D

′
(Sn−1) stands for the corresponding dual space of distribution. The subspaces

of even test functions (distributions) are denoted by De(Sn−1) (D
′
e(S

n−1)) ; D(Gn,i) is
the space of infinitely differentiable functions on Gn,i.

We write M (Sn−1) and M (Gn,i) for the spaces of finite Borel measures on
Sn−1 and Gn,i ; M+(Sn−1) and M+(Gn,i) are the spaces of non-negative measures;
Me+(Sn−1) and Me+(Gn,i) are the spaces of even measures μ ∈ M+(Sn−1) .

DEFINITION 2. For an integrable function f on Sn−1 , the Minkowski-Funk trans-
form M f (u) , ∀u ∈ Sn−1 is defined by

M f (u) =
∫
{θ :θ ·u=0}

f (θ )duθ , u ∈ Sn−1,

where duθ denotes the probability measure on the manifolds Sn−1∩u⊥ .
This transform is a number of the analytic family of the generalized Minkowski-

Funk transforms
Mα f (u) = γn(α)

∫
Sn−1

f (θ )|θ ·u|α−1dθ , (2.1)

γn(α) =
σn−1Γ((1−α)/2)
2π (n−1)/2Γ(α/2)

Reα > 0, α 
= 1,3,5, · · · .

To include the poles α = 1,3,5, · · · into consideration, we set

M̃α f (u) =
∫

Sn−1
f (θ )|θ ·u|α−1dθ . (2.2)

It was showed that M f (u) is the limit of Mα f (u) in [21]:

lim
α→0

Mα f = M0 f =Cn−1M f , Cn−1 =
σn−2

2π (n−2)/2
. (2.3)

LEMMA 2.1. (see [17]) Let α,β ∈ C , α,β 
= 1,3,5 · · · If α + β = 2− n and
f ∈ De(Sn−1) then

MαMβ f = f . (2.4)

If α,2− n−α 
= 1,3,5 · · · , then Mα is automorphism of the spaces D(Sn−1) and
D

′
(Sn−1).

Let S (Rn) be the Schwartz space of rapidly decreasing C∞ -function on Rn and
S

′
(Rn) its dual. A distribution f ∈ S

′
(Rn) is positive if 〈 f ,φ〉 � 0 for all non-

negative φ ∈ S (Rn). A distribution f ∈ S
′
(Rn) is positive definite if f̂ is positive.

LEMMA 2.2. (see [17]) For λ ∈ R , λ 
∈ {n,n+ 2,n+ 4, · · ·} ∪{0,−2,−4, · · ·},
the following statements are equivalent:

(a) K ∈ I n
λ ,

(b) The Fourier transform [sλ‖ · ‖−λ
K ]∧ is a positeve distribution on Rn \ {0} ,

(c) sλ M1+λ−nρλ
K ∈ Me+(Sn−1).



ANALYTIC GENERALIZED BUSEMANN-PETTY PROBLEM 1053

LEMMA 2.3. (see [17]) Let p > −n, p 
= 0. Then (Rn,‖ · ‖K) embeds isometri-
cally in Lp if and only if K ∈ I n−p .

LEMMA 2.4. (Hölder’s integral inequality, see [9]) Suppose that f and g are
Borel measurable functions on X , let p,q be nonzero real numbers with 1

p + 1
q = 1 .

(1) If p > 1 then

∫
X

f gdx � (
∫

X
f pdx)

1
p (

∫
X

gqdx)
1
q ,

with equality if and only if there are constants A,B not both zero, such that A| f |p =
B|g|q .

(2) If p < 0 or 0 < p < 1 then

∫
X

f gdx � (
∫

X
f pdx)

1
p (

∫
X

gqdx)
1
q ,

with equality if and only if either (a) there are constants A,B not both zero, such that
A| f |p = B|g|q , or (b) f g is null.

Throughout this paper, different notations 〈·, ·〉 and (·, ·) are used for distributions
on Rn and Sn−1 , respectively.

3. Proofs of our main results

In this section, we will prove Theorem 1 and Theorem 2, that is, we will give an
solution of Analytic General Busemann-Petty problem.

Proof of Theorem 1. We prove our results by considering three cases using the
properties of generalized Minkowski-Funk transforms and Hölder’s integral inequality.

