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THE A-INTERSECTION BODIES AND AN ANALYTIC
GENERALIZED BUSEMANN-PETTY PROBLEM

DENGHUI WU, TONGYI MA* AND LILI ZHANG

(Communicated by M. A. Hernandez Cifre)

Abstract. In this paper, we obtain an extension of connections between an analytic generalization
of the Busemann-Petty problem and positive definite distributions. We show that the class of the
A -intersection bodies is closely related to the analytic generalized Busemann-Petty problem.

1. Introduction

We call a compact set K with non-empty interior in R", n > 2, a star body if
tK CK, Vi €0,1], and the radial function px(6) =sup{A >0:16 € K} is continuous
on the unit sphere S"~'. A compact, convex set in R” is said to be a convex body if it
has non empty interior. To make the presentation simple, we introduce some symbols.
We denote by . the set of all origin-symmetric star bodies in R", and by G,; the
Grassmann manifold of i-dimensional linear subspaces of R”. We shall use vol;(-) to
denote the i-dimensional volume function. Instead of vol,(-) we usually write V(-).
The volume of the standard unit ball B, and unit sphere $"~! in R" are denoted by
@, and o,_1, respectively. The Minkowski functional of a body K € . is defined by
|x||x = min{a > 0:x € aK}, so that || 8]|x = pg ' (0), 6 € "~ 1.

The class of intersection bodies plays an important role in solving the Busemann-
Petty problem that was first posed in 1956 (see [4]): Suppose that K and L are origin-
symmetric convex bodies in R” such that

vol,_1(KN6Y) <vol, | (LNOL), VOes !,

where 0 = {x € R": (x,0) = 0} is the central hyperplane orthogonal to 6. Does it
follow that
V(K) <V(L)?

Much work has been devoted to the study of the problem ([1, 2, 5, 6, 7, &, 10,
14, 15, 16, 19, 20]; see [15] for the history of the solution). The problem was com-
pletely solved at the end of 1990’s, and the answer is affirmative if n < 4 and negative
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if n > 5. One of the main ingredients of the solution was a connection between inter-
section bodies and the Busemann-Petty problem established by Lutwak [15]: if K is
an intersection body, then the answer to the problem is affirmative for any star body L.
On the other hand, if L is a symmetric convex body but not an intersection body, then
one can construct K and L in R" providing a counterexample.

We say that K € " is the intersection body of L € /" if px(0) = vol,_1(LN
6+) for every 8 € §"~!. A body K € " is said to be an intersection body if K
is the limit in the radial metric of intersection bodies of star bodies, i.e., there exists
a sequence of bodies {K;}cn satisfying ,lgrolo lPx; — Pxllc(sn-1y = 0, where K; is the

intersection body of L; € . forall i € N.
In [21], Zhang first considered the Generalized Busemann-Petty problem: For
each fixed 1 <i < n, let K and L be origin-symmetric convex bodies in R" satisfying

voli(KN§&) <vol;(LNE), V& € Gy,

Does it follow that
V(K) <V(L)?

Zhang showed that the Generalized Busemann-Petty problem is related to Zhang’s
class which is a generalization of the class of intersection bodies (see [21]). It was
showed in [3] that the Generalized Busemann-Petty problem has a negative answer
when 3 < i <n (see also [11, 18]). For i=2 and i =3 (n > 5) the Generalized
Busemann-Petty problem is still open.

Another generalization of the concept of the intersection body was suggested in
[12] and described in detail in [11]. Namely, a body K € . is a k-intersection body
of L€ . (we write K = % (L)) if

volp(KNE) =vol, ((LNEL) V& € Gy (1.1)

We denote by .# %, ,, the set of all bodies K € .#" satisfying (1.1) for some L € ..

An origin symmetric star body K is said to be a k-intersection body if K is the
limit in the radial metric of k-intersection bodies {K;} of star bodies {L;}. The class
of k-intersection bodies in R” is denoted by 7.

LEMMA 1.1. (see [11] Theorem 4.8) A body K € " is a k-intersection body
if and only if || - ||I}k represents a positive definite tempered distribution on R", that is,
the Fourier transform (|| - || )" is a positive tempered distribution on R".

