athematical
nequalities
& Papplications
Volume 17, Number 3 (2014), 1125-1137 “doi:10.7153/mia-17-84

GENERALIZATIONS AND IMPROVEMENTS OF CONVERSE
JENSEN’S INEQUALITY FOR CONVEX HULLS IN R*

J. PECARIC AND J. PERIC

(Communicated by Marko Matic)

Abstract. In this paper we prove generalizations and improvements of Lah-Ribari¢ and related
inequalities for convex functions on convex hulls in R¥ and, analogously, for convex functions
on k-simplices in R¥. We also verify that one of them is a generalization and an improvement
of the Hermite-Hadamard inequality for simplices.

1. Introduction

Let U be a convex subset of R and n € N. If f: U — R is a convex function,
xi,...,x, €U and py,...,p, nonnegative real numbers with B, = 3" | p; > 0, then
Jensen’s inequality

1

1 n n
f }szixi < }szif(xi) (1)
ni=1 n =1
holds.
Convex hull of vectors xi,...,x, € R¥ is the set

n
Za,-xi|ai eER, o > O,Z(Xi =1
i=1 i=1

and is denoted by K = co ({x1,...,x,}).
Barycentric coordinates over K are continuous real functions Ay, ..., A, on K with
the following properties:

x= Z Ai(x)x;. )
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If x, —xy,...,x, —x; are linearly independent vectors, then each x € K can be
written in the unique way as a convex combination of xy,...,x, in the form (2).

We also consider k-simplex S = co({v{,va,...,vt;1}) in R¥ which is a convex
hull of its vertices vy,...,vi ] € RK, where vy — Vi,...,Vps] — V] € R¥ are linearly
independent. In this case we denote the simplex by S = [vy,...,v1]. Barycentric
coordinates Ay, A2, ..., A4, over S are nonnegative linear polynomials on S and have
a special form (see [1]).

Let E be a non-empty set and L be a linear class of real-valued functions f: E —
R which contains constant functions, that is, L has the following properties:

(L1) (Vf,geL)(Va,beR) af+bgelL
(L2) 1€L,thatis,if f(z)=1 forall t € E,then f € L.
We consider positive linear functionals A: L — R, or in other words we assume:
(Al) (Vf,geL)(Va,beR) A(af+bg)=aA(f)+bA(g) (linearity)
(A2) (Yf e L)(f =0=A(f) >0) (positivity).

If additionally the condition A(1) =1 is satisfied, we say that A is a positive normalized
linear functional.
With L* we denote the linear class of functions g: E — R¥ defined by

gt)=(g1(t),...,ax(t)), €L, i=1,...k

For a given linear functional A, we also consider linear operator A= (A,...,A): LF—
R* defined by

A(g) = (A(g1), - Algr)- 3)
If A(1) =1 is satisfied, then using (A1) we also have:

(A3) A(f(g)=1f (X(g)) for every linear function f on R¥.

The following result is Jessen’s generalization of Jensen’s inequality for convex
functions (see [8, p. 45]) which involves positive normalized linear functionals.

THEOREM 1. Let L satisfy (L1) and (L2) on a nonempty set E and let A be a
positive normalized linear functional on L. If f is a continuous convex function on an
interval I C R, then for all g € L such that f(g) € L we have A(g) € I and

f(A(g)) <A(f(g))- 4)

The next theorem, proved by J. Pecari¢ and P. R. Beesack in 1985., presents a
generalization of Lah-Ribari¢ inequality (see [7, p. 98], [8, p. 98]).
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THEOREM 2. (Lah-Ribari¢ inequality) Let L satisfy properties (L1) and (L2)
and A be a positive normalized linear functional on L. Let f be a convex function
on an interval 1 = [m,M] CR (—co <m < M < o). Then for all g € L such that
g(E)YCIand f(g) €L

M—A(g)
A < —=
(1(8)) < = yom) +

Using Theorem 2, Beesack and Pecari¢ in 1987. also proved the next result [8, p.

101].

— ——f(M). &)

THEOREM 3. Let L, A and f be as in Theorem 2. Let J be an interval in R such
that f(I) C J. If F: J xJ — R is an increasing function in the first variable, then for
all g € L such that g(E) C I and f(g) € L, we have

M —x
PAGE) ) < max F (ymmfn)+ 52 f0)  ©

= max F(0(m)+ (1 6)£(M).f(6m-+ (1~ 0)M).

