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ON A QUESTION FOR DUAL QUERMASSINTEGRALS
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(Communicated by J. Pečarić)

Abstract. The well-known question for dual quermassintegrals is following: For which values
of i ∈ N and every pair of star bodies K and L , is it true that

W̃i(K+̃L)
W̃i+1(K+̃L)

� W̃i(K)
W̃i+1(K)

+
W̃i(L)

W̃i+1(L)
?

In 2005, the inequality was proved if i = n−1 or i = n−2 . But, now the question is not solved
completely for 0 � i � n− 3 and every pair of star bodies K and L . In the paper, we will give
a completely answer for the dual question.

1. Notations and preliminaries

The setting for this paper is n -dimensional Euclidean space R
n . Let K n denote

the set of convex bodies (compact, convex subsets with non-empty interiors) in R
n .

We reserve the letter u for unit vectors, and the letter B for the unit ball centered at the
origin. The surface of B is Sn−1 . The volume of the unit n -ball is denoted by ωn.

We use V (K) for the n -dimensional volume of convex body K . Let h(K, ·) :
Sn−1 → R, denote the support function of K ∈ K n ; i.e. for u ∈ Sn−1

h(K,u) = Max{u · x : x ∈ K},

where u · x denotes the usual inner product u and x in R
n .

Let δ denote the Hausdorff metric on K n , i.e., for K,L ∈ K n, δ (K,L) = |hK −
hL|∞, where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn−1).

Associated with a compact subset K of R
n , which is star-shaped with respect to

the origin, is its radial function ρ(K, ·) : Sn−1 → R, defined for u ∈ Sn−1 , by

ρ(K,u) = Max{λ � 0 : λu ∈ K}.

If ρ(K, ·) is positive and continuous, K will be called a star body. Let S n denote
the set of star bodies in R

n . Let δ̃ denote the radial Hausdorff metric, as follows, if
K,L ∈ S n , then δ̃ (K,L) = |ρK −ρL|∞.
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1.1. Mixed volumes

If Ki ∈K n (i = 1,2, . . . ,r) and λi (i = 1,2, . . . ,r) are nonnegative real numbers,
then of fundamental importance is the fact that the volume of ∑r

i=1 λiKi is a homoge-
neous polynomial in the variables λi given by (see e.g. [1] or [2])

V (λ1K1 + · · ·+ λrKr) = ∑
i1,...,in

λi1 . . .λinVi1...in , (1.1)

where the sum is taken over all n -tuples (i1, . . . , in) of positive integers not exceed-
ing r . The coefficient Vi1...in depends only on the bodies Ki1 , . . . ,Kin and is uniquely
determined by (1.1), it is called the mixed volume of Ki1 , . . . ,Kin , and is written as
V (Ki1 , . . . ,Kin). Let K1 = . . . = Kn−i = K and Kn−i+1 = . . . = Kn = L , then the mixed
volume V (K1 . . .Kn) is written as Vi(K,L) . If K1 = · · · = Kn−i = K, Kn−i+1 = · · · =
Kn = B , then the mixed volumes Vi(K,B) is written as Wi(K) and is called the quer-
massintegral of convex body K .

It is convenient to write relation (1.1) in the form (see [2, p. 137])

V (λ1K1 + · · ·+ λsKs)

= ∑
p1+···+pr=n

∑
1�i1<···<ir�s

n!
p1! · · · pr!

λ p1
i1

· · ·λ pr
ir V (Ki1 , . . . ,Ki1︸ ︷︷ ︸

p1

, . . . ,Kir , . . . ,Kir︸ ︷︷ ︸
pr

). (1.2)

Let s = 2, λ1 = 1, K1 = K , K2 = B , we have

V (K + λB) =
n

∑
i=0

(n
i )λ iWi(K),

known as formula “Steiner decomposition”.
On the other hand, for convex bodies K and L , (1.2) can show the following

special case:

Wi(K + λL) =
n−i

∑
j=0

(n−i
j )λ jV (K, . . . ,K︸ ︷︷ ︸

n−i− j

,B, . . . ,B︸ ︷︷ ︸
i

,L, . . . ,L︸ ︷︷ ︸
j

).

1.2. Dual mixed volumes

If xi ∈ R
n , 1 � i � r , then x1+̃ · · · +̃xr is defined to be the usual vector sum of

the points xi , if all of them are contained in a line through o , and o otherwise. Let
K1, . . . ,Kr ∈ S n with o ∈ Ki and λi � 0, 1 � i � r , then

λ1K1+̃ · · ·+̃λrKr = {λ1x1+̃ · · ·+̃λrxr : xi ∈ Ki}
is called a radial Minkowski linear combination (see [3]).