By using the concept of k-intersection body, Koldobsky [12] generalized Lutwak’s
connections as follows:

THEOREM A. Ler 1 <k < n, and let K,L be origin-symmetric (k— 1)-smooth
star bodies in R" if k is odd and k-smooth if k is even. Suppose that the functions

—k —n+k —n+k
I llg" and [|- 117" =1 Mg
represent positive definite distributions in R"\ {0}. Then

V(K) < V(L).
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THEOREM B. Let 1 <k <n, and suppose there exists an origin-symmetric convex
body D in R" for which || - HBk is not a positive definite distribution. Then there exist
origin-symmetric infinitely smooth convex bodies K and L so that || - HZ"HC — I ||1}n+k

is a positive definite distribution in R"\ {0}, but
V(K)>V(L).

Note that the condition that | - || ¢ is a positive definition distribution in R"\ {0}
can be replaced by K € .#", and the condition that || - || — || - || " is a positive
definite distribution in R"\ {0} is equivalent to that the Fourier transform of |- ||, "% —
||| is a positive distribution in R\ {0}.

In [17], Rubin introduced a more general class of intersection bodies than the one
of the k-intersection bodies, namely A -intersection bodies.

Let A be areal number,

_ I, ifA>0, A#nn+2,n+4,--;
SAT\T(A)2),ifA <0, A # —2,—4,—6,—8,--.

DEFINITION 1. For A <n and A # 0, the body K € " is called a A -intersection
body if there is a measure u € .#, (S"~') such that s, pf = M'"*p if A # 21,1 €N,
and p} = M'~*p, otherwise. The class of A -intersection bodies is denoted by S

The equality s; p7 = M'~* i means that for any ¢ € 2(S"""),

52, PR(©)0(0)a0 = | - (M'~*)(0)du(6),

where for A > 1, (M'~*¢)(8) is understood in the sense of analytic continuation.

REMARK 1. (1).If A =k € {1,2,---,n— 1}, then .#}' coincides with the class of
k-intersection bodies which follows from Lemma 1.1 and Lemma 2.2(b) (see Section
2).

(2). The case A > n is not so interesting, because by Lemma 2.2(c), S is either
empty (if T'((n—4)/2) < 0) or coincides with the whole class S" (if T'((n—21)/2) >
0).

The generalized Minkowski-Funk transforms denoted by M%f (M*f) were also
introduced by Rubin [17] (see Section 2 for precise definitions).

In this paper, we give an analogue of Theorem A and Theorem B for the class
of A -intersection bodies. Despite the fact that the geometric models of A -intersection
bodies are clear (see [17]), our results are analytic ones. We extend the condition K &
Tl kef{l,2,---,;n—1}to K€ 77, A <nand A #0, and replace the condition that

the Fourier transform of || -||;"™* — || - || " is a positive distribution by the condition

that the generalized Minkowski-Funk transform of || - HZ"+k — I ||1}n+k is a positive
distribution.

We now describe our main results.
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THEOREM 1. Let K,L be origin-symmetric infinitely smooth star bodies in R".
(1). Let 0< A <n, K € 7). Suppose that the function

lelH . ”ZnJr?L _lel” . H;{nJrl
represents a positive distribution in R"\ {0}. Then
V(K)<V(L).
(2). Let A<0, A#-2],1€N, Le . Suppose that the function
A MU [ — s M1 g+
represents a positive distribution in R"\ {0}. Then
V(K)<V(L).
(3). Let A ==2l, L €N, and L € J}'. Suppose that the function
Ml—AH . ||Zn+)t _Ml—A” . Hl—(n-s-l
represents a positive distribution in R"\ {0}. Then
V(K)<V(L).

IfK¢ f)’f (or L& f)’f ), the solution of Theorem 1 does not hold. In those cases,
we construct a counterexample to the Analytic Busemann-Petty problem.

THEOREM 2. (1). Let 0 <A <n, L ¢ 7}'. There are origin-symmetric star
bodies K,L in R" such that

lelH . ”ZnJr?L _lel” . H;{rHrl
is a positive distribution in R"\ {0}, but
V(K)>V(L).