REMARK 1. If we choose F(x,y) =x—y, as a simple consequence of Theorem 3
it follows

ACF()) ~ £ (A(g)) < max [6(m) + (1= 0)F(M) — f(6m + (1 O)M)]. (7)

Taking F(x,y) = ’y—‘,for f >0, it follows
A(f(g)) 0f(m)+(1-0)f(M)
FlAGg) < o) | f(om+ (1—0)M)

An additional generalization of Jessen’s inequality (4) is proved by E. J. McShane
(see [6], [8, p. 48]).

®)

THEOREM 4. (McShane’s inequality) Letr L satisfy properties (L1) and (L2), A
be a positive normalized linear functional on L and A defined as in (3). Let f be a

continuous convex function on a closed convex set U C RX. Then for all g € L such
that g(E) C U and f(g) € L, we have that A(g) € U and

f(A(g)) <A(f(8))- )

J. Pecari¢ and S. Iveli¢ in [3] proved the following generalization of Theorem 2.

THEOREM 5. Let L satisfy properties (L1) and (L2) on nonempty set E and
A be a positive normalized linear functional on L. Let xi,...,x, € RF and K =
co({x1,...,xn}). Let f be a convex function on K and Ay, ..., A, barycentric coordi-
nates over K. Then for all g € L* such that g (E) C K and f(g),Ai(g) €L,i=1,...,n
we have

M=

A(f(g)) < 2A(Li(g)) f (xi).

1
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2. Main results

Our main results are generalizations and improvements of Theorems 3 and 5 which
will be obtained using the following lemma.

LEMMA 1. Let ¢ be a convex function on U where U is a convex set in R,

n
(x1,...,x%,) € U" and p = (p1,...,pn) be nonnegative n-tuple such that Zpi =1.
i=1
Then

min{pi,...,pa} [i o(x;) —n¢ (%i%)]
=1 i=1

pi¢(xi) — @ ( pm)
i

<max{py,...,pn} [i o(x;) —no (% ixl)] .
i=1 i=1

'M=

<

M-

1

Proof. This is a simple consequence of [7, p. 717, Theorem 1 ]. [

For n € N we denote

An—l: {(.ula"').un): “i>o7i€{1a"'an}azui: 1}
i=1

We also need to equip our linear class L from Introduction with an additional
property denoted by (L3):

(L3) (Vf,g€L)(min{f,g} € Land max{f,g} € L) (lattice property).

Obviously, (R, <) (with standard ordering) is a lattice.
Also, if f is a function defined on a convex subset U C RF and x, JX2,..., X, €U,

we denote
n l n
S com0) = X/ x) —nf (z z) .

Obviously, if f is convex, S4(x1,...,%x,;) > 0.
Next theorem presents an improvement of Theorem 5.

THEOREM 6. Let L satisfy properties (L1), (L2) and (L3) on a nonempty set
E and A be a positive normalized linear functional on L. Let x1,...,x, € R and
K =co({xi1,...,x,}). Let f be a convex function on K and Ai,...,A, barycentric
coordinates over K. Then for all g € L* such that g(E) C K and f(g), %i(g) € L,
i=1,...,n, we have

M=

A(f(8)) < 2 A(%i(8)) f (xi) —A(min{Ai(g)}) SF(x1, ., Xn). (10)

1
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Proof. For each r € E we have g(¢) € K. Using barycentric coordinates we have

Li(g(r))=20,i=1,....,n, X} Ai(g(t)) =1 and

Since f is convex, we can apply Lemma 1, and then

—f (jzlzxg(z))xl-)
< 3 2u(g(0) £ (x) ~ min{A(g [zfx, nf (12 )] (an

Now, applying the functional A on (11), we get

A(f(g)) <A (i Ai(g)f (xi) —min{li(g)}S?(Xhm,xn)>

= > A(u(8)) £ (x) — A (min {2:(g))) S}z %), O

REMARK 2. Theorem 6 is an improvement of Theorem 5 since under the required
assumptions we have

A(min {4i(g)}) SH(xr, . Xa) > 0.

