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Abstract. For a Lebesgue integrable complex-valued function f defined over the m -dimensional
torus Tm := [0,2π)m , let f̂ (n) denote the Fourier coefficient of f , where n = (n(1), . . . ,n(m)) ∈
Zm . Recently, in one of our papers [to appear in Mathematical Inequalities & Applications], we
have defined the notion of bounded φ -variation for a complex-valued function on a rectangle
[a1,b1 ]× . . .× [am,bm ] and studied the order of magnitude of Fourier coefficients of such func-
tions on [0,2π]m . In this paper, the order of magnitude of Fourier coefficients of a function of
bounded φ -variation from [0,2π]m to C and having lacunary Fourier series with certain gaps
is studied and a generalization of our earlier result (Theorem in [Acta Sci. Math. (Szeged), 78,
(2012), 97–109]) is proved. Interestingly, the Jensen’s inequality for integrals is used to prove
the main result.

1. Introduction

For a function of two variables several definitions of bounded variation are given
and various properties are studied (see, for example, [8], [1]). In 2002 F. Móricz [9]
studied the order of magnitude of double Fourier coefficients with the help of Riemann-
Stieltjes integral of functions of two variables and in 2004 V. Fülöp and F. Móricz [4]
studied the order of magnitude of multiple Fourier coefficients of functions of bounded
variation in the sense of Vitali and Hardy (see [3]) in a straightforward way without us-
ing Riemann-Stieltjes integral. J. R. Patadia (see [11, Theorem 3]) studied the order of
magnitude of Fourier coefficients of functions in L1(Tm) having lacunary Fourier se-
ries with certain gaps and are satisfying Lipschitz condition locally (that is, on certain
smaller subsets of [−π ,π ]m ). In [5], we have defined the notion of bounded p -variation
( p � 1) for a function from a rectangle [a1,b1]× . . .× [am,bm] to C and studied the
order of magnitude of Fourier coefficients of such functions from [0,2π ]m to C . Later
in [6] we have proved a lacunary analogue of the main result (Theorem 2) of [5] by
considering lacunary condition similar to that considered by J. R. Patadia [11, Theorem
3]). Recently, in [7], we have defined the the notion of bounded φ -variation for a func-
tion from a rectangle [a1,b1]× . . .× [am,bm] to C and studied the order of magnitude
of Fourier coefficients of such functions from [0,2π ]m to C . Here we study the order of
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magnitude of Fourier coefficients of functions in L1(Tm) having the same type of lacu-
nary Fourier series and are of bounded φ -variation locally and prove result analogous
to our earlier result (see [7, Theorem 2]). Interestingly, we use the Jensen’s inequality
for integrals to prove our main result.

2. Notation and Definitions

In [7] we have defined the notion of bounded φ -variation for functions of several
variables that generalize our earlier definition of bounded p -variation and hence in turn
generalizes the definitions of bounded variation for functions of several variables given
by Vitali and by Hardy. For the sake of completeness, here we rewrite those definitions.

Let R be the rectangle R = [a1,b1]× . . .× [am,bm] . By a (finite) partition P
of R we mean the set P = {R1, . . . ,Rn} , in which Ri ’s are pairwise disjoint (no two
have common interior) subrectangles of R having their sides (faces) parallel to the
standard coordinate hyperplanes and whose union is R . Let f = f (x1, . . . ,xm) be a real
or complex-valued function on R . For any subrectangle R′ = [α1,β1]× . . .× [αm,βm]
of R with ai � αi < βi � bi for all i = 1,2, . . . ,m , we define Δ f (R′) as follows: When
m = 2 we put

Δ f (R′) : = Δ f ([α1,β1]× [α2,β2])
= f (β1,β2)− f (β1,α2)− f (α1,β2)+ f (α1,α2);

for m = 3

Δ f (R′) : = Δ f ([α1,β1]× [α2,β2]× [α3,β3])
= [ f (β1,β2,β3)− f (β1,α2,β3)− f (α1,β2,β3)+ f (α1,α2,β3)]
− [ f (β1,β2,α3)− f (β1,α2,α3)− f (α1,β2,α3)+ f (α1,α2,α3)]

= Δ[α3,β3]Δ f ([α1,β1]× [α2,β2]), say;

and successively for any m � 3

Δ f (R′) : = Δ f ([α1,β1]× . . .× [αm,βm])
= Δ[αm,βm]Δ f ([α1,β1]× . . .× [αm−1,βm−1]).