(2). Let A <0, A # =2l, L €N, K¢ J}'. There are origin-symmetric star bodies
K,L in R" such that

saM I s MR
is a positive distribution in R"\ {0}, but
V(K) > V(L).

3). Let A==2l, 1N, K¢& 9. There are origin-symmetric star bodies K,L
A

in R", such that
lelH . ”ZnJr?L _lel” . H;{rHrl

is a positive distribution in R"\ {0}, bur

V(K) > V(L).
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REMARK 2. The classical Lutwak’s connection is the special case A =1 in The-

orem 1 and Theorem 2. In fact, A =1, ff will be the class of intersection bodies.
From the properties of generalized Minkowski-Funk transforms (2.3), it follows:

lim 1114+ = G, 6"

. —n+1
=Gt [, g da

(l’l— 1>Cn—l/ —n+1
= u du,
o Joiner [Jullk

—1)C,—
- (ng#voln_l([(m Ql)’
n—1

where C,,_| = 2”((;,’]%22)/2. Therefore, if A = 1, Theorem 1 and Theorem 2 will be two
parts of Lutwak’s connection.

In this paper, we consider all cases A < n, A # 0 for the connection between
A -intersection bodies and Analytic Busemann-Petty problem. The classical Lutwak’s
connection is only the case A = 1 in our results. Koldobsky’s extension, Theorem A
and Theorem B, only considered the cases A € {1,2,--,n—1}. Therefore, our results
are more general. We have not considered the case A > n, because by Remark 1 (2),
(A > n) is not so useful.

In the proof of theorem 1 and theorem 2, the first step is different. In the proof of
Theorem 1, from the meaning of the positive distribution in the condition, we should
choose a proper ¢(x) at first. In the proof of Theorem 2, we construct K (or L) from
L¢ 77 (or K ¢ 77" satisfying the conditions of Theorem 2. We use the same method
in the second step. Using the properties of generalized Minkowski-Funk transforms
and Holder integral inequality, we obtain the results of Theorem 1 and Theorem 2.

We “split” three cases in the proofs of Theorem 1 and Theorem 2. Since the
generalized Minkowski-Funk transforms are defined as M% in the case A # —2[, 1 € N,
and as M“ in the case A = —2I, [ € N, we consider them separately. Since we need
to choose different ¢ (x) in the cases 0 < A < n and A <0 in the proof of Theorem 1,
and since we need to construct K from L ¢ .7} for 0 <4 <n, but L from K ¢ .7}' for
A < 0 in the proof of Theorem 2, we prove the case A # —2I, [ € N by considering
two situations 0 < A <n and A < 0. Therefore, we have three cases: (1) 0 < A < n,
2Q)A<0,A#-21,1¢N,(3) A=-2I,1leN.

We now describe the structure of this paper. We give some notation and prelimi-
naries in Section 2. In Section 3, we will establish Theorem 1 and Theorem 2. From
Theorem | and Lemma 2.3, we obtain Corollary 3.1, which is the affirmative answer to
the analytic generalized Busemann-Petty problem. Furthermore, we obtain Corollary
3.2 as a direct consequence of Theorem 1 and Theorem 2.
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2. Notation and preliminaries

2(8"1) stands for the space of C*-functions on §"~! with the standard topology,
and 7' (8"~1) stands for the corresponding dual space of distribution. The subspaces
of even test functions (distributions) are denoted by Z,(S"~") (Z,(S""")); 2(G) is
the space of infinitely differentiable functions on G, ;.

We write .#(S""!) and .#(G,,;) for the spaces of finite Borel measures on
§"~1and G,;; 4 (S"") and .#,(G,;) are the spaces of non-negative measures;
Moy (S") and A, (G,,) are the spaces of even measures p € .4 (S"1).

DEFINITION 2. For an integrable function f on §"~!, the Minkowski-Funk trans-
form Mf(u), Yu € S~ is defined by

— n—1
M@= [ 1048, ues

where d,0 denotes the probability measure on the manifolds §" ! Nu™*.
This transform is a number of the analytic family of the generalized Minkowski-
Funk transforms

MO () = (o) [ 1(0)]8-u|*""ae, (2.1)

Gn 1F(( )/2)
V2T (e/2)
To include the poles o = 1737 5,--- into consideration, we set

(o) = Reo >0, a#1,3,5,---.

