athematical
nequalities
& Papplications

Volume 17, Number 3 (2014), 1061-1078 doi:10.7153/mia-17-78

SOME INEQUALITIES FOR HAUSDORFF OPERATORS

GUILIAN GAO AND YONG ZHONG

(Communicated by B. Opic)

Abstract. In this paper, we give the sufficient and necessary conditions for the boundedness of
Hausdorff operators on various function spaces. Moreover, we consider Lipschitz estimates for
the commutator of Hausdorff operators. We extend some known results.

1. Introduction

Hausdorff means, including the Cesaro means, have a deep root in the study of
some classical problems in analysis, for example, summability of the Fourier series
[17] and Hausdorff summability of number series [16]. A brief history of the study of
the Hausdorff summability can be found in [21].

In [30], Siskakis considered the Cesaro means for power series on the Hardy space
H' in the unit circle. The Fourier transform setting of this problem was considered by
Giang and Moricz in [10]. In fact, general Hausdorff means of a Fourier-Stieltjes trans-
form were introduced even earlier, in [12], but only on L'(R). The one-dimensional
Hausdorff operator H,, generated by a function ¢ € L'(R) is given by

Hy f(x) / \f| )dt, x€eR.
If f € L'(R), the Fubini’s theorem gives the formula
(Ho)(©) = [ Fu&)oar, 1€k,

where f is the Fourier transform of a function f. In particular, if we choose ¢(7) =
a(1—1)*"1x(0,1)(r) for e =1,2,..., then Hy = C is called the Cesaro operator of
order or. For Hy, Goldberg [13] investigated its properties on L”(R) with 1 < p <2.
Georgakis [12] obtained its Fourier analytic properties on the space of complex bounded
regular Borel measures on R, and as a special case he showed if ¢ € L'(R), then
H, is a bounded operator on L!(R). In [22], by using a thoughtful method, Liflyand
and Moéricz proved Hy, is bounded on H (R) and obtained an interchangeability rela-
tion between H,, and the Hilbert transform, which contains partial result in [10]. For
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0 < p < 1, Kanjin [18] proved Hy, is bounded on the Hardy space H”(R) with the
assumption on @, and specially he showed that C,, is bounded on H” provided o € N
and ﬁ < p < 1. Miyachi proved C is bounded on H? for every o > 0 and every
0 < p <1 in [27]. Recently, Liflyand and Miyachi [24] obtained the boundedness for
H, onthe H?(R)(0 < p < 1) under some smoothness conditions on ¢.

In the multidimensional case, the Cesaro means in [11] and Hausdorff means of
a special form in [23] were considered in dimension 2 only for the so-called product
(mixed) Hardy spaces. In the recent paper [32], a slight extension was made in the same
direction of product Hardy spaces. In [4], Brown and Méricz defined the multivariate
Hausdorff operator H(u,c,A) acting on Borel measurable functions f : R" — C by
setting

H(p e () = [ co)fAmdus),

where 1 is a o -finite complex measure defined on the Borel measurable subsets of
R", ¢: R" — C is a Borel measurable function which is nonzero pt-a.e., and A := [q; j}
is a n X n matrix whose entries a;; : R" — C are Borel measurable functions and such
that A is nonsingular p-a.e., and they gave the L”(R") boundedness for H(u,c,A).
For the H'(R") boundedness, two commonly used methods can not be applied for
H(u,c,A), one is commuting H(u,c,A) and Riesz transform, the other is using the
duality of H'(R") and BMO(R"). Despite all this, there are some special cases. In
[19], Lerner and Liflyand obtained the H'(R") boundedness when u is absolutely
continuous. And then, in [20], Liflyand proved the same boundedness under weaker
condition based on atomic decomposition of H'(R"). In [28], the boundedness for
such operators in H'!(R") was proved for diagonal matrices A with all entries on the
diagonal equal to one another.