In what follows, we consider φ : [0,∞) → R a convex function which increases
strictly from 0 to ∞ and satisfy the conditions φ(0) = 0, φ(1) = 1. The function φ is
said to be a Δ2 -function if there is a constant d � 2 such that φ(2x) � dφ(x) for all
x � 0.

DEFINITION 1. We say that f is of bounded φ -variation over R in the sense of
Vitali (written as f ∈ φBVV(R)) if Vφ ( f ;R) , the total φ -variation of f over R , is
finite, where

Vφ ( f ;R) := sup

{
n

∑
i=1

φ (|Δ f (Ri)|)
}

, (1)

in which the supremum is taken over all partitions {R1, . . . ,Rn} of R .
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REMARK 1. Note that for φ(x) = xp ( p � 1) above definition is same as the
definition of a function of bounded p -variation (see [5, Definition V]) and hence for
φ(x) = x above definition is equivalent to that of Vitali (see, for example, [3, 4] and [7,
Remark 1]). Also, the class φBVV(R) contains functions for which the m-dimensional
Lebesgue integral over R fails to exist. The following notion of bounded φ -variation
is motivated by this fact.

DEFINITION 2. In case m = 2, we say that a function f = f (x1,x2) is of bounded
φ -variation over R := [a1,b1]× [a2,b2] in the sense of Hardy, in symbol: f ∈ φBVH(R) ,
if it is in the class φBVV(R) and if the marginal functions f (x1,a2) and f (a1,x2) are
of bounded φ -variation on the intervals I1 := [a1,b1] and I2 := [a2,b2] , respectively in
the sense of Young [12].

In case m � 3, the notion of bounded φ -variation in the sense of Hardy over a
rectangle R can be defined by the following recurrence: f ∈ φBVH(R) if f ∈ φBVV(R)
and each of the marginal functions f (x1, . . . ,ak, . . . ,xm) is in the class φBVH(R(ak)) ,
where k = 1, . . . ,m and

R(ak) = {(x1, . . . ,xk−1,xk+1, . . . ,xm) ∈ R
m−1 : a j � x j � b j

for j = 1, . . . ,k−1,k+1, . . . ,m}.
This definition can be equivalently reformulated as follows: f ∈ φBVH(R) if and only
if f ∈ φBVV(R) and for any choice of (1 �) j1 < .. . < jn (� m) , 1 � n < m , the
function f (x1, . . . ,a j1 , . . . ,a jn , . . . ,xm) is in the class φBVV(R(a j1 , . . . ,a jn)) , where

R(a j1 , . . . ,a jn) := {(x�1 , . . . ,x�m−n) ∈ R
m−n : a j � x j � b j

for j = �1, . . . , �m−n}
and {�1, . . . , �m−n} is the complementary set of { j1, . . . , jn} with respect to {1, . . . ,m} .

REMARK 2. When φ(x) = xp (p � 1) our Definition 2 is same as our earlier def-
inition of a function of bounded p -variation (see, [5, Definition H]) and hence when
φ(x) = x above definition is equivalent that given by Hardy and Krause (see, for exam-
ple, [3, 4])(refer Lemma 2 below).

Next let Tm be the m-dimensional torus identified with Q = [−π ,π ]m and let
its dual be identified with Z

m . The points (x1, . . . ,xm) of Q and (n(1), . . . ,n(m)) of
Zm are denoted by x and n respectively; n · x denotes the scalar product given by
n · x = n(1) · x1 + . . .+ n(m) · xm and |x| denotes the number

√
|x1|2 + . . .+ |xm|2 . For

f ∈ L1(Tm) its formal Fourier series is given by

f (x) ∼ ∑
n∈Zm

f̂ (n)ei(n·x),

where f̂ (n) denotes the nth Fourier coefficient of f (x) given by

f̂ (n) =
1

(2π)m

∫
Q

f (x)e−i(n·x)dx.