(1). The first case is 0 < λ < n . Since K ∈ I n
λ , we have sλ M1+λ−n‖ · ‖−λ

K ∈
Me+(Sn−1). Let M1−λ‖ · ‖−n+λ

L −M1−λ‖ · ‖−n+λ
K be a positive distribution. It means

that for every φ ∈ S (Rn) such that φ � 0 and 0 
∈ suppφ ,

〈M1−λ‖ · ‖−n+λ
L −M1−λ‖ · ‖−n+λ

K ,φ〉 � 0.

We choose φ(x) = ψ(|x|)M1+λ−n‖ · ‖−λ
K (x/|x|) , where ψ is a smooth non-negative

function such that
∫ ∞
0 rn−λ−1ψ(r)dr = 1 and 0 
∈ supptφ . From (2.1), we get

M1−λ (‖rθ‖−n+λ
L −‖rθ‖−n+λ

K ) = r−λ M1−λ (‖θ‖−n+λ
L −‖θ‖−n+λ

K ).
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Then,

〈M1−λ‖ · ‖−n+λ
L −M1−λ‖ · ‖−n+λ

K ,φ(x)〉
= 〈M1−λ (‖ · ‖−n+λ

L −‖ · ‖−n+λ
K ),ψ(|x|)M1+λ−n‖ · ‖−λ

K (x/|x|)〉
=

∫
Rn

M1−λ (‖x‖−n+λ
L −‖x‖−n+λ

K )ψ(|x|)M1+λ−n‖ x
|x| ‖

−λ
K dx

=
∫

Sn−1

∫ ∞

0
M1−λ (‖rθ‖−n+λ

L −‖rθ‖−n+λ
K )ψ(r)M1+λ−n‖θ‖−λ

K rn−1drdθ

=
∫

Sn−1

∫ ∞

0
r−λ M1−λ (‖θ‖−n+λ

L −‖θ‖−n+λ
K )ψ(r)M1+λ−n‖θ‖−λ

K rn−1drdθ

=
∫

Sn−1

(∫ ∞

0
rn−λ−1ψ(r)dr

)
M1−λ (‖θ‖−n+λ

L −‖θ‖−n+λ
K )M1+λ−n‖θ‖−λ

K dθ

=
∫

Sn−1
M1−λ (‖θ‖−n+λ

L −‖θ‖−n+λ
K )M1+λ−n‖θ‖−λ

K dθ

= (M1−λ (‖ · ‖−n+λ
L −‖ · ‖−n+λ

K ),M1+λ−n‖ · ‖−λ
K ) � 0.

Note that 1−λ ,1+ λ −n 
= 1,3,5 · · · , from Lemma 2.1, we get

(M1−λ (‖ · ‖−n+λ
L −‖ · ‖−n+λ

K ),M1+λ−n‖ · ‖−λ
K )

= (‖ · ‖−n+λ
L −‖ · ‖−n+λ

K ,M1−λ M1+λ−n‖ · ‖−λ
K )

= (‖ · ‖−n+λ
L −‖ · ‖−n+λ

K ,‖ · ‖−λ
K ) � 0.

Therefore,
(‖ · ‖−n+λ

L ,‖ · ‖−λ
K ) � (‖ · ‖−n+λ

K ,‖ · ‖−λ
K ).

Using Hölder’s integral inequality (0 < λ < n ), we obtain that

V (K) =
1
n

∫
Sn−1

‖θ‖−n+λ
K ‖θ‖−λ

K dθ

� 1
n

∫
Sn−1

‖θ‖−n+λ
L ‖θ‖−λ

K dθ

�
(

1
n

∫
Sn−1

‖θ‖−n
L dθ

) n−λ
n

(
1
n

∫
Sn−1

‖θ‖−n
K dθ

) λ
n

= V (L)
n−λ

n V (K)
λ
n .

This clearly yields V (K) � V (L) .
(2). The second case is λ < 0, λ 
= −2l , l ∈ N . Since L ∈ I n

λ , we have

sλ M1+λ−n‖ · ‖−λ
L ∈ Me+(Sn−1).