For the H'!(R") boundedness, Andersen [2] proved it for the following Hausdorff
operator

Hy f(x) /ftxdu 1), xeR"

and its formal adjoint operator
= [ /dut), xe R,
R

where p is a signed o -finite Borel measure on R. In addition to the H'(R") bounded-
ness, Andersen also obtained the L”(R") and BMO(RR") boundedness for Hy and H,
in the same paper. Actually, before Andersen’s results, Brown and Méricz obtained the
L? -boundedness for Hy and Hj, for n=1 in [3]. We want to point out that Hy, is a
generalization of Hy indeed. As two special cases of Hausdorff operators Hy, and Hj,
the weighted Hardy-Littlewood average and weighted Cesaro average are defined by

(U f)(x /ftx yt, (Vi) (x /fx/t w(t)dt

where y : [0,1] — [0,00). Xiao [33] gave the operator norms of Uy and Vy on
both L(R") and BMO(R"). Recently, Tang and Zhai [31] extended Xiao’s results
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to Qg’q(R") , and Fu [8] extended Xiao’s results to much more function spaces, such as
BOA(R), K&P(R") and MK, (R") ( for their definitions, see Section 2).

Inspired by the above results, in this paper, we consider and obtain some sufficient
and necessary conditions of the boundedness for Hy and H,; on some more function
spaces, such as LP(R"), BMO(R") and Herz spaces. Some sufficient conditions have
been given, for example, see the following Theorem A and Theorem B, but we also
obtain some necessary conditions. Unfortunately, we can not extend our necessity re-
sults to the general measure and the Hausdorff type operator H(u,c,A), since we do
not know how to choose suitable functions. So we only study Hy and H;; on some
function spaces.

It is worth pointing out that one can learn much more backgrounds and develop-
ments of the Hausdorff operators by reading a comprehensive survey written by Lifly-
and [21]. Also, we no longer list much more results on some other spaces, such as local
Hardy space and Herz type Hardy space, see [5, 6, 7]. For the sake of convenience, we
describe Andersen’s results.

THEOREM A. ([2]) Let 1 < p< oo, 1/p+1/p' =1, and suppose W is a signed
o -finite Borel measure on R with p({0}) = 0.
(a) If |l nyp < o, then H} is defined on LP(R") and satisfies
[ Hpf Nl @y < Byl e n)-
(b) If [[]]n/p < oo, then Hy is defined on LP(R") and satisfies

IHuf ey < NTElaypll £l o ey
(¢) If ||l < oo, then Hy and Hj; satisfy

| il sy = [ ) Hugx)dx

for f € LP(R") and g € L' (R").

THEOREM B. ([2]) Let 1 be a signed o -finite Borel measure on R with 1({0})
=0.

(a) If [[u|ln < oo, then

|H,, f | spmo@ny < |[1llnll £l Byo@n), Vf € BMO(R").

(b) If |ul| < oo, then

|Hy f | amowny < |1l fllamowny, Y.f € BMO(R™).

The plan of this paper is as follows. In Section 2, we give some notations and defi-
nitions. In Section 3, we give the sufficient and necessary conditions of the boundedness
for Hy and Hy; on LP(R"), B%*(R") and Herz type spaces when y is positive on R.
In Section 4, we characterize p for which H, and H;‘l are bounded on BMO(R"),

%9(R"), and CBMO*(R") when u is positive on R*. In Section 5, we consider
Lipschitz estimates for the commutator of H; .
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2. Notations and definitions

A signed Borel measure ¢t on R may be decomposed as gt = u* — u~, where
u™ and u~ are positive Borel measures on R, at least one of which is finite. Let
e == Jg [t|"*d|ul|, where |u| = p"+p~. For oo=0, |lullo=[|u]l is the total
variation of U .