1142 BHIKHA LILA GHODADRA

Let x0 = (x01,x02, . . . ,x0m) denote an arbitrary point of Q , let δ be any arbitrary
real number such that 0 < δ � π , and let I = I(x0,δ ) denote the m-dimensional sub-
rectangle of Q given by

I(x0,δ ) = {x := (x1, . . . ,xm) ∈ Q : |x j − x0 j| � δ for j = 1,2, . . . ,m}.

Given a subset E ⊂ Zm , a function f ∈ L1(Tm) is said to be E -spectral (or, said
to have spectrum E ) if and only if f̂ (n) = 0 for all n in Zm \E . In what follows, we
consider a set E ⊂Zm described in the following way: for each j = 1,2, . . . ,m consider

sets E( j) = {. . . ,n( j)
−2,n

( j)
−1,n

( j)
0 ,n( j)

1 ,n( j)
2 , . . .} ⊂ Z with n( j)

−k = −n( j)
k for k = 0,1,2, . . .

and with {n( j)
k }∞

k=1 strictly increasing such that

liminf
k→∞

N( j)
k

lnn( j)
k

= B( j) >
8e
δ

, (2)

where N( j)
k = min

{
n( j)

k+1−n( j)
k ,n( j)

k −n( j)
k−1

}
; and then put E = ∏m

j=1 E( j) . Now ns =

(n(1)
s1 ,n(2)

s2 , . . . ,n(m)
sm ) denotes the typical element of E . When m = 1, E will be taken to

be E(1) with upper suffix in n(1)
k ’s and N(1)

k ’s omitted.

3. Results

We need the following lemmas. Lemmas 1 to 4 are proved in [7], Lemma 5 is due
to Noble ([10], or [2, p. 270]) and Lemma 6 is its m-dimensional analogue by Patadia
[11].

LEMMA 1. If f ∈ φBVH(R) , then f is bounded over R.

LEMMA 2. If φ is Δ2 and f ∈ φBVH(R) , then for any arbitrary fixed values
c j1 ∈ [a j1 ,b j1 ], . . . ,c jn ∈ [a jn ,b jn ] , (1 �) j1 < .. . < jn (� m) , and 1 � n < m, the
function f (·, . . . ,c j1 , . . . ,c jn , . . . , ·) is in the class φBVH(R(a j1 , . . . ,a jn)) and that

Vφ ( f (·, . . . ,c j1 , . . . ,c jn , . . . , ·);R(a j1 , . . . ,a jn))

� dn

⎧⎪⎨
⎪⎩Vφ ( f ;R)+

n

∑
k=1

∑
s1<...<sk ,

s1 ,...,sk∈{ j1 ,..., jn}

Vφ
(
f (·, . . . ,as1 , . . . ,ask , . . . , ·);R(as1 , . . . ,ask)

)
⎫⎪⎬
⎪⎭ .

LEMMA 3. Let f ∈ φBVV(R) , where R = [a1,b1]× . . .× [am,bm]. Let {R1, . . . ,Rk}
be a partition of R. Then f ∈ φBVV(Ri) for each i = 1, . . . ,k , and that

k

∑
i=1

Vφ ( f ;Ri) � Vφ ( f ;R).
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LEMMA 4. Let f ∈ φBVH(R) , where R = [a1,b1]× . . .× [am,bm]. Then the dis-
continuities of f are located on a countable number of (m− 1)-dimensional hyper-
planes parallel to some of the coordinate hyperplanes.

LEMMA 5. Let δ > 0 . Then for sufficiently large n there exists a trigonometric
polynomial Tn(x) of degree at most n, with constant term 1 , such that

(i) |Tn(x)| � A1δ−1 for all x ∈ [−π ,π ] ,
(ii) |Tn(x)| � A2 exp(−nδ/8e) for all x such that δ � |x| � π ,

where A1 and A2 are absolute constants.