REMARK 3. If all the assumptions of Theorem 6 are satisfied and additionally f
is continuous, then

f(A(g)) <A(f(g)) < iA(Mg))f(xt') —A(min{Ai(g)}) SF(x1, -, Xn).

The first inequality is from Theorem 4 and the second from Theorem 6.

REMARK 4. We know that under the assumptions of Theorem 6 we have

AF(8)) < 3 A(Ai(g)) f (k1) — A(min {Ai(g)}) Sh(x....x0).

i=1

Dividing this by f(A =f (2 Li(g ) , when f > 0, we obtain
i=1

AU () X Ai(g)f(x)  Amin{Ai(g)}) gy

f(g(g>) f (XL Ai(g)x) f(}{(g)> e
XZ" i () AR g

S BT ) f<5(8)> R

~>xn)
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which is equivalent to

A7) < qax LTI (3 (g)) — A min (A8 Sy, 5. 12

This is an improvement of the inequality (2.6) from [3].

REMARK 5. As a special case of Theorem 6 for k =1 we get [5, Theorem 12],

M
and if we take p and ¢ nonnegative real numbers such that A (g) = w we get
P+q

right hand side of the inequality (2.3) in [4].

Using Teorem 6 we prove a generalization and an improvement of Theorem 3.

THEOREM 7. Let L satisfy properties (L1), (L2) and (L3) on nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let
X1, % € RY and K = co({xy,...,x,}). Let f be a convex function on K and
M, -, Ay barycentric coordinates over K. If J is an interval in R such that f(K) C J
and F: J xJ — R is an increasing function in the first variable, then for all g € L¥
such that g(E) C K and f(g),Ai(g) € L,i=1,...,n we have

F(A(/(g)). (A (g)))
<F (zA A(min {2:(g >}>s;<x1,...,xn>,f<i<g>>>

IAnaxF (i f(xi) —A(min{Ai(g)}) St (x1,.., %), f (i.u,-x,-)) .
=l i i=1

13)

Proof. For each 1 € E we have g(¢) € K. Using barycentric coordinates we have
Ai(g(r))=0,i=1,....n, X7 | Ai(g(t)) =1 and

Since A is a positive normalized linear functional on L and A a linear operator on L¥,

we have
n

A(g) = (A(81);--Algr) = X A(Li(8)) i

where A(4i(g)) >0, i=1,...,n and XL A(%(g)) = A(ZL,4i(g)) = A1) = 1.
Therefore, A (g) € K.
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Since F: J xJ — R is an increasing function in the first variable, using (10) we
have

F(A(f(8)).f(A <g>>)
<F (ZA A(min {(g(s >>}>s;<x1,...,xn>,f<2<g>>> - a4

By substitutions
A(i(g)) =pini=1,....n,

it follows
A( ) = ;“ixt
Now we have
(ZA A (min{2;(g ())})S?(X17~~~,xn),f(g(g))>

_F<ZN1 f(xi) —A(min{2i(g ())})Sff(n,---,xn),f(émn))
<maxF (E,u, J(xi) —A(min{Ai(g(2))}) S(x1, -, %), f (i,um)) .

Ay

By combining (14) and the last inequality we get (13). O

REMARK 6. If we choose F(x,y) =x—y, as a simple consequence of Theorem 7
it follows

A(f(g)) — f(A(g))
< max (i#if (Z Iszt> —A(min{Ai(g )})S?(xl,...,xn)> :

i=1

15)

Taking F(x,y) = 3, for f > 0, it follows

= < max -
Ay J (X tixi)

A(f(g)) (2?1Mif(xi) —A(min{/li(g)})S}(xh...,x,,)) o ae

The inequalities (15) and (16) present generalizations and improvements of (7) and

(8).