Let I denote the cube with sides parallel to the axes, and |I| be the Lebesgue
measure of 1; fj:= ﬁ J; f(x)dx is the average of f on I. For any ¢ > 0, tB(x,r) stands
for B(x,tr), where B(x,r) denotes the ball centered at x with radius r. For k € Z, let
By = {x € R": |x| < 2%}, Ay := B{\Bs_1, and yx(k € Z) is the characteristic function
of the set A;. The notation LP(R")(1 < p < o) is for the ordinary Lebesgue space
([14D.

DEFINITION 2.1. ([14]) Let f € LL_(R"). The space BMO(R") consists of
those measurable functions f with bounded mean oscillation

1
Iflswoges) = sup = [1£(0) = fildx <=
1cre |1

DEFINITION 2.2. ([1]) Let g € (1,00) and A € (—1/¢,0). A function f €
Ll (R") belongs to the A -central Morrey space BI*(R") if

1 1/q
. = [ 4q co
1A llg0 g Iselil()) ( |B(0,R)|'+A4 /B(O,R) @l ) =

DEFINITION 2.3. ([25]) Let ¢ € R, p € (0,0), g € (0,00) and A € [0,00). A

function f € L] _(R™\{0}) belongs to the homogeneous Morrey-Herz space MK, ’q)L (R™)

loc
if
ko

1/p
_ 7k()l kOCp p IS
Hf”MK;}qx(R") _ksolégz <k:z_/o<,2 ||kaLq(Rn)> < oo,
Obviously, MKZY (R") = K7 (R") is the homogeneous Herz space (see [26]), and the
classical Morrey space M;L (R") is a subspace of MI'(,?,’,;L (R™).
DEFINITION 2.4. ([1]) Let g € (1,00) and A € (—1/g,1/n). A function f €
Ll (R") belongs to the A -central bounded mean oscillation space CBM OTM (R™) if

1 1/q
_ — 4q oo
I lemmons ey =390 (1 g g O~ Froml®) <=

DEFINITION 2.5. ([31]) Let o € (0,1), p € (0,00] and g € [1,e0]. Q5 7(R") is
the space of all f € S/ (R") such that f(x) — f(y) is measurable functions on R" x R”"
and

1/q
_ 1/p—1/q |f(x)—f(y)|‘1 o
I lgga ey = supld ( [ ) <o

Throughout this paper the constant C is not necessarily the same at each occur-
rence. The notation A ~ B means that there are positive constants Cy, Cp such that
Ci1B<A<(GB.
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3. Best estimates for H, and H,

In this section, we suppose U is positive on R and give the sufficient and necessary
conditions for the boundedness of Hy and Hj; on L?(R"), B4*(R") and Herz type
spaces.

THEOREM 3.1. Let p € [1,00] and f € LP(R"). Then
(i)
[Hp fllr @y < CULF Il ey
if and only if |||,/ < oo; moreover,

(ii)

(Rm)—LP(R") H.u”n/p’

IHpf | 2r ) < CIlfllLr(we)

if and only if ||t],,/p < oo; moreover,

”LI’ R")—LP (R") H.li”n/p

Proof. We only prove (i), and the proof of (ii) is similar. The sufficiency is proved
by Andersen [2]. Suppose ||H,; f||1rwn) < C||fl|zr(wn)- Forany k € Z, we take fi(x) =

x|~ R/ Py o1 (%), then

Il
Hfi) =l [ ),

By a simple calculation, we obtain || fi[|z»gn) = (k[S"!|)!/P, and

|x| P 1/p
||HljkaLp(Rn) > {/||>k |x|(n+1/k)/1?</_ z|"|t|(”+1/k)/pd,u(t)) dx}
p ik
= (et ) [ e e
x| >k —k

k
=k el [ 1171l 9 o)

Then X
K / |~ e| O Pap ) < .
—k

Let k — o, we have ||it]|,/,y < °o. And then follow the argument in [33], we obtain

n/p

IH \|p mr)—ro ey = [llnypr- O

THEOREM 3.2. Let g € (1,00) and A € [~1/q,0]. If f € B4*(R"), then
(i)
HH[ijB%A(Rn g CHf”Bq?L (R")

if and only if ||1t[n(142)
(ii)