LEMMA 6. Let δ > 0 . Then for n = (n(1), . . . ,n(m)) such that each n( j) is suffi-
ciently large, there exists a trigonometric polynomial

Tn(x) = ∑
|k( j) |�n( j)

j=1,...,m

cke
i(k·x),

with constant term 1 , such that
(i) |Tn(x)| � A1δ−m for all x ∈ Q ,
(ii) |Tn(x)| � A2 exp(−δ (1 ·n)/8e) for all x ∈ Q\ I(0,δ ) ,

where 1 = (1, . . . ,1) and A1 , A2 are constants depending only on m.

Here we prove the following theorem.

THEOREM 1. Let E ⊂Zm be described as above and f : Rm →C be 2π -periodic

in each variable. If f ∈ φBVH(I) , f is E -spectral and nk = (n(1)
k1

, . . . ,n(m)
km

) ∈ Zm is

such that |n( j)
k j
| is sufficiently large for each j, then

f̂ (nk) = O

⎛
⎝φ−1

⎛
⎝ 1∣∣∣∏m

j=1 n( j)
k j

∣∣∣
⎞
⎠
⎞
⎠ .

REMARK 3. This theorem gives a lacunary analogue of our earlier result [7, The-
orem 2]. Further, by taking φ(x) = xp (p � 1) , we get our earlier result [6, Theorem].
The proof of this theorem is similar to that of [6, Theorem] where the Hölder’s inequal-
ity is used, and explains the technique (at least to new readers) how to go from bounded
p -variation to bounded φ -variation and how to use the Jensen’s inequality in place of
Hölder’s inequality.

4. Proof of Theorem 1

We may assume without loss of generality that x0 = 0 . For, suppose the theorem
is true when x0 = 0 and consider the function g(x) = f (x+x0) = (T−x0 f )(x) . Then

x ∈ I(0,δ ) ⇔ |x j| � δ ∀ j ⇔ |x j + x0 j − x0 j| � δ ∀ j ⇔ x+x0 ∈ I(x0,δ ).
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Since f ∈ φBVH(I(x0,δ )) , it follows that g ∈ φBVH(I(0,δ )) . Also,

g = T−x0 f ⇒ ĝ(n) = ei(n·x0) f̂ (n) ∀n ∈ Z
m.

Since f is E -spectral, so is g and as the theorem is true when x0 = 0 , ĝ(nk) =
O(φ−1(1/|∏m

j=1 n( j)
k j
|)) . It follows now that f̂ (nk) = O(φ−1(1/|∏m

j=1 n( j)
k j
|)) in view

of |ei(n·x0)| = 1.
For the sake of simplicity in writing, now onwards, we carry out the proof for

m = 2, and we write (x,y) in place of (x1,x2) . Since f ∈ φBVH([0,2π ]2) , in view of
Lemma 4 (for m = 2), the discontinuities of f lie on a countable number of parallels
to the axes and hence f is measurable over T2 in the sense of Lebesgue. Further, by
Lemma 1, f is bounded over [0,2π ]2 and hence f ∈ L1(T2) . As φBVH([0,2π ]2) ⊂
φBVV([0,2π ]2) , f ∈ L1(T2)∩φBVV([0,2π ]2) .

For a given nk = (n(1)
k1

,n(2)
k2

) , we take Mk = (M(1)
k1

,M(2)
k2

) , where for each j = 1,2,

M( j)
k j

= min{N( j)
k j

− 1, |n( j)
k j
|1/2} . In view of the symmetry of the set E( j) and (2) we

have

liminf
|k j |→∞

N( j)
k j

−1

ln |n( j)
k j
|

= liminf
|k j |→∞

N( j)
k j

ln |n( j)
k j
|
= B( j) >

8e
δ

,

for each j = 1,2. Thus there is a positive integer K0 such that (N( j)
k j

−1)/(ln |n( j)
k j
|) >

(8e/δ ) for all k j � K0 and each j = 1,2. Since

lim
k j→∞

|n( j)
k j
|1/2

ln |n( j)
k j
|

= ∞

for each j , there is a K1 ∈ N such that (|n( j)
k j
|1/2)/(ln |n( j)

k j
|) > (8e/δ ) for all k j � K1

and each j = 1,2. Taking K2 = max{K0,K1} we see that

M( j)
k j

>

(
8e
δ

)
ln |n( j)

k j
| (3)

for all k j � K2 and each j = 1,2. Thus for nk such that each |n( j)
k j
| is sufficiently large