Let sλ M1−λ‖ · ‖−n+λ
L − sλ M1−λ‖ · ‖−n+λ

K be a positive distribution. It means that
for every φ ∈ S (Rn) such that φ � 0 and 0 
∈ suppφ ,

〈sλ M1−λ‖ · ‖−n+λ
L − sλ M1−λ‖ · ‖−n+λ

K ,φ〉 � 0.
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We choose φ(x) = ψ(|x|)sλ M1+λ−n‖ · ‖−λ
L (x/|x|) , where ψ is a smooth non-negative

function such that
∫ ∞
0 rn−λ−1ψ(r)dr = 1 and 0 
∈ supptφ . Then

〈sλ M1−λ‖ · ‖−n+λ
L − sλ M1−λ‖ · ‖−n+λ

K ,φ(x)〉
= 〈sλ M1−λ (‖ · ‖−n+λ

L −‖ · ‖−n+λ
K ),sλ ψ(x)M1+λ−n‖ · ‖−λ

L (x/|x|)〉
= (sλ M1−λ (‖ · ‖−n+λ

L −‖ · ‖−n+λ
K ),sλ M1+λ−n‖ · ‖−λ

L )

= (M1−λ (‖ · ‖−n+λ
L −‖ · ‖−n+λ

K ),M1+λ−n‖ · ‖−λ
L ) � 0.

Note that 1−λ ,1+ λ −n 
= 1,3,5 · · · , it follows that

(‖ · ‖−n+λ
L −‖ · ‖−n+λ

K ,‖ · ‖−λ
L ) � 0,

(‖ · ‖−n+λ
L ,‖ · ‖−λ

L ) � (‖ · ‖−n+λ
K ,‖ · ‖−λ

L ).

Using Hölder’s integral inequality (λ < 0), we obtain that

V (L) =
1
n

∫
Sn−1

‖θ‖−n+λ
L ‖θ‖−λ

L dθ

� 1
n

∫
Sn−1

‖θ‖−n+λ
K ‖θ‖−λ

L dθ

�
(

1
n

∫
Sn−1

‖θ‖−n
K dθ

) n−λ
n

(
1
n

∫
Sn−1

‖θ‖−n
L dθ

) λ
n

= V (K)
n−λ

n V (L)
λ
n .

This clearly yields V (K) � V (L) .
(3). The third case is λ = −2l , l ∈ N . Since L ∈ I n

λ , there is a measure μ ∈
Me+(Sn−1) such that‖ · ‖−λ

L = M̃1−λ μ . That is: for any ϕ ∈ D(Sn−1),
∫

Sn−1
‖ · ‖−λ

L ϕ(θ )dθ =
∫

Sn−1
M̃1−λ ϕ(θ )dμ(θ ).

Let M̃1−λ‖ · ‖−n+λ
L − M̃1−λ‖ · ‖−n+λ

K be a positive distribution. It means that for
every φ ∈ S (Rn) such that φ � 0 and 0 
∈ suppφ ,

〈M̃1−λ‖ · ‖−n+λ
L − M̃1−λ‖ · ‖−n+λ

K ,φ〉 � 0,

where φ is a smooth non-negative function such that
∫ ∞
0 rn−λ−1φ(r)dr = 1 and 0 
∈

supptφ . Then

〈M̃1−λ‖ · ‖−n+λ
L − M̃1−λ‖ · ‖−n+λ

K ,φ(x)〉
= 〈M̃1−λ‖ · ‖−n+λ

L − M̃1−λ‖ · ‖−n+λ
K ,φ(|x|)〉

= (M̃1−λ‖ · ‖−n+λ
L − M̃1−λ‖ · ‖−n+λ

K ,1) � 0.

Therefore, we obtain

(M̃1−λ‖ · ‖−n+λ
L − M̃1−λ‖ · ‖−n+λ

K ,1) � 0,
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(M̃1−λ‖ · ‖−n+λ
L ,1) � (M̃1−λ‖ · ‖−n+λ

K ,1).

Both sides’ integrals of the last inequality over Sn−1 is about measure μ , we get
∫

Sn−1
M̃1−λ‖ · ‖−n+λ

L dμ(θ ) �
∫

Sn−1
M̃1−λ‖ · ‖−n+λ

K dμ(θ ),

∫
Sn−1

‖ · ‖−λ
L ‖ · ‖−n+λ

L dθ �
∫

Sn−1
‖ · ‖−λ

L ‖ · ‖−n+λ
K dθ .

From Hölder’s integral inequality (λ < 0), we obtain that

V (L) =
1
n

∫
Sn−1

‖θ‖−λ
L ‖θ‖−n+λ

L dθ

� 1
n

∫
Sn−1

‖θ‖−λ
L ‖θ‖−n+λ

K dθ

�
(

1
n

∫
Sn−1

‖θ‖−n
L dθ

) λ
n
(

1
n

∫
Sn−1

‖θ‖−n
K dθ

) n−λ
n

= V (L)
λ
n V (K)

n−λ
n .