)—Ba:A (RM) = |12y

1Hp f1] go2 oy < CHfHBM(Rn)
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ifand only if 1], < o=: moreover, |l g s por zry = 1]t

Proof. 1t suffices to prove (i). By the Minkowski’s inequality, we get

1 . 1/q
<W / S0k Huf(x)|qu>

1/q
<|BOR|1+/lq o |f(x/t)|"dx> lt| " dp (r)

1/q
a4 7n(1+7t)d
( B(O,R/t]) IIW/OR/H e x) ' a

< a1 e ey
Conversely, the case A = —1/g is obvious because of B~ !/4(R") = L4(R") and
Theorem 3.1. While A € (—1/g,0], take fo(x) = |x|"*, x € R”, then 1 foll gy =
ql/(qk +1), and

Hifow) = folx) [ e~ Hdpa(r) <
Therefore [[it],(142) <eo. O

THEOREM 3.3. Let o € R and p, q € (1,). If f € Ky (R"), then
(i)
”HlijKg’P(R") < CHf||1’(j;‘~l’(Rn)
if and only if |||,/ —o < o0, moreover, HHﬁHK;“P(Rn)_K;“P(Rn) ~ g —a
(ii)
1Hpf | goer gny < ClLF Nl geer geny
if and only if ||1t][/g-o < o2, moreover, ||Hy||goor gn)_ gor @y = [11tn/g-o-

Proof. 1t suffices to prove (i). By the definition of Herz space and the Minkowski’s
inequality, we have

I3 gy = 220 ([ |2

keZ

S [, e afnauto] dx),,/q

keZ

« n 1/g\?
<k€%2’< p<,€Z Flx/t)du(t )‘ dx) )
< Z2or(3 Il an)

For t € Aj, note that

/q
17/ <0 [ U@ [ (peolax)
k—j Ay j+1

= C\t\"/q(\\fok,,llLuRn) 1 2 o))
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Thus,

. p\ 1/p
13 gy < € Z 20 (5 (17 szl )
JEZ

keZ
. 1/p
<o (L urm (S S sl ) )
JEZ keZ i=

= Clltllnjq—all fllger @ny-

Conversely, take fz(x) = |x|’(”+£)/‘1""x{‘x‘>1}(x), where € € (0,1). By a simple cal-
culation, we have || fe x|y gn) = |§n—1[2-k(etaq) (pe+eq _ 1) /(g 4 aq), and

el = 15715 (2 )w )
£ Kq‘p(R")_ 1_2# 8—|—(Xq .

On the other hand,

|x|
H;fs(x) :[‘ ‘|t|fn|t|(n+s)/q+a|x|f(n+s)/qfad”(t).

Thus,
r/q
B2 (0 ) ) .

Let § := 1 /e > 1, then there exists m € Z* such that § € [2~!,2™), and we have

I el

o q rla
> )2 ( / xk(X)dx>

k=1 [x[>&

oo r/q p
>3 [ wreega) / )

k=1 x>

Ve N /p oerag N\ Pld 1/e !
_ |Sn—1|p/q<2 qu) (2 1) (/ |t|—"|t| nte /tI+0‘dIJ~( ))
| £t+oq
> e/ fe|P / U e aaragy o))
KPR\ J_1/e

Thus,

* )4 < kap
CATE (/.

x|>1

||
/‘ ‘|t|—n|t|(n+£)/q+a|x|—(n+£)/q—ad‘u(t)

1/e
I fel o s, > €0 fel gy | S o),

Let € — 0, we reach

1l ooy > [ W70 date). O
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THEOREM 3.4. Let a € R, p, g € (1,00) and A € (0,%). If f € MK (R"),
then

