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THE ORLICZ AFFINE ISOPERIMETRIC INEQUALITY
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(Communicated by Y. Burago)

Abstract. In this paper, the Orlicz-affine surface area is introduced. Isoperimetric inequalities
for this new afine surface area are established.

1. Introduction

The affine surface area is one of the most important concepts in affine differential
geometry. The initial study of the classical affine surface area went back to Blaschke
(cf. [4]) in the last century. That is the SL(n) and translation invariant surface area
in R

3 . It was extended by Leichtweiss [10] to convex bodies in R
n with sufficiently

smooth boundary (cf. [17, 29, 33, 37]). In recently, the affine surface area has been to
establish notions and theorems for arbitrary convex bodies. It provides a tool to measure
the boundary structure of a convex body and be key ingredients in many applications.
For instance, in the theory of valuations (cf. [1, 12, 13, 31]), approximation of convex
bodies by polytopes (cf. [7, 14, 32, 34]) and information theory (cf. [25, 39]). It also
has an impact in the study of the affine PDE (cf. [20, 35, 36]). More important is that it
relates to various isoperimetric inequalities (e.g., the curvature image inequalities, the
Blaschke-Santaló inequality and the Mahler volume product inequality) (cf. [15, 28]).
During the recent years, the notion of affine surface area has attracted increasing interest
(cf. [2, 3, 12, 17, 19, 24, 37, 38, 40, 41]).

During the past decades it has come to be seen that the classical Brunn-Minkowski
theory of convex bodies is a part of a more general Lp -Brunn-Minkowski theory intro-
duced by Lutwak (cf. [18, 19]). The Lp extensions of the affine surface area have been
found within the Lp -Brunn-Minkowski theory. For 1 < p < ∞ , the Lp -affine surface
area is defined by Lutwak (cf. [17, 19]) for all convex bodies K in R

n . He finds that
the Lp -affine surface area attains it’s maximum among all convex bodies in R

n with
fixed volume if and only if the body is an ellipsoid. This is very important in studying
the Lp -affine surface area. Specially, if p = 1, the Lp -affine surface area is just the
classical affine surface area defined by Petty (cf. [27]). In [9] Hug gave a new defini-
tion of the Lp -affine surface area for p > 0 and proves that these new definitions give
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the same Lp -affine surface area as that defined by Lutwak. Moreover, he shows that the
Lp -affine surface area is the well known centro-affine surface area for the case p = n .
Thus the notion of the Lp -affine surface area connects two important affine geometric
functionals.

Recently, much effort has been made to extend the Lp -Brunn-Minkowski the-
ory to the Orlicz-Brunn-Minkowski thoery (cf. [5, 8, 21, 22]). The extension of the
Lp -affine surface area, namely, the general affine surface area, were investigated by
Ludwig, Reitzner and Ye (cf. [11, 13, 39, 42]). In this paper, inspired by the Orlicz-
Brunn-Minkowski theory, we consider the Orlicz extension of the affine surface area.
We obtain the Orlicz-affine isoperimetric inequality and the Orlicz-analogue Blaschke-
Santaló inequality.

Let φ : (0,∞) → (0,∞) be a function such that φ is increasing and concave on
(0,∞) , limt→0 φ(t) = 0 and limt→∞ φ(t)/t = 0. In this case, we set φ(0) = 0. The
class of such φ is denoted by C . Let K n

o denote the set of convex bodies whose
centroids are at the origin. For K ∈ K n

o , the Orlicz-affine surface area of K is defined
as

Ωφ (K) = inf

{
λ > 0 :

∫
∂K

φ
(

κ0(K,x)
λ

)
dμK(x) � n|K|

}
, (1.1)

where dμK(x) = x · v(x)dH n−1(x) is the cone measure on ∂K , x · v is the standard
inner product of x and v in R

n , vK(x) is the exterior unit normal vector to K at x∈ ∂K ,
H n−1 is the (n− 1)-dimensional Hausdorff measure. Let |K| denote the volume of
K , and

κ0(K,x) =
κ(K,x)

(x · vK(x))n+1

where κ(K,x) is the Gaussian curvature of K at x ∈ ∂K .

If one takes φ(t) = t
p

n+p and p > 0 in (1.1), then φ(t) ∈ C and it turns out that

[Ωφ (K)]
p

n+p =
Ωp(K)
n|K| (1.2)

where Ωp(K) is the Lp -affine surface area defined as (cf. [9, 17, 19])

Ωp(K) =
∫

∂K
κ0(K,x)

p
n+p dμK(x).