M®f(u) = Snilf(9)|9-u|°‘*1d6. (2.2)

It was showed that M f(u) is the limit of M*f(u) in [21]:
On—2
2(n=2)/2"

LEMMA 2.1. (see [17]) Let a,B €C, o,B#1,3,5---Ifa+B=2—n and
f € De(S"Y) then

lin%)M“f:MOf =CoIMf, Cy_i= (2.3)
o —

MOMPf=f. (2.4)

If 0,2 —n—o #1,3,5---, then M is automorphism of the spaces 2(S"~') and
7' (s 1.

Let . (R") be the Schwartz space of rapidly decreasing C**-function on R” and
' (R") its dual. A distribution f € . (R") is positive if (f,¢) > 0 for all non-
negative ¢ € .7 (R"). A distribution f € .%'(R") is positive definite if / is positive.

LEMMA 2.2. (see [17]) For A€ R, A ¢ {n,n+2,n+4,---}U{0,-2,—4,---},
the following statements are equivalent:

(a) K € I,

(b) The Fourier transform [s; || - H,}l}/\ is a positeve distribution on R"\ {0},

(c) sy Mol e A, (S"7).
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LEMMA 2.3. (see [17]) Let p > —n, p#0. Then (R",||-| k) embeds isometri-
callyin Ly if and only if K € I .

LEMMA 2.4. (Holder’s integral inequality, see [9]) Suppose that f and g are

Borel measurable functions on X, let p,q be nonzero real numbers with % + é =1.
(1)If p> 1 then

1 1
[ peax< ([ rani( [ gtanr,
X X X
with equality if and only if there are constants A,B not both zero, such that A|f|P =

Blg|v.
(2)If p<0or0<p<1 then

[ fsav= ([ frans([ g,

with equality if and only if either (a) there are constants A,B not both zero, such that
A|f|? = B|g|?, or (b) fg is null.

Throughout this paper, different notations (-,-) and (-,-) are used for distributions
on R" and §"~!, respectively.

3. Proofs of our main results

In this section, we will prove Theorem 1 and Theorem 2, that is, we will give an
solution of Analytic General Busemann-Petty problem.

Proof of Theorem 1. We prove our results by considering three cases using the
properties of generalized Minkowski-Funk transforms and Holder’s integral inequality.

(1). The first case is 0 < A < n. Since K € .7, we have s, M' T4 ||,}’l €
Moy (S™1). Let M'H| - |4 = M2 || * be a positive distribution. It means

that for every ¢ € . (R") such that ¢ > 0 and 0 & supp¢,

(MU A [ =M I 9) >0,

We choose ¢ (x) = y(jx|)M"*2=7|| - ||c*(x/|x|), where y is a smooth non-negative
function such that [5° " ~*~'y(r)dr =1 and 0 ¢ supptg. From (2.1), we get

1-2 —n+A —n+A —Aagl—2 —n+A —n+A
M (6 = (el ) = M ([0 = (0.
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Then,
(M= M 6 (x)
= (M1 = 1 ) w )M A e/ D))

A (|| —nEA —ntA A—ny X =2
o (o e B o O et el

|x
= [ — el Ry A e drde

_ /Sn 1/ —AMI —A HeH—n-&-l HOH—n-&-A) ()Ml-&-l—n”eHl—(Arn—ldrde

~ Jge </0 N )dr>Ml Aol = ol M A 0] de
= IMI )L(HGH_HHL_H9||_n+A)M1+7“_”H9||I—{7Ld9
s

A —n+A n+A A—n —A
= (MR = ), M) = 0.

Note that 1 —A,1+A —n#1,3,5---, from Lemma 2.1, we get

(R e B o B s N
—n+A A -1 A— —A
= (12 = D M = )
A A
= (02" = -0 1) = 0.

Therefore,
A A
U122 0 = 0 ™)

Using Holder’s integral inequality (0 < A < n), we obtain that

1 _ _
V(K) = < [ el el ae

1 n
<< [, 1oz 6l e

n—A A
1 N1 Y
< (5[ 1enrae) " (5[ 16lsrao)

— V(L) FV(K)T.
This clearly yields V(K) < V(L).