(i)
<CI Il

||H[iklf||MK;‘;‘(Rn Rn)

if and only if ||U||,/q— 42 < o0, moreover,

(ii)

MKﬁﬁ(R")*MKK‘q)I (')~ 180l /q -

||Hlvlf||MK;‘ql(Rn) g CHf”MK;,ZqA(R")

if and only i g1 < oo moreovers [Fll g o arie oy~ IMlnig-ecs

Proof. 1t suffices to prove (i). Use the Minkowskl S 1nequahty, we have
1/q
il < [ ([, i)l au
k

1/q
— aq (179 du(r).
/R </2"1/|l|<xé2"/f )l x> d o

For any |¢| € (0,c0), there exists m € Z such that |t| € (2! 2"] and then

1/q
H* < qd t 7"/q/d p
H( uf)%kHL‘i /]R (,/zk"71/|t|<x<2km+1/t |f(x)| x) | | ‘u( )
1
S /]R (2 ||f%kmi||Lq(Rn)) e| " du(r).
i=0

Therefore,

‘‘I_I[.l-f||1‘4KI‘73‘;L (Rn)

o] ok : ' nr
<sup 2™ { Yy 2 ap(/R (ZHka—m—iHLq(R"))|l|_"/qdﬂ(t)) }

ko€Z k=—co

N P
<swp2 e [ (3 2 gl ) e

koEZ k=—o0

ko N /P
+sup 278 [ (3 2 ) )

ko€Z

k= —oo
<INty (27420 0] A au o)

= CH:”“”H/L[’*OH’A Hf”MKqu(R")
Conversely, take go(x) := |x|~(@~4+1/9) ¢ MK (R"), then

Higo(®) = g0(x) [ 11"/ du(o)
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For o # A, it is easy to show that

lgoxellfy = 248" 1(1 = 207MP) (Ag — arg),

| 1/p . 1_ 1_2( p 1/q
||g0||MK;,1qk(R”): (m) |S ‘ (W) '

For o = A, we have | goxx||7, =1n2-|S""!|, and

and

1 1/p NNy
gz = (7355) (28D

Thus,
* “A—n/d
800 ey = 10z e [ 1177/ )

We obtain [|i]l,/g— a2 <o O

REMARK 3.1. If du(t) = y(t)x(0,1)(t)dt for y:[0,1] — [0,e0), we can get the
corresponding result in [8] and [33].

4. Some estimates for H, and H,

In this section, we suppose i is positive on R and we characterize u for which
Hy and H;; are bounded on BMO(R"), Oy Y(R"), and CBMO?*(R"). Note that

Hyf(x) = Jo fx)du(r), Hyf(x) =[5t " f(e/t)du(r) and |[plle = 5t “du().

THEOREM 4.1. If f € BMO(R"), then

(i)
|H,f | oy < C|lfllBsown)
if and only if || || < o, moreover, |[Hy | pyon)—smon) = [|4]|n;
(ii)

|Hufl Bmowny < C|lfllBsown)
if and only if ||| < e, moreover, ||Hyl|ppmorr)—pmomn) = |||

Proof. 1t suffices to prove (i). See [2] for the sufficiency part. Conversely, take

1, xeR}
folx) = { ~1, xR}

where R} and R} denote the left and right halves of R", separated by the hyperplane
x1 =0 (x is the first coordinate of x € R" ). Obviously, fy € L*(R") C BMO(R")
and || follgmo(rr) # 0. On the other hand,

) = {0 R = [,

So we obtain |||, <. O
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THEOREM 4.2. Let p € (0,|, g € [1,0) and a € (0,min(1,n/p)). If f €
0, (R"), then
(i)
185l gy < I g

if and only if |||,/ p 1o < o, moreover, when o >n(1/p—1/q), we have

1Hp | g ny— g2 gy = 111l /-5

(ii)
1Ll gy < €l g

if and only if |||,/ p—a < o, moreover, when o >n(1/p—1/q), we have

1Hpll gt gny . g2 gy = | lln/p—ar-

Proof. We only prove (i). For any cube I, use the Minkowski’s inequality, we

have
|H,; L f) la
</ IS |x y|"+w d"dy>
“n fxt 1/‘]
< [T ([P y|"+w o d"dy> )
1/
= [Curppre(( [ ] TS0 ) P
111 J1/1] Ix yl"*q"‘ '
Thus,