More specially, if p = 1 in φ(t) = t
p

n+p , then

[Ωφ (K)]
1

n+1 =
Ω(K)
n|K| , (1.3)

where Ω(K) is the classical affine surface area defined by (cf. [26, 27])

Ω(K) =
∫

∂K
κ0(K,x)

1
n+1 .
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In this paper, we will mainly prove the following Orlicz-affine isoperimetric in-
equality.

Orlicz-affine isoperimetric inequality: Let K ⊂ K n
o and BK be the origin sym-

metric Euclidean ball with |K| = |BK | . If φ ∈ C be a concave function, then the
following inequality holds

Ωφ (K) � Ωφ (BK). (1.4)

For strictly increasing φ , the equality holds if and only if K is an ellipsoid.
This paper is organized as follows. In section 2, we establish some notations and

list some basic facts regarding convex bodies and convex functions. In section 3, some
of the properties of Orlicz-affine surface area are established. Sections 4 contains some
results of the Orlicz-affine inequality.

2. Basic definition and notation

The setting will be n-dimensional Euclidean space R
n . Let K n denote the set

of convex bodies in R
n . For K ∈ K n , let h(K; ·) = hK : R

n → R denote the support
function of K

h(K;x) = hK(x) = max{x · y : y ∈ K}.
Thus if y ∈ ∂K , then

hK(vK(y)) = σ(K,y) · y,
were σ(K,y) denotes an outer unit normal to ∂K at y . Obviously, when c > 0, for the
support function of the convex body cK = {cx : x ∈ K} we have

hcK = chK .

By the definition of the support function, it follows immediately that the support func-
tion of the image AK (= {Ay : y ∈ K}) is given by

hAK(x) = hK(Atx) (2.1)

for A ∈ SL(n) . Here At denotes the transpose of A .
Let Ki ∈ K n , then Ki → K0 ∈ K n provided

|hKi −hK0 |∞ = max
u∈Sn−1

|hKi(u)−hK0(u)| → 0.

For K ∈ K n
o , the polar body K∗ of K is defined by

K∗ = {x ∈ R
n : x · y � 1 f or all y ∈ K}.

It is easy to see that for c � 0

(cK)∗ =
1
c
K∗. (2.2)
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More generally for A ∈ GL(n)

(AK)∗ = A−tK∗

where A−t denotes the inverse of the transpose of A . It is easy to verity that if K ∈K n
o ,

then

K∗∗ = K. (2.3)

An inequality involving the volume of K and K∗ is the Blashke-Santaló inequality (cf.
[23, 27, 30])

|K||K∗| � ω2
n (2.4)

where K is the convex body centered at the origin and ωn is the volume of the unit ball
Bn in R

n .
The classical Aleksandrov-Fenchel -Jessen surface area measure, SK of the convex

body K , can be defined as the unique Borel measure on Sn−1 such that∫
Sn−1

f (u)dSK(u) =
∫

∂K
f (vK(y))dH n−1(y) (2.5)

for each continuous f : Sn−1 → R . Here vK(y) is the outer unit normal to ∂K at y and
dSK(u) is the surface area measure of ∂K . Moreover, the surface area measure of cK
satisfies

ScK = cn−1SK . (2.6)

It is known that the measure SK cannot be concentrated on a hemisphere of Sn−1 for
K ∈ K n

o , and it is weakly continuous in K , i.e., if Ki ∈ K n
o , then

Ki → K0 ⇒ SKi → SK0 weakly. (2.7)

A convex body K ∈ K n is said to have a curvature function f (K, ·) : Sn−1 → R ,
if its surface area measure S(K, ·) is absolutely continuous with respect to the spherical
Lebesgue measure S , and

dS(K, ·)
dS

= f (K, ·) = fK(·) (2.8)

almost everywhere with respect to S .
For A ∈ SL(n) , it’s shown in [16] the curvature function satisfies

f (AK,u) = f (K,Atu) (2.9)

for u ∈ Sn−1 .
For K ∈ K n

o , it will be convenient to use the volume normalized conical measure
VK defined by (cf. [21, 22])

|K|dVK =
1
n
hKdSK . (2.10)
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Observe that VK is probability measure on Sn−1 .
We say the sequence { fi}→ f0 provided

max
t∈I

| fi(t)− f0(t)| → 0

for every compact interval I ⊂ R . For each f , we define c f by

c f = min{c > 0 : max{ f (c), f (−c)} � 1}. (2.11)

For convex body K ∈ K n , we say that ∂K is line free in direction u ∈ Sn−1

if ∂K ∩ (x +Ru) consists of no more than two points for each x ∈ ∂K . The Ewald-
Larman-Rogers theorem (cf. [6]) guarantees that for each convex body K

H n−1({u ∈ Sn−1 : ∂K is not line free in direction u}) = 0. (2.12)