Therefore, V (K) � V (L) .
Above all, Theorem 1 is proved. �

Since all 2-dimensional space embed in L1 , and therefore in Lp with −2 < p < 1
(see e.g. [11] Chapter 6), and all 3-dimensional space embed in L0 , and therefore in
Lp with −3 < p < 0 (see e.g. [13]). From Lemma 2.3, we have the following

COROLLARY 3.1. If n = 2,3 , 0 < λ < n. K, L are origin-symmetric infinitely
smooth star bodies in Rn . The function M1−λ‖ · ‖−n+λ

L −M1−λ‖ · ‖−n+λ
K is a positive

distribution in Rn \ {0}, then
V (K) � V (L).

Proof of Theorem 2. (1). The first case is 0 < λ < n . Suppose that L is an origin-
symmetric convex body in Rn , so that ‖ · ‖−λ

L is infinitely smooth, the boundary of
L has a positive curvature and L 
∈ I n

λ . Therefore, there is a function μ ∈ De(Sn−1) ,
which is negative on some open origin-symmetric set Ω ⊂ Sn−1 and such that ‖·‖−λ

L =
M1−λ μ .

We choose a function υ ∈ De(Sn−1) so that υ(θ ) � 0 and ∃ θ such that υ 
= 0
if θ ∈ Ω , υ(θ ) ≡ 0 otherwise. We define an origin-symmetric smooth body K by
‖ · ‖−n+λ

K = ‖ · ‖−n+λ
L − εM1+λ−nυ , ε > 0. Since 1+ λ −n,−n+ λ 
= 1,3,5, · · · ,

M1−λ M1−n+λ υ = υ � 0,

we have

M1−λ‖ · ‖−n+λ
L −M1−λ‖ · ‖−n+λ

K = εM1−λ M1−n+λ υ = ευ � 0.
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On the other hand,

(‖ · ‖−λ
L ,‖ · ‖−n+λ

L −‖ · ‖−n+λ
K ) = (M1−λ μ ,εM1+λ−nυ)

= ε(μ ,ν) < 0,

i.e., (‖ · ‖−λ
L ,‖ · ‖−n+λ

L ) < (‖ · ‖−λ
L , | · ‖−n+λ

K ).
By Hölder’s inequality,

V (L) =
1
n

∫
Sn−1

‖θ‖−λ
L ‖θ‖−n+λ

L dθ

<
1
n

∫
Sn−1

‖θ‖−λ
L ‖θ‖−n+λ

K dθ

�
(

1
n

∫
Sn−1

‖θ‖−n
L dθ

) λ
n
(

1
n

∫
Sn−1

‖θ‖−n
K dθ

) n−λ
n

= V (L)
λ
n V (K)

n−λ
n .

Therefore V (K) > V (L), as desired.
(2). The second case is λ < 0, λ 
= −2l , l ∈ N . Suppose that K is an origin-

symmetric convex body in Rn , so that ‖ · ‖−λ
K is infinitely smooth, the boundary of

K has a positive curvature and K 
∈ I n
λ . Therefore, there is a function μ ∈ De(Sn−1) ,

which is negative on some open origin-symmetric set Ω ⊂ Sn−1 and such that sλ‖ ·
‖−λ

K = M1−λ μ .
We choose a function υ ∈ De(Sn−1) so that υ(θ ) � 0 and ∃ θ such that υ 
= 0

if θ ∈ Ω , υ(θ ) ≡ 0 otherwise. We define an origin-symmetric smooth body L by
sλ‖ · ‖−n+λ

L = sλ‖ · ‖−n+λ
K + εM1+λ−nυ , ε > 0. Since 1+ λ −n,−n+ λ 
= 1,3,5, · · · ,

M1−λ M1−n+λ υ = υ � 0,

we have

sλ M1−λ‖ · ‖−n+λ
L − sλM1−λ‖ · ‖−n+λ

K = εM1−λ M1−n+λ υ = ευ � 0.