/q
1/p—1 | (Y)|q !
11| /p— /q<// |x y|n+qa dxdy

1/q
n|.n/q—o |, n/p—n/q 1/p—1/q / / |l1 )
t| e t I/t —————————dxd du(t
/ | | | | | | | /| || < 116l J11) |)C y|n+qO€ y ()

”.an/p +0£||fHQ”“1 R7)*
Conversely, take
fO(x) = { |x|_n/p+a7 PAS R:}?

—\x\_"/p”‘, x€R].

Then fy € Q5 /(R") and ||f()||roq gy 7 0 (see [31]). On the other hand,

(Hfo)(x) = fo(x) /0 "o gy ),

Therefore |||,/ 4o < 0. Moreover, we get ||H,; ||Qaq (R")— 0% (R =tlln/ptra- O
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THEOREM 4.3. Let g € (1,00) and A € (—1/q,1/n). Then

(i)
||H:¢f||CBMquL (Rm) < CHfHCBMquL (R")
ifand only i H) HCBMO%A(R”)HCBMO‘M(R") = ”“H"(Hl);
(ii)

15 fll camonr ®) S Cllfllepponr (R")

if and only if ||(t[| 5 < oo, moreover, A (R")—CBMO4-* (R") = [l -na-

Proof. We only prove (i). Use the Fubini’s theorem, we have

(H, f)B(0.R) :/0 TR/t du(t).

Apply the Minkowski’s inequality, we get

1 . 1/q
(W/B(O,R) [Hyf (%) = (Hu o) |qu)
“ a \1/a
/0 (f (x/1) —fB<o.,R/z>> le|™"du(r) dx)

-~ 1 1/q
< s _ agx) Il
/ (B(OR/|I|)|1+M/ A LT X> 7 el o)

< tllaqa) 1 f 1l camont mm)-

1
B (IB(O,R)I”M /B<0,R>

Conversely, when A € (—1/¢,1/n), take

|x"*,  xeR?
—|x|"*, xeRy

ot = {
then (fo)p(o.r) =0 and || follcgpronn @y = Vi ™ /(g2 +1). On the other hand,

Hfox) = fol) [P au() <
so we obtain |[i|,(j12) <eo. O

REMARK 4.1. Similar to Remark 3.1, we can get some corresponding results in
[8], [31] and [33].

REMARK 4.2. In fact, the sufficiency parts of our main results in Section 3 and
this section also hold if we remove the non-negativity of u, for example, Theorem A
and Theorem B. But for the necessary conditions under the general t, we can not find
some suitable functions so far.
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5. Lipschitz estimates for commutator of H ;j

In this section, we will show Lipschitz estimates for the commutator of H ;‘l . Some
related results about the commutator of another high dimensional Hausdorff operator
can be found in [9]. But here our idea and method come from [8], which are different
from [9]. First we define commutator H *’b, and then state our results. Note that for
H,,, we have similar results and omit them here.

DEFINITION 5.1. ([29]) Let B € (0,1). The Besov-Lipschitz space Ag(R") is
defined by
|b(x+h) = b(x)|
Iy = sup ;
x,heR? ‘h|

DEFINITION 5.2. Let b € Ljoc(R"). The commutator of Hausdorff operator H, :j’b
is defined by

(H" f)(x) = b(x) (Hy. f)(x) = Hy (b ) (x):

THEOREM 5.1. Let ﬁ € (071)7 p1 € (1771/[3)7 P2 € (l7°°]7 l/pl _1/p2 :ﬁ/l’l
and b € Ag(R").