(3) holds.
Now consider the trigonometric polynomial TMk(x) satisfying conditions of Lemma

6 corresponding to this Mk and δ . Since f is E -spectral, the choice of Mk and TMk(x)
gives us

f̂ (nk) =
1

(2π)2

∫
Q

f (x)TMk(x)e−i(nk·x)dx

=
1

(2π)2

(∫
I(0,δ )

+
∫

Q\I(0,δ )

)
f (x)TMk(x)e−i(nk·x)dx

= I1 + I2, say. (4)
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Now

|I2| = 1
(2π)2

∣∣∣∣
∫

Q\I(0,δ )
f (x)TMk(x)e−i(nk·x)dx

∣∣∣∣
� 1

(2π)2 A2e
(−δ (1·Mk)/(8e))

∫
Q\I(0,δ )

| f (x)|dx

� 1
(2π)2 A2e

(−δ (1·Mk)/(8e))|| f ||1. (5)

In view of (3), for each j = 1,2, we have

− δ
8e

·M( j)
k j

< − δ
8e

· 8e
δ

· ln |n( j)
k j
| = − ln |n( j)

k j
|,

and therefore

e−
δ
8e (1·Mk) = e

− δ
8e (M(1)

k1
+M

(2)
k2

)
< e

− ln |n(1)
k1

|
e
− ln |n(2)

k2
| =

1

|n(1)
k1

n(2)
k2
|
.

Using this in (5) we get

I2 = O

⎛
⎝ 1

|n(1)
k1

n(2)
k2
|

⎞
⎠ . (6)

Now we estimate I1 . Choose nk such that each |n( j)
k j
| is sufficiently large so that (3)

holds, and such that 2π/|n( j)
k j
| < δ for j = 1,2. Again, for simplicity, we put n(1)

k1
= u

and n(2)
k2

= v . Then 2π/|u|< δ , 2π/|v|< δ , and there are unique non-negative integers
α and β such that

α
2π
|u| � δ < (α +1)

2π
|u| ; β

2π
|v| � δ < (β +1)

2π
|v| .

Therefore

0 � δ −α
2π
|u| <

2π
|u| ; 0 � δ −β

2π
|v| <

2π
|v| . (7)

Since 0 < α 2π
|u| ,β

2π
|v| � δ , say, J =

[
−α 2π

|u| ,α
2π
|u|
]
×
[
−β 2π

|v| ,β
2π
|v|
]
⊂ I(0,δ ) . There-

fore we can write I1 as

I1 =
1

(2π)2

∫
I(0,δ )

( f TMk)(x)e−i(nk·x)dx

=
1

(2π)2

(∫
J
+
∫

I(0,δ )\J

)
( f TMk)(x)e−i(nk·x)dx

= I11 + I12, say. (8)
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Next we estimate I11 . Note that e−iux and e−ivy are periodic functions of periods
2π/|u| and 2π/|v| respectively. Thus by putting

ar = r
2π
|u| (r = −α,−α +1, . . . ,α); bs = s

2π
|v| (s = −β ,−β +1, . . . ,β )

we get ∫ ar

ar−1

e−iuxdx = 0 (r = −α +1,−α +2, . . . ,α) (9)

and ∫ bs

bs−1

e−ivydy = 0 (s = −β +1,−β +2, . . . ,β ). (10)

Define three functions f1 , f2 , f3 on J by setting

f1(x,y) = ( f TMk)(x,bs−1) (a−α � x < aα ; bs−1 � y < bs)

for s = −β +1,−β +2, . . . ,β ;

f2(x,y) = ( f TMk)(ar−1,y) (ar−1 � x < ar; b−β � y < bβ )

for r = −α +1,−α +2, . . . ,α ; and

f3(x,y) = ( f TMk)(ar−1,bs−1) (ar−1 � x < ar; bs−1 � y < bs)

for r = −α +1,−α +2, . . . ,α; s = −β +1,−β +2, . . . ,β . Since f ∈ φBVH(I(0,δ )) ,
J ⊂ I(0,δ ) and TMk is a trigonometric polynomial, each fi ∈ φBVH(J) and hence
( f TMk − f1 − f2 + f3) ∈ φBVH(J) ⊂ L1(J) . Further in view of Fubini’s theorem and
the relations (9) and (10) we have∫