(2). The second case is A <0, A # —2[, [ € N. Since L € .#]', we have
saM A € e ("),

Let syM' 4| || "4 — s, M'*|| - || g"** be a positive distribution. It means that
for every ¢ € #(R") such that ¢ > 0 and 0 & supp¢,

(AM'H I = sy MU [ 9) 2 0.
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We choose ¢ (x) = w(|x|)s, M **~"|| - | 7*(x/|x|), where v is a smooth non-negative
function such that [ 7" ~*~y/(r)dr =1 and 0 ¢ suppt¢. Then

(sa M A — s AR 0 ()

= (M A = 1 ) s w M A | (/)
= (M A =l s MR

= (MR Z = U I, MR > 0.

Note that | —A,1+A—n=#1,3,5---, it follows that

—n+A A
(1" =11 I 011124 = 0,

(-0 022) = A0 125

Using Holder’s integral inequality (A < 0), we obtain that

1 . -
v = [ 16l el ae

n Jsn—1

1 _ _
o MR R IR

n

n—A A
1 Lo\ o\
> (3 tenas) " (2] en;as)

n—A A
n .

= V(K)'T V(L)

WV

This clearly yields V(K) < V(L).
(3). The third case is A = —2[, [ € N. Since L € J/{‘, there is a measure U €

Moy (S"1) such that| - || ;* = M'~*u. Thatis: for any @ € (5" 1),
L -l e0)de = [ i1 p(6)du(o).

Let M'4|| - || = M'*|| - ||[g"** be a positive distribution. It means that for
every ¢ € . (R") such that ¢ > 0 and 0 ¢ suppé,

I =M N 8) > 0,
where ¢ is a smooth non-negative function such that [;*r"~*~'¢(r)dr =1 and 0 ¢
supptd. Then

M = TR 0 ()
-1 —n+A -1 - )L

= (M =M o (D)

(Ml 7LH ” —n+A Ml 7LH ” n+7L )>O

Therefore, we obtain

LAY | —ntA _ ppl=A [ (| =ntA
(M =M 1) = 0,
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07l s V7t S OB

Both sides’ integrals of the last inequality over "' is about measure u, we get

L B o) = [ 8- au (),

=A L —ntA AL entA
Lo IR ae > [ 121 de.

From Hélder’s integral inequality (A < 0), we obtain that

1 _ _
v =+ [ el el a6
1 Ay g|=ntd
= = 0 0|z d6
~ [, 1ol 16l
A n=h
> (5[ nenrae) (5 [ lelae) "
= n.Jsn—1 L n.Jsn—1 K
— V(L)TV(K)F.

Therefore, V(K) < V(L).
Above all, Theorem 1 is proved. [J

Since all 2-dimensional space embed in Ly, and therefore in L, with -2 <p <1
(see e.g. [11] Chapter 6), and all 3-dimensional space embed in Ly, and therefore in
L, with =3 < p <0 (see e.g. [13]). From Lemma 2.3, we have the following

COROLLARY 3.1. If n=2,3, 0< A <n. K, L are origin-symmetric infinitely
smooth star bodies in R". The function M'*|| - || ["™* — M'~*| - || "* is a positive
distribution in R"\ {0}, then

V(K)<V(L).

Proof of Theorem 2. (1). The first case is 0 < A < n. Suppose that L is an origin-
symmetric convex body in R”, so that || - ||Z’l is infinitely smooth, the boundary of
L has a positive curvature and L ¢ f}’f. Therefore, there is a function u € De(S"’l),
which is negative on some open origin-symmetric set  C §"~! and such that || -[|;* =
Ml—l.u )

We choose a function v € D,(S"~!) so that v(68) >0 and 3 0 such that v # 0
if 6 €Q, v(6) =0 otherwise. We define an origin-symmetric smooth body K by

-l = || " —eM™ 270, > 0. Since 1+ A —n,—n+2A #1,3,5,---,

MRty — >0,
we have

Ml—lH . ||Zn+7L _Ml—7L|| . Hl—(n-‘rl _ ng—lMl—n-‘r?Lv —£v>0.
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On the other hand,
-5 I = 1) = (g, vt 4 om)
=¢g(u,v) <0,
e (122112 < (- I8 1 ).
By Holder’s inequality,
1 _a B
L) = - n+A
vy = [ el el a0
1 _a B
— 0 0 n+7Ld6
<o [ nelz el
2 n-2
< (L[ venzrae) (L[ ezae) "
= n Jsn—1 L n Jgn-1 K
—V(L)TV(K).