Ifmax{”.an/p’z? Hnu”n/pll} < oo, then
I Pl < Comax{ a0 s -

THEOREM 5.2. Let pi € (1,5, pa € [p1,%], B € (0,1), g1 € (1,n/B), 1/q1 —
1/qg2=B/n, beAg(R") and —n/q1+ B <o <n(1—1/q).
Ifmax{””Hn/qlzfow ||uH"/q/1706} < oo, then

*,b
”H[J/ fH['({?;PZ(Rn) < CmaX{H,Ll”n/qu,a, H.u”n/q’lfa}”b”/\ﬁ(]l%”)Hf”]‘(gl*l’l (Rn)*

THEOREM 53 Let p1 € (l’oo]’ P2 € [pl,ooL ﬁ € (071>7 q1 € (17n/ﬁ)7 1/ql -
1/g2=B/n, be Ag(R"), —n/q1+B <o <n(l—1/q1) and A > 0.
Ifmax{||“Hn/q’2—a+7wHou”n/q’l—a-&-l} < oo, then

*,b .
”HIJ fHMng").qu(R") < Cmax{||“Hn/q’2—a+7w Hou”n/q’l—a-‘rl}HbHAﬁ(R")||f“MKg{%ql(er)'

THEOREM 5.4. Let B € (0,1), b€ Ag(R") and p € (1,°).
Ifmax{”.an/p’v ”.an/p’-&-ﬁ} < oo, then

*.b
I gy < sl 08 e

To prove our results, we need some lemmas.

LEMMA 5.1. ([29]) If B €(0,1) and f € A,; (R™), then for any cube Q, we have

sup £ (x) — fol < CIQIP"|If 4 e)-
x€Q



SOME INEQUALITIES FOR HAUSDORFF OPERATORS 1073

LEMMA 5.2. If B€(0,1) and b € Aﬁ(Rn), then

M(H £)@) < Cbl gy [ 171+ )M /)l ),

where M is the Hardy-Littlewood maximal operator, and Mg is the fractional maximal
operator ([14]).

Proof. For afixed Q and any x € Q, then

g vy < 5 [ 1000 = blo/0) o)l e)dy

\Ql//‘ F/t)|dyle|™"d|u|(r)
+@/R/QKbQ—bQ/|z|)f(y/t)Idy|t|*”d\u\(z)

1
* @/R/QW?Q/M —b(y/0)f(y/t)|dylt|"d|ul(r)

=L+ L+

After applying Lemma 5.1, we get

1
1< Clblay g iy ([ 1700010y )il el

. ; Bis—n
< Clbllay ey [, (igritiam o V100 )Pl ")
< Clbllay ey [ 1P My /)l 1)

Similarly,
Iy < Clbllay ey [, "My e/r)dlu] )
Note that 8 € (0,1), then
1
lbo —bo || < @/ |b(y) = b ldy
)|dzdy
IQI IQ/tI / /Q/Itl @

<|bll4 n—/ Byt ,ﬁd>
| Aﬁ(R)<Q| oI 0/1] Q/|t||Z| ¢
< by (1 -+ P10
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Thus,
1 < bl oy s [, 10 ) ([ /0lay Jalulo
<Clblayen [, |r|"<1+|z|ﬂ>(m
< Clbll gy ey [ 16171+ 1P )My (x/1) el )

[ oy e alue

Combining the estimates of I;,I; and I3, we obtain

157 10y < Clbly sy [ 11771+ )M a1 )l 1),
Then

MH;")(03) < Clbllay ey [ 171+ WM /)l 1), O

LEMMA 5.3. ([26]) Let p; € (0,00], p2 € [p1,°°], B € (0,1), q1 € (1,n/B) and
Vgi—1/qp=B/n. If —n/q1+ B < a <n(l—1/q), then