On the other hand,

(‖ · ‖−λ
K ,‖ · ‖−n+λ

L −‖ · ‖−n+λ
K ) = (M1−λ μ ,εM1+λ−nv)

= ε(μ ,v) < 0,

i.e., (‖ · ‖−λ
K ,‖ · ‖−n+λ

L ) < (‖ · ‖−λ
K , | · ‖−n+λ

K ).
By Hölder’s inequality,

V (K) =
1
n

∫
Sn−1

‖θ‖−λ
K ‖θ‖−n+λ

K dθ

>
1
n

∫
Sn−1

‖θ‖−λ
K ‖θ‖−n+λ

L dθ

�
(

1
n

∫
Sn−1

‖θ‖−n
K dθ

) λ
n
(

1
n

∫
Sn−1

‖θ‖−n
L dθ

) n−λ
n

= V (K)
λ
n V (L)

n−λ
n .
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Therefore V (K) > V (L).
(3). The third case is λ = −2l , l ∈ N . Suppose that K is an origin-symmetric

convex body in Rn , so that ‖·‖−λ
K is infinitely smooth, the boundary of K has a positive

curvature and K 
∈ I n
λ . Therefore, there is a function μ ∈ De(Sn−1) , which is negative

on some open origin-symmetric set Ω ⊂ Sn−1 and such that sλ‖ · ‖−λ
K = M̃1−λ μ . We

choose a non-zero continuous function g ∈ De(Sn−1) so that

M̃1−λ g(θ ) =
∫

Sn−1
g(u)|u ·θ |−λdu = 0 ∀θ ∈ Sn−1.

We consider the smooth origin-symmetric star body L , and suppose that∫
Sn−1

‖ · ‖−λ
K g(θ )dθ =

∫
Sn−1

g(θ )M̃1−λ μdθ � 0,

(otherwise, consider −g(θ ) instead of g(θ )). We choose ε � 0 such that

‖θ‖n−λ
K − εg(θ ) > 0 ∀θ ∈ Sn−1,

We define an origin-symmetric smooth body L in Rn by

‖θ‖n−λ
L = ‖θ‖n−λ

K − εg(θ ) > 0 ∀θ ∈ Sn−1.

Therefore
M̃1−λ‖ · ‖−n+λ

K − M̃1−λ‖ · ‖−n+λ
L = εM̃1−λ g(θ ) = 0.

On the other hand,

(‖ · ‖−λ
K ,‖ · ‖−n+λ

K −‖ · ‖−n+λ
L ) = (M̃1−λ μ ,εg(θ ))

= ε
∫

Sn−1
g(θ )M̃1−λ μdθ � 0,

i.e., (‖ · ‖−λ
K ,‖ · ‖−n+λ

K ) � (‖ · ‖−λ
K ,‖ · ‖−n+λ

L ).
By Hölder’s inequality,

V (K) =
1
n

∫
Sn−1

‖θ‖−λ
K ‖θ‖−n+λ

K dθ

� 1
n

∫
Sn−1

‖θ‖−λ
K ‖θ‖−n+λ

L dθ

�
(

1
n

∫
Sn−1

‖θ‖−n
K dθ

) λ
n
(

1
n

∫
Sn−1

‖θ‖−n
L dθ

) n−λ
n

= V (K)
λ
n V (L)

n−λ
n .

Therefore V (K) � V (L) .
If V (L) = V (K) , it follows from the equality condition that ‖ · ‖K = ‖ · ‖L , i.e.

K = L , which contradicts ‖θ‖n−λ
L = ‖θ‖n−λ

K −εg(θ ) > 0. Therefore V (K) >V (L) , as
desired.

Above all, Theorem 2 is proved. �

A direct consequence of Theorem 1 and Theorem 2 is:
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COROLLARY 3.2. K, L are origin-symmetric infinitely smooth star bodies in Rn .
Each case in the following holds if and only if every origin-symmetric star body Rn is
a λ -intersection body:

(1) Let 0 < λ < n. The positive distribution M1−λ‖ · ‖−n+λ
L −M1−λ‖ · ‖−n+λ

K in
R

n \ {0} implies V (K) � V (L).
(2) Let λ < 0 , λ 
= −2l , l ∈ N . The positive distribution sλ M1−λ‖ · ‖−n+λ

L −
sλ M1−λ‖ · ‖−n+λ

K in Rn \ {0} implies V (K) � V (L).
(3) Let λ =−2l , l ∈ N. The positive distribution M̃1−λ‖·‖−n+λ

L −M̃1−λ‖·‖−n+λ
K

in Rn \ {0} implies V (K) � V (L).
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