Replacing F by —F in Theorem 7 we get the next theorem.
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THEOREM 8. Let L satisfy properties (L1), (L2) and (L3) on nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let
X1, % € RY and K = co({xy,...,x,}). Let f be a convex function on K and
M, -, Ay barycentric coordinates over K. If J is an interval in R such that f(K) C J
and F: J x J — R is an decreasing function in the first variable, then for all g € LF
such that g(E) C K and f(g),Ai(g) € L,i=1,...,n we have

F(A(/(g)). (A (g)))
(zA A(min{2(g >}>s;<x1,...,xn>,f<i<g>>>

mmF (i pif (xi) — A (min{2;(g)}) S¥(x1,...,. %), f (i,u,-x,-)) .
i=1 i=1

7)

3. Convex functions on k-simplices in R*

Let S be a k-simplex in R¥ with vertices vy, vs,...,v;1 € RF. The barycen-
tric coordinates Aj,...Ax, 1 over S are nonnegative linear polynomials which satisfy
Lagrange’s property

l,i=j
It is known (see [1]) that for each x € S barycentric coordinates A (x), ..., Ax1(x)
have the form
Vol
z’l(x) _ Ok([x7v2? 7vk+1]),
VOlk(S)
o Vol ([Vl,x,v3, e 7vk+1D
2Q('x) - VOlk(S) ’
Vol ([vi,...,vi,x
B () = e viox) (18)

VOlk (S) ’

where Vol (F) denotes the k-dimensional Lebesgue measure of a measurable set F' C
R¥. Here, for example, [v},x,..., v, 1] denotes the subsimplex obtained by replacing
v, by x, i.e. the subsimplex opposite to v,, when adding x as a new vertex.

The signed volume Voli(S) is given by (k+ 1) x (k+ 1) determinant

1 1 - 1
VIl V21 Vi1l
Volk(s):E Vi2 V2 Vkt12 |

Vik V2k = Vit1k
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where vi = (Vi1,V12,- VK)o Vis 1 = (Vie11: Vi 12, - -5 Vier1k) (see [9]).
Since vectors vy —vy,..., Vg1 — vy are linearly independent, then each x € S can
be written as a convex combination of vy,..., v, in the form
:VOlk([x,Vz,...,vk_;,_lDVI_’_ +Volk([v1,...,vk7x})v (19)
Vol (S) " Vol (S) ke

Now we present an analog of Theorem 6 for convex functions defined on k-
simplices in R¥.

THEOREM 9. Let L satisfy properties (L1), (L2) and (L3) on a nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let f
be a convex function on a k-simplex S = [v{,va,...,viy1] in RN and Ay,... Xy be
barycentric coordinates over S. Then for all g € L* such that g (E) C S and f(g) € L
we have

k+1

A(f(8)) < Y A(Ai(g)) f (vi) — A(min{A:(g)}) S5 (Wi, vis) (20)

i=1

_ Vol ([Z(g),vz,...,kaD Vol ({vl,vz,...,g(g)D

fvp)+...+

Vol (S) Vol (S)
—A (min{ki(g)})Sfc*l(vl,...,ka).
Proof. Analogous to the proof of Theorem 6 with
1 1 - 1
1(&1t) va1 vienn
K| :
Vol t 1) vop -V
A«l (g(t)) — (0] k([g( )avza 7vk+l}) _ gk( ) 2k k+1k ’
Vol (S) 1 1 - 1
1 | V11 V21 Vi+-11
k!
Vik V2k = Vi+1k
1 -1 1
1|vit v gi(2)
[
Vol ([vi,..., v, g(1)]) Vik o Vik 8k(?)
2, t = — R
1 | Vi1 V21 V11
ks
Vik Vok = Vi+lk
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and
l A(gl) V21 vk-‘rll
a o
A (g) = A(gr) Vak ++* Vir1k _ Vol ([A(g),vz,...,kaD
1(8 1 1 - 1 Vol (S) )
Livievar - Vil
k! .
Vik Vak *** Vi+lk
(21)
1|Vl Vil A(gl)
E . : :
AN () = vik - vk Agr) :VOI"({"lv--aVk,A(g)D .
k+1\8 1 1 - 1 VoI, (5)
Livievar - Vi
k!
Vik ok Vi+lk

Using Theorem 9 we prove an analog of Theorem 7 for k-simplices in R¥.