M1 g2 gy < IS s oy

LEMMA 5.4. ([15]) Let p; € (0,0], p2 € [p1,°°], B €(0,1), g1 € (1,n/B), 1/q1—
1/ga=B/nand 2 >0.If —n/q1+B+A <a <n(l—1/q1)+A, then

v < 0. .
||MﬁfHMKp27Lq2(Rn) C||fHMKp17Lq1 (Rn) ‘:l

LEMMA 5.5. ([29]) If B € (0,1) and p € (1,00), then
1
|+

/Q £ = foldy

S B o mHsup
A1l || 310 s

Proof of Theorem 5.2. By Lemma 5.2 and the Minkowski’s inequality, while
1/q2 =1/q1 — B/n, we have

1M H” 1) il 122 )

@ 1/a
< Clpllygan ([, | L+ 08wt csinatulo)| )

/g
. a” —n/qy —n/d;
<Ol [ (Lo S (1),




SOME INEQUALITIES FOR HAUSDORFF OPERATORS
For any |¢| € (0,c0), there exists m € Z such that [t| € (2"1,2"]. So

1M (H 1)) e 2 o

1/q2
. q2
s CHbHAﬁ(R")/R </2km1/|r|<x<zkm+1/|t|(Mﬁ 1 dx)
X (Je|7 0 4 [e| ) d | (r)

1
< Clbllag ey [ 3 N )kl e el ).
i=0

Then
*,b
MG ) g
1
< Clpllyaen{ 32 ([ 3 1085 )l e
keZ Rizo

, , P2y 1/p2
x<|z|"/ql+|z|"/qz>d|u|<r>) }

1075

1/pa , ,
<ty [ 3 (20 el i) (o )

kEZ
< By M g oy [ (1115 + 1ol o).
By Lemma 5.3, we reach

b
V" g gy < CmaxX I o 1B o HIBl g oy | s s

Proof of Theorem 5.3. By the proof of Theorem 5.2, we have

#,b
IMCHE" )z e
1

< Cl11 4y ey sup2 ko’l{ Z / (ZH Mp f) Xoe—m+ill L2 (R
k=—oco

i=0

, , 1/p2
(] 4 |t|—"/qz>d|u|<r>) }

1/p2
< Clblay e sup 2 ’“”1/ ( > Zkam”(Mﬁf)Xkm+ii§2(Rn))
0

k=—oco
x (|t~ + Itl_"/qz)dlul(t)

O

<1y 1M s gy (274200558 4 58 ] 1)

< Cmax{||“Hn/q’2—Ot+7Lv Hou||n/ql—0£+7L}HbHAB(R")”MﬁfHMK“:Z*PZ (R
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Using Lemma 5.4, we obtain

*,b
MG g oy < Ol -2

< 80 g ey I s, gy O

Proof of Theorem 5.4. Let x € O, we have

1 . ) , *
QT Jy 16— (i Dlde < sy | IH G
1
S W/HQ/QW’(Z) —bo)f(z/t)|dz|t| "du(r)
1
* W/R/Q [(bg — b)) f(2/1)|dz|t] "dp(t)

i W /R /Q [(boyy = b(1/0)f (2/1)|dz]t|"dp(7)
=i+ L+

By the same procedure as in Lemma 5.2, we obtain
I < by ey [ MF/OI "l 0):
I2 < Clblay gy [ MG/ (1 Pl o)
Iy < Clblay oy [ M5 Ce/1) 1P 1),

By Lemma 5.5, we get

/RMf(X/t)Itl_”(HItl_ﬁ)dlul(t)

*,b .
1 f N = gy < ClIP R ey
Lr(R")

< Clblay o IM ey [ 1770+ Pl
< CmaX{Hou”n/plv Hou“”n/[)/“rﬁ}”b“/\ﬁ(R")Hf”Lp(R")?

the last step by the boundedness of M on LP(R") ([14]). O
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