3. The Orlicz-affine surface area

Let φ ∈ C , by the definition of (1.1) and (2.10), the Orlicz-affine surface area can
be rewritten as

Ωφ (K) = inf

{
λ > 0 :

∫
Sn−1

φ
(

κ0(K,u)
λ

)
dVK(u) � 1

}
(3.1)

where κ0(K,u) = κ(K,u)
(x·σ(K,u))n+1 . Since φ is strictly increasing on [0,∞) , it follows that

the function

λ →
∫

Sn−1
φ
(

κ0(K,u)
λ

)
dVK(u) (3.2)

is strictly decreasing in (0,∞) . Thus, we have

LEMMA 3.1. Suppose φ ∈ C and K ∈ K n
o , then we have

(1)
∫
Sn−1 φ

(
κ0(K,u)

λ0

)
dVK(u) > 1 i f and only i f Ωφ (K) > λ0 .

(2)
∫
Sn−1 φ

(
κ0(K,u)

λ0

)
dVK(u) = 1 i f and only i f Ωφ (K) = λ0.

(3)
∫
Sn−1 φ

(
κ0(K,u)

λ0

)
dVK(u) < 1 i f and only i f Ωφ (K) < λ0.

Moreover, if ∂K is line free, the Orlicz-affine surface area can be rewritten as

Ωφ (K) = inf

{
λ > 0 :

∫
Sn−1

φ

(
fK(u)−1hK(u)−(n+1)

λ

)
dVK(u) � 1

}
. (3.3)

The following lemma shows that Ωφ (K) is SL(n) invariant.



1084 FANGWEI CHEN, CONGLI YANG AND JIAZU ZHOU

LEMMA 3.2. Let K ∈ K n
o , φ ∈ C and A ∈ SL(n) , then

Ωφ (AK) = Ωφ (K). (3.4)

Proof. Suppose Ωφ (AK) = λ0 . By Lemma 3.1 we obtain

∫
Sn−1

φ

(
fAK(u)−1hAK(u)−(n+1)

λ0

)
dVAK(u) = 1.

Combine with

h(AK,u) = h(K,Atu) and f (AK,u) = f (K,Atu)

we have ∫
Sn−1

φ

(
fK(Atu)−1hK(Atu)−(n+1)

λ0

)
dVAK(u) = 1.

Since A ∈ SL(n) , we obtain

∫
Sn−1

φ

(
fK(u)−1hK(u)−(n+1)

λ0

)
dVK(u) = 1.

By Lemma 3.1 again we complete the proof. �

The following lemma will be useful for our proof of the main result (cf. [11]).

LEMMA 3.3. Let K ∈K n
0 , |K∗| denote the volume of polar body K and κ0(K,x)

be defined as above. Then the following inequality holds
∫

∂K
κ0(K,x)dμK(x) � n|K∗| (3.5)

with equality holds if and only if κ0(K,x) is constant.

4. Proof of the Orlicz-affine isoperimetric inequality

Now, we are ready to prove the main result of the present paper.

THEOREM 4.1. Let K ⊂ K n
o be a convex body with the centroid at the origin,

and BK be the origin symmetric Euclidean ball with |K| = |BK | . Then for all φ ∈ C ,
the following inequality holds

Ωφ (K) � Ωφ (BK). (4.1)

For strictly increasing φ , the equality holds if and only if K is an ellipsoid.
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Proof. Let φ ∈ C and K ∈ K n
o . Suppose Ωφ (BK) = λ0 . By Lemma 3.1 we

obtain ∫
∂BK

φ
(

κ0(BK ,x)
λ0

)
dμBK (x) = n|BK|. (4.2)

In order to prove (4.1) we only need to prove∫
∂K

φ
(

κ0(K,x)
λ0

)
dμK(x) � n|K|. (4.3)

Since |K| = |BK | , we have

BK =
( |K|

ωn

) 1
n

Bn

where Bn is the unit ball in R
n and ωn is the volume of Bn . By (4.2) we have

n|BK | =
∫

Sn−1
φ

(
fBK (u)−1hBK (u)−(n+1)

λ0

)
hBK (u) fBK (u)dS(u) (4.4)

=
∫

Sn−1
φ

(
( |K|

ωn
)−2

λ0

)
|K|
ωn

dS(u)

= n|K|φ
(

ω2
n

λ0|K|2
)

.

On the other hand since φ is concave and increasing, by Blaschke-Santaló inequality,
Lemma 3.3 and Jensen’s inequality we obtain

n|K| = n|BK | = n|K|φ
(

ω2
n

λ0|K|2
)

� n|K|φ
( |K∗|

λ0|K|
)

(4.5)

� n|K|φ
(

1
n|K|

∫
∂K

(
κ0(K,x)

λ0

)
dμK(x)

)

�
∫

∂K
φ
(

κ0(K,x)
λ0

)
dμK(x).