Therefore V(K) > V(L), as desired.

(2). The second case is A < 0, A # —2I, [ € N. Suppose that K is an origin-
symmetric convex body in R”, so that || - ||,_{7L is infinitely smooth, the boundary of
K has a positive curvature and K ¢ f)’f. Therefore, there is a function u € De(S"’l),
which is negative on some open origin-symmetric set Q C S"~! and such that s, || -
k" =M

We choose a function v € D,(S"~!) so that v(68) >0 and 3 0 such that v # 0
if 6 €Q, v(0) =0 otherwise. We define an origin-symmetric smooth body L by
syl - ||Z”HL =5 |- HI}"Hl +eM'"*A "y £>0. Since 1 +A —n,—n+A #1,3,5,---,

lellerH*lv =0 > O,

we have
M A — sy MR [ = eM M T Y = g0 > 0.
On the other hand,
(1 N 125 = 1 ) = (1 e+
= ¢e(u,v) <0,

ey (I 1127 < (-2 - ).
By Holder’s inequality,

1 _ _
VK) = [ el el e

nJjs

1 — —n
> [ el el a6

n Jsn—1

A n—~
> (5 [ nelrae)" (5 [ lelrae) "
=~ n Jsn—1 K n Jsn—1 L
A

A n=
n

— V(K)TV(L)T.
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Therefore V(K) > V(L).

(3). The third case is A = —2I, I € N. Suppose that K is an origin-symmetric
convex body in R", so that || - ||,_{7L is infinitely smooth, the boundary of K has a positive
curvature and K ¢ .#}'. Therefore, there is a function u € D,(S"1), which is negative

on some open origin-symmetric set Q C S"~! and such that sy || - ||,_{7L = Ml’lu. We
choose a non-zero continuous function g € D,(S"~!) so that

M'g(0) = / 1ig,>(u)|u-6\77tdu =0 veecs!
s
We consider the smooth origin-symmetric star body L, and suppose that

[ I l*e(@)a6 = [ s(@)w'*as >0,
N sn—
(otherwise, consider —g(0) instead of g(6)). We choose € > 0 such that
16 —eg(0) >0 VO €S
We define an origin-symmetric smooth body L in R" by

10]17% = [|6]/* —eg(6) >0 VO €5

Therefore
Ml )LH ||—n+)L Ml )LH ||—n+)L SMI A (9)20.
On the other hand,
(U™ I ™ = (1 ") = (', eg(8))
/ (0)M'*ud6 > 0,
e (- I 1) = Al 1 ).
By Holder’s inequality,
1
V(K) = - 0|76l t*do
®) = [ el
1 _a _
> - 0|16, "*d6
=L, el ell:
A n—2
> (5[ elgae)” (5 [ 1el"ae) "
= n Jsn—1 K n Jsn—1 L
— V(K)T V(L)

Therefore V(K) > V(L).
If V(L) =V(K), it follows from the equality condition that || - ||x = || - ||z, i.e.

K = L, which contradicts ||6]/"~* = [|0]|%~* — £g(8) > 0. Therefore V(K) > V (L), as
desired.
Above all, Theorem 2 is proved.

A direct consequence of Theorem 1 and Theorem 2 is:
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COROLLARY 3.2. K, L are origin-symmetric infinitely smooth star bodies in R".

Each case in the following holds if and only if every origin-symmetric star body R" is
a A -intersection body:

(1) Let 0 < A < n. The positive distribution M"~*|| - || ;"% — M| - || "+ in

R"\ {0} implies V(K) < V(L).

(2) Let A <0, A # =21, 1 € N. The positive distribution s;M'~*|| - HZHA -

M| - ||I;”+7L in R"\ {0} implies V(K) < V(L).