It has the following important property (see [4]):

ρ(λK+̃μL, ·) = λ ρ(K, ·)+ μρ(L, ·),
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for K,L ∈ S n and λ , μ � 0.
For K1, . . . ,Kr ∈ S n and λ1, . . . ,λr � 0, the volume of the radial Minkowski lin-

ear combination λ1K1+̃ · · ·+̃λrKr is a homogeneous polynomial of degree n in the
variables λi , given by (see [4] and [5]),

V (λ1K1+̃ · · · +̃λrKr) =
n

∑
i1=1

· · ·
n

∑
in=1

Ṽi1,...,inλi1 · · ·λin , (1.3)

If we require the coefficients of the polynomial in (1.3) to be symmetric in their argu-
ment, then they are uniquely determined. The coefficient Ṽi1,...,in is nonnegative and
depends only on the bodies Ki1 , . . . ,Kin . Here we denote Ṽi1,...,in to Ṽ (Ki1 , . . . ,Kin) and
is called the dual mixed volume of star bodies Ki1 , . . . ,Kin . If K1 = · · · = Kn−i = K,
Kn−i+1 = · · · = Kn = L , the dual mixed volume Ṽ (K1, . . . ,Kn) is written as Ṽi(K,L) . If
L = B, the dual mixed volume Ṽi(K,L) = Ṽi(K,B) is written as W̃i(K) and is called the
dual quermassintegral of star body K .

By the way of similar to the quermassintegral of convex body, for star bodies
K1, . . . ,Ks , from (1.3), we obtain

V (λ1K1+̃ · · ·+̃λsKs)

= ∑
p1+···+pr=n

∑
1�i1<···<ir�s

n!
p1! · · · pr!

λ p1
i1

· · ·λ pr
ir Ṽ (Ki1 , . . . ,Ki1︸ ︷︷ ︸

p1

, . . . ,Kir , . . . ,Kir︸ ︷︷ ︸
pr

).

Let s = 2, λ1 = 1, K1 = K , K2 = B , we have

Ṽ (K+̃λB) =
n

∑
i=0

(n
i )λ

iW̃i(K).

Moreover, we have

W̃i(K+̃λL) =
n−i

∑
j=0

(n−i
j )λ jṼ (K, . . . ,K︸ ︷︷ ︸

n−i− j

,B, . . . ,B︸ ︷︷ ︸
i

,L, . . . ,L︸ ︷︷ ︸
j

). (1.4)

2. Introduction and main result

The origin of this work is an interesting inequality of Marcus and Lopes [6]. We
write Ei(x) , 0 � i � n , for the i-th elementary symmetric function of an n -tuple x =
(x1, . . . ,xn) of positive real numbers. This is defined by E0(x) = 1 and

Ei(x) = ∑
1� j1<···< ji�n

x j1x j2 · · ·x ji , 1 � i � n.

In particular, E1(x) = x1 + · · ·+ xn , E2(x) = ∑i�= j xix j , . . . , En(x) = x1x2 · · ·xn .
The Marcus-Lopes inequality (see also [7, p. 33]) states that

Ei(x+ y)
Ei−1(x+ y)

� Ei(x)
Ei−1(x)

+
Ei(y)

Ei−1(y)
(2.1)
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for every pair of positive n -tuples x and y . This is a refinement of a further result
concerning the symmetric functions, namely,

[Ei(x+ y)]1/i � [Ei(x)]1/i +[Ei(y)]1/i. (2.2)

A discussion of the cases of equality is contained in the reference [6].
A matrix analogue of (2.1) is the following result of Bergstrom [8] (see also the

article [9] and [10, p. 67] for an interesting proof): if K and L are positive definite
matrices, and if Ki and Li denote the submatrices obtained by deleting their i-th row
and column, then

det(K +L)
det(Ki +Li)

� det(K)
det(Ki)

+
det(L)
det(Li)

. (2.3)

The following generalization of (2.3) was established by Ky Fan [10]:(
det(K +L)
det(Ki +Li)

)1/k

�
(

det(K)
det(Ki)

)1/k

+
(

det(L)
det(Li)

)1/k

. (2.4)

The proof is based on a minimum principle; see also Ky Fan [11] and Mirsky [12].
There is a remarkable similarity between inequalities about symmetric functions

(or determinants of symmetric matrices) and inequalities about the mixed volumes of
convex bodies. For example, the analogues of (2.2) in the Brunn-Minkowski and the
dual Brunn-Minkowski theory are the following:

(i) If K and L are convex bodies in R
n and if 0 � i � n−1, then

Wi(K +L)1/(n−i) � Wi(K)1/(n−i) +Wi(L)1/(n−i), (2.5)

with equality if and only if K and L are homothetic, where Wi(K) is the i-th quer-
massintegral of K .