It implies
Ωφ (K) � λ0.

For strict increasing function φ , the equality in the first inequality of (4.5) holds
if and only if there is equality in the Blaschke-Santaló inequality, that is exactly for
ellipsoids. By Lemma 3.3 the equality in the second inequality of (4.5) holds for origin
centered ellipsoids. It also implies that the equality in the third inequality of (4.5) holds.
That means only when K is an ellipsoid. �

In fact, if p > 0 and φ(t) = t
p

n+p , then φ is a concave function. In this case the
Orlicz-affine isoperimetric inequality is exactly the Lp -affine isoperimetric inequality
obtained by Lutwak (cf. [19]).
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COROLLARY 4.2. Let p > 0 , K ∈ K n
o and Ωp(K) denote the Lp -affine surface

area. Then the following Lp -affine isoperimetric inequality holds

Ωp(K)n+p � nn+pω2p
n |K|n−p (4.6)

with equality if and only if K is an ellipsoid.

Proof. Let K ∈ K n
o , |K| = |BK | and φ(t) = t

p
n+p . Suppose Ωφ (K) = λ0 and

Ωφ (BK) = λ1 . By the definition of the Orlicz-affine surface and Lp -affine surface area
we obtain

λ
p

n+p
0 =

Ωp(K)
n|K| and λ

p
n+p
1 =

Ωp(BK)
n|BK | . (4.7)

By Theorem 4.1 we know

Ωp(K) � Ωp(BK).

In fact

Ωp(BK) = Ωp

(( |K|
ωn

) 1
n

Bn

)
.

Note that Ωp(·) is homogeneous of degree q = n(n−p)
n+p (cf. [11, 19]). We have

Ωp(BK) = Ωp

(( |K|
ωn

) 1
n

Bn

)
=
( |K|

ωn

) n−p
n+p

Ωp(Bn). (4.8)

It is easy to show that
Ωp(Bn) = On−1

where

On−1 = nωn is the sur f ace area o f Sn−1.

By simple computation, we obtain

Ωp(K)n+p � nn+pω2p
n |K|n−p. �

Moreover, if one takes p = 1 in (4.6), it is the classical affine isoperimetric in-
equality established by Petty (cf. [27]).

COROLLARY 4.3. Let K ∈ K n
o , Ω(K) be the affine surface area. Then the fol-

lowing affine isoperimetric inequality holds

Ω(K)n+1 � nn+1ω2
n |K|n−1 (4.9)

with equality if and only if K is an ellipsoid.
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The following result is an analogue of the the classical Blaschke-Santaló inequality
for the Orlicz-affine surface area of K∗ and K .

THEOREM 4.4. Let φ ∈ C and K ∈ K n
o , then

Ωφ (K)Ωφ (K∗) �
(

ω2
n

cφ |K||K∗|
)2

. (4.10)

If φ is strictly increasing, then with equality hold if and only if K is an ellipsoid.

Proof. By Theorem 4.1 we have

Ωφ (K) � Ωφ (BK) and Ωφ (K∗) � Ωφ (BK∗). (4.11)

By simple computation we obtain

Ωφ (BK) =
ω2

n

cφ |K|2 and Ωφ (BK∗) =
ω2

n

cφ |K∗|2 . (4.12)

Hence, we have

Ωφ (K)Ωφ (K∗) �
(

ω2
n

cφ |K||K∗|
)2

.

Here equality holds if and only if Ωφ (K) = Ωφ (BK) and Ωφ (K∗) = Ωφ (BK∗) . This
means K must be an ellipsoid. �

Letting p > 0 and φ(t) = t
p

n+p in Theorem 4.4 will lead to the following corollary
which is obtained by E. Lutwak (cf. [19]).

COROLLARY 4.5. Let K ∈ K n
o and p > 0 , then

Ωp(K)Ωp(K∗) � (nωn)2 (4.13)

with equality if and only if K is an ellipsoid.
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[24] M. MEYER AND E. WERNER, On the p-affine surface area, Adv. Math. 152 (2000), 288–313.
[25] G. PAOURIS AND E. WERNER, Relative entropy of cone measures and Lp centroid bodies, Proc.

Landon Math. Soc. 104 (2012), 253–286.
[26] C. PETTY, Geominimal surface area, Geom. Dedicata 3 (1974), 77–97.
[27] C. PETTY, Affine isoperimetric problem, Ann. N. Y. Acad. Sci 440 (1985), 113–127.
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