THEOREM 10. Let L satisfy properties (L1), (L2) and (L3) on a nonempty set
E, A be a positive normalized linear functional on L and A defined as in (3). Let
f be a convex function on a k-simplex S = [v{,va,..., V1] in R* and Ay,..., Ayt
be barycentric coordinates over S. If J is an interval in R such that f(S) C J and
F:JxJ— R an increasing function in the first variable, then for all g € L* such that

g(E)C S and f(g) € L we have

F(A(/(8)).£(A(g))) 22)
<mgr (Rl

—A(min{A(8)D)SE V1, vir1). f (0))

k+1 k+1
= niaxF (2 wif (vi) —A(min{?L,-(g)})Sfﬁl(vl,...,ka),f (ZI uiv,-)) .
k i=1 i=

Proof. Analogous to the proof of Theorem 7 with substitutions

_ Volk([x7v27...,vk+1}) _ Volk([vl,...,v;“x})
Vol (S) v HH Vol (S) :

My
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and
k+1

X = 2 Hiv;. O
=1

REMARK 7. If all the assumptions of Theorem 9 are satisfied and in addition f is
continuous, then

f(Alg)) < A(f(g))

kilA A(min{2i(g)}) S5 (w1, vir1) (23)
_ Vol <[A(g),vz7...,vk+1]> o)t Vol ([v17vz7...,g(g)]> Fvea)

Vol (S)
—A(min{4(g)}) S (vi,. i)

Vol (S)

The first inequality is from Theorem 4 and the second from Theorem 9.

EXAMPLE 1. Let S = [v{,v2,...,v;.1] be a k-simplex in R and f a continuous
convex functionon S. Let (E, ./, 1) be a measure space with positive measure A such
that A(E) < eo. Let L be a linear class of measurable real functions on E. We define
the functional A: L — R by

1
— t
B .50

It is obvious that A is positive normalized linear functional on L. Then the linear
operator A is defined by

1
= W/Eg(t)
We denote g = % Jrg@)dA(r). If g(E) C S and f(g) € L, then from (23) it follows
f(8) <A(f(g)) B (24)
< Vol ([g7v2a VkJrl])f( )_|_ +VOlk([Vl""7vk7g])f(vk+l)

Vol (S)
( /mm{/l YAt )) S w1, ).

VOlk (S)

REMARK 8. Let S = [vy,...,v;;1] be a k—simplex in R*. If we put E = §,
g = idg and A is Lebesgue measure on S, from Example 1 we get

k+1

ids = |S|/tdt k+12v

ids)) |S|/f
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where v* is the barycenter of S. Now we have

1
><m4mw

Vol ([v*,va,. ..
b N

VOlk([vh“‘ 7vk7V*])
S|

<|S|/m1n{7L }dt) [kilf Vi) — (k+ 1) f(v )1 (25)

kH(%ﬁw)—(S/hmm hﬁ[ffw k+Uﬂ>]

For i=1,...,k+ 1, let S; be the simplex whose vertices are v* and all vertices of
S except v;. Denote by v} the barycentre of S;,i = 1,...,k+ 1. Since Vol (S;) =
Vol (S;),i,j=1,...,k+1,itfollows from (18) that # € §; implies min{A;(r)} = A4;(1).
It follows

7vk+1])f(vl)+ o+

fis1)

) k+1
/S min{ (1) }dr = Zl /S (. (26)
We have

1
/ A,j(l)dl = —/ VOlk[V17...,l7...,vk+ddl
N ‘S‘ S;

J

VOlk |:vl7 ,/ ldl,...,vk+1:|
‘S| N
= ﬁvolk [Vlv"'7vj7"'7vk+l] :H—lvolk[Vl,...,Vj,...,VkJrl:I
1 1
= —=Vol R AN =—7I5| 27
(k+1)2 Ok[V1, Vo, 7vk+1} (k+1)3| | ( )
Using (26) and (27) we get
1
in{A;(¢) }dt = —=|S|. 28
Jminii) i = rls (8)

Now, putting (28) in (25), we have

)< g L

k+1

l *
(k+122f k+1f(v ),

which is obtained in [2, Theorem 4.1].
It can be easily verified that the right-hand side of this inequality is equivalent to
the k-dimensional version of the Hammer-Bullen inequality, namely

1 . k k+l
5 o= ) < g Sr) = gy [
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which is proved, for example in [10].
In one dimension this is an improvement of classical Hermite-Hadamard inequal-

P52 < [ < OO L
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