(ii) If K and L are star bodies in R
n and if 0 � i � n−1, then

W̃i(K+̃L)1/(n−i) � W̃i(K)1/(n−i) +W̃i(L)1/(n−i), (2.6)

with equality if and only if K and L are dilates, where W̃i(K) is the i-th dual quer-
massintegral of K and +̃ is the radial sum.

In view of these analogies, V. Milman asked if there exists a version of (2.1) or
(2.3) in the theory of mixed volumes (see [13], [14]).

OPEN QUESTION. For which values of 0 � i � n− 1 , i ∈ N is it true that, for
every pair of convex bodies K and L in R

n one has

Wi(K +L)
Wi+1(K +L)

� Wi(K)
Wi+1(K)

+
Wi(L)

Wi+1(L)
? (2.7)

In 1991, the special case i = 0 had been stated also in [15] as an open question. In
the same paper it was also mentioned that (2.7) follows directly from the Aleksandrov-
Fenchel inequality when i = 0 and L is a ball.

In 2002, it was proved in [14] that (2.7) is true for all i = 1, . . . ,n− 1 in the case
where L is a ball.

In 2003, it was proved in [13] that (2.7) holds true for every pair of convex bodies
K and L in R

n if and only if i = n−2 or i = n−1.
The dual question is now naturally formulated as follows:



ON A QUESTION FOR DUAL QUERMASSINTEGRALS 1099

DUAL QUESTION. For which values of 0 � i � n− 1 , i ∈ N is it true that, for
every pair of star bodies K and L in R

n one has

W̃i(K+̃L)
W̃i+1(K+̃L)

� W̃i(K)
W̃i+1(K)

+
W̃i(L)

W̃i+1(L)
? (2.8)

In 2005, Li and Leng [16] proved this dual inequality in the special case where L
is a ball:

THEOREM A. If K be a star body and B be a ball in R
n , then for 0 � i � n−1 ,

i ∈ N

W̃i(K+̃B)
W̃i+1(K+̃B)

� W̃i(K)
W̃i+1(K)

+
W̃i(B)

W̃i+1(B)
. (2.9)

It can also be proved that (2.8) is true for all pairs of star bodies L and K if
i = n−2 or i = n−1 (see [16]).

THEOREM B. Let K and L be star bodies in R
n . If i = n−1 or i = n−2 , then

W̃i(K+̃L)
W̃i+1(K+̃L)

� W̃i(K)
W̃i+1(K)

+
W̃i(L)

W̃i+1(L)
.

But, the dual question for 0 � i � n− 3 and all pairs of star bodies L and K , is
not solved yet. In 2004, an open problem was point out by Li [17].

QUESTION. For which values of 0 � i � n−3 , i ∈ N is it true that, for every pair
of convex bodies K and L in R

n one has

W̃i(K+̃L)
W̃i+1(K+̃L)

� W̃i(K)
W̃i+1(K)

+
W̃i(L)

W̃i+1(L)
?

In this paper, we give a positive answer as follows:

THEOREM. Let K and L be star bodies in R
n . If 0 � i � n−3 , i ∈ N , then

W̃i(K+̃L)
W̃i+1(K+̃L)

� W̃i(K)
W̃i+1(K)

+
W̃i(L)

W̃i+1(L)

is not true.

3. Proof of main result

THEOREM 3.1. Let K and L be star bodies in R
n . If 0 � i � n−3 , i ∈ N , then

W̃i(K+̃L)
W̃i+1(K+̃L)

� W̃i(K)
W̃i+1(K)

+
W̃i(L)

W̃i+1(L)
(3.1)

is not true.

In order to prove theorem 3.1, we need the following Lemmas 3.1–3.3.
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LEMMA 3.1. (The dual Aleksandrov-Fenchel inequality) If K1, . . . ,Kn are star
bodies in R

n . Let 1 < r � n−1 , then

Ṽ (K1, . . . ,Kn)r �
r

∏
j=1

Ṽ (Kj, . . . ,Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn),

with equality if and only if K1, . . . ,Kr are all dilations.

A special case of the dual Aleksandrov-Fenchel inequality is the following:
If K is a star body and 0 � i < j < k � n, then

W̃j(K)k−i � W̃i(K)k− jW̃j(K) j−i. (3.2)

LEMMA 3.2. Let 0 � i � n−1 , i∈N . Assume that (3.1) is true for all star bodies
K and L in R

n . Then, the function

g(t) =
W̃i(K+̃tL)

W̃i+1(K+̃tL)

is concave function on [0,+∞) for every K and L.