(3) Let A = =21, | € N. The positive distribution M" || - | "% — M'=*||- || "+

in R"\ {0} implies V(K) < V(L).

[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]

[12]
[13]
[14]

[15]
[16]

[17]
[18]

[19]

REFERENCES

K. BALL, Some remarks on the geometry of convex sets, Geometric aspects of functional analysis
(1986/87), Lecture Notes in Math. 1317, Spring-Verlag, Berlin-Heindelberg-New York, 1988, 224—
231.

J. BOURGAIN, On the Busemann-Petty problem for perturbations of the ball, Geom. Funct. Anal., 1,
1(1991), 1-13.

J. BOURGAIN, G. ZHANG, On a generalization of the Busemann-Petty problem, Convex geometric
analysis (Berkeley, CA 1996), Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, Cambridge,
(1998), 65-76.

H. BUSEMANN, C. M. PETTY, Problems on convex bodies, Math. Scand., 4, (1956), 88-94.

R. J. GARDNER, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 342,
1(1994), 435-445.

R. J. GARDNER, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math.,
140, 2 (1994), 435-447.

R. J. GARDNER, A KOLDOBSKY AND T. SCHLUMPRECHT, An analytic solution to the Busemann-
Petty problem on sections of convex bodies, Ann. Math., 149, 2 (1999), 691-703.

A. GIANNOPOULOS, A note on a problem of H. Busemann and C. M. Petty concerning sections of
symmetric convex bodies, Mathematika, 37, (1990), 239-244.

G. H. HARDY, J. E. LITTLEWOOD, G. POLYA, Inequalities, Cambridge Univ. Press, Cambridge,
1952.

A. KOLDOBSKY, Intersection bodies in R* , Adv. Math., 136, 1 (1998), 1-14.

A. KOLDOBSKY, Fourier analysis in convex geometry, Mathematical Surveys and Monographs 116,
Amer. Math. Soc., Providence, RI, 2005.

A. KOLDOBSKY, A generalization of the Busemann-Petty problem on sections of convex bodies, Israel
J. Math., 110, 1 (1999), 75-91.

N. J. KALTON, A. KOLDOBSKY, V. YASKIN AND M. YASKINA, The geometry of Ly, Canada. J.
Math., 59, 5 (2007), 1029-1040.

D. G. LARMAN, C. A. ROGERS, The existence of a centrally symmetric convex body with central
sections that are unexpectedly small, Mathematika, 22, (1975), 164-175.

E. LUTWAK, Intersection bodies and dual mixed volumes, Adv. Math., 71, 2 (1988), 232-261.

M. PAPADIMITRAKIS, On the Busemann-petty problem about convex, centrally symmetric convex
bodies in R", Mathematika, 39, (1992), 258-266.

B. RUBIN, Intersection bodies and genaralized cosine transform, Adv. Math., 218, 3 (2008), 696-727.
B. RUBIN, G. ZHANG, Generalizations of the Busemann-Petty problem for sections of convex bodies,
J. Funct. Anal., 213, 2 (2004), 473-501.

G. ZHANG, Intersection bodies and Busemann-Petty inequalities in R*, Ann. Math., 140, 2 (1994),
331-346.



1060

D. Wu, T. MA AND L. ZHANG

[20] G. ZHANG, A positive solution to the Busemann-Petty problem in R*, Ann. Math., 149, 2 (1999),

535-543.

[21] G. ZHANG, Sections of convex bodies, Amer. J. Math., 118, 2 (1996), 319-340.

(Received November 24, 2012)

Mathematical Inequalities & Applications
www.ele-math.com

mia@ele-math.com

Denghui Wu

College of Mathematics and Statistics
Northwest Normal University
Lanzhou, Gansu, 730070, P.R. China
e-mail: wudenghui66@163.com

Tongyi Ma

College of Mathematics and Statistics
Hexi University

Zhangye, Gansu, 734000, P.R. China
e-mail: matongyi@126.com

Lili Zhang

College of Mathematics and Statistics
Northwest Normal University
Lanzhou, Gansu, 730070, P.R. China
e-mail: zhanglili.823@163.com