Proof. In view of the following fact: If K and L are star bodies and α , β � 0,
then

α(K+̃L) = αK+̃αL and (α + β )K = (αK+̃βL).

Assume that (3.1) is true, for s , t ∈ [0,∞) we obtain

g

(
t + s

2

)
=

W̃i

(
K+̃ t + s

2 L
)

W̃i+1

(
K+̃ t + s

2 L
)

=
W̃i

(
1
2K+̃1

2K+̃ t
2L+̃ s

2L
)

W̃i+1

(
1
2K+̃1

2K+̃ t
2L+̃ s

2L
)

=
W̃i

(
K+̃tL

2 +̃K+̃sL
2

)
W̃i+1

(
K+̃tL

2 +̃K+̃sL
2

)

�
W̃i

(
K+̃tL

2

)
W̃i+1

(
K+̃tL

2

) +
W̃i

(
K+̃sL

2

)
W̃i+1

(
K+̃sL

2

)

=
1
2
(g(t)+g(s)).

Hence the function g(t) is concave function on [0,+∞) for every star bodies K
and L . �
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LEMMA 3.3. Assume (3.1) is true. If 0 � i � n−3 , i ∈ N , for all star body K in
R

n . Then
(n− i)W̃i+2(K)

(
W̃i+1(K)2 −W̃i(K)W̃i+2(K)

)

� (n− i−2)W̃i(K)
(
W̃ 2

i+2(K)−W̃i+1(K)W̃i+3(K)
)
. (3.3)

Proof. Let K be a convex body in R
n . For every 0 � i � n−1, we set

fi(t) = W̃i(K + tB),

then

fi(t + ε) = W̃i

(
(K + tB)+ εB

)
=

n−i

∑
j=0

(n−i
j )ε jW̃i+ j(K + tB)

= fi(t)+ ε(n− i) fi+1(t)+O(ε2).

Therefore
f ′i (t) = (n− i) fi+1(t).

The derivative of the function

gi(t) =
fi(t)

fi+1(t)
=

W̃i(K + tB)
W̃i+1(K + tB)

is thus given by

g′i(t) = (n− i)− (n− i−1)
fi(t) fi+2(t)

f 2
i+1(t)

. (3.4)

From the dual Aleksandrov-Fenchel inequality (3.2), we have

f 2
i+1(t) � fi(t) fi+2(t),

for all 0 � i � n−2. Hence g′i(s) � 1.

Since gi(s) is a concave function. This implies that fi(t) fi+2(t)
f 2
i+1(t)

is an decreasing

function, and differentiating the both sides of (3.4) again, we obtain

(n− i) fi+2(t) f 2
i+1(t)+ (n− i−2) fi(t) fi+1(t) fi+3(t)−2(n− i−1) fi(t) f 2

i+2(t) � 0,

for t ∈ (0,+∞).
This can be equivalently written in the form

(n− i) fi+2(t)
(

f 2
i+1(t)− fi(t) fi+2(t)

)
� (n− i−2) fi(t)

(
f 2
i+2(t)− fi+1(t) fi+3(t)

)
.

Hence
(n− i)W̃i+2(K+̃tB)

(
W̃i+1(K+̃tB)2−W̃i(K+̃tB)W̃i+2(K+̃tB)

)

� (n− i−2)W̃i(K+̃tB)
(
W̃i+2(K+̃tB)2−W̃i+1(K+̃tB)W̃i+3(K+̃tB)

)
. (3.5)
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Letting t → 0+ in (3.5), we conclude the Lemma 3.3.
Assume that W̃i+1(K)2−W̃i(K)W̃i+2(K)= 0. From Lemma 3.3, we have W̃i+2(K)2

−W̃i+1(K)W̃i+3(K) = 0. This leads to a contradiction. Hence Theorem 3.1 is ture. �

Combine Theorems B and Theorem 3.1 to obtain that

THEOREM 3.2. Let K and L be star bodies in R
n , then

W̃i(K+̃L)
W̃i+1(K+̃L)

� W̃i(K)
W̃i+1(K)

+
W̃i(L)

W̃i+1(L)

is true if and only if i = n−1 or i = n−2 .

An interesting special case is when n = 3 and i = n−2. If S and ω denote surface
area and mean width respectively, we obtain the inequality

S(K+̃L)
ω(K+̃L)

� S(K)
ω(K)

+
S(L)
ω(L)

,

for all star bodies K and L in R
3.
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