J
f1(x)e−i(nk·x)dx =

∫ aα

a−α

∫ bβ

b−β
f1(x,y)e−iuxe−ivydxdy

=
∫ aα

a−α

[
β

∑
s=−β+1

( f TMk)(x,bs−1)
∫ bs

bs−1

e−ivydy

]
e−iuxdx = 0,

∫
J

f2(x)e−i(nk·x)dx =
∫ aα

a−α

∫ bβ

b−β
f2(x,y)e−iuxe−ivydxdy

=
∫ bβ

b−β

[
α

∑
r=−α+1

( f TMk)(ar−1,y)
∫ ar

ar−1

e−iuxdx

]
e−ivydy = 0

and∫
J

f3(x)e−i(nk·x)dx =
∫ aα

a−α

∫ bβ

b−β
f3(x,y)e−iuxe−ivydxdy

=
α

∑
r=−α+1

β

∑
s=−β+1

( f TMk)(ar−1,bs−1)
[∫ ar

ar−1

e−iuxdx

][∫ bs

bs−1

e−ivydy

]

= 0.
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Using these equations in the expression for I11 we get

(2π)2|I11| =
∣∣∣∣
∫

J
( f TMk)(x)e−i(nk·x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ aα

a−α

∫ bβ

b−β
( f TMk − f1− f2 + f3)(x,y)e−iuxe−ivydxdy

∣∣∣∣∣
�
∫ aα

a−α

∫ bβ

b−β
|( f TMk − f1− f2 + f3)(x,y)|dxdy. (11)

Now, by Jensen’s inequality, for c > 0

φ

((
2aα ·2bβ

)−1 · c ·
∫ aα

a−α

∫ bβ

b−β
|( f TMk − f1− f2 + f3)(x,y)|dxdy

)

�
(
2aα ·2bβ

)−1
∫ aα

a−α

∫ bβ

b−β
φ (c|( f TMk − f1 − f2 + f3)(x,y)|)dxdy

=
(
4aαbβ

)−1
α

∑
r=−α+1

β

∑
s=−β+1

∫ ar

ar−1

∫ bs

bs−1

φ (c|( f TMk − f1− f2 + f3)(x,y)|)dxdy

=
(
4aαbβ

)−1
α

∑
r=−α+1

β

∑
s=−β+1

∫ ar

ar−1

∫ bs

bs−1

φ(c|( f TMk)(x,y)− ( f TMk)(x,bs−1)

− ( f TMk)(ar−1,y)+ ( f TMk)(ar−1,bs−1)|)dxdy

�
(
4aαbβ

)−1
α

∑
r=−α+1

β

∑
s=−β+1

Vφ (c f TMk ; [ar−1,ar]× [bs−1,bs])(ar −ar−1)(bs −bs−1)

�
(
4aαbβ

)−1 (2π)2

|uv| Vφ (c f TMk ;J)

�
(

4

(
δ − 2π

|u|
)(

δ − 2π
|v|
))−1 (2π)2

|uv| Vφ (c f TMk ; I(0,δ )),

in view of Lemma 3. Since φ is convex and φ(0) = 0, we have φ(ax) � aφ(x) for
0 < a < 1 and for all x � 0. Therefore, choosing c in (0,1) so small that

(
4

(
δ − 2π

|u|
)(

δ − 2π
|v|
))−1

· (2π)2 ·Vφ (c f TMk ; I(0,δ )) � 1,

we get

∫ aα

a−α

∫ bβ

b−β
|( f TMk − f1− f2 + f3)(x,y)|dxdy �

(
4aαbβ

c

)
φ−1

(
1

|uv|
)

�
(

4δ 2

c

)
φ−1

(
1
|uv|

)
. (12)
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In view of (11) and (12) we get

I11 = O

(
φ−1

(
1
|uv|

))
. (13)

Finally, we have

I12 = I121 + I122 + I123 + I124 + I125 + I126 + I127 + I128, (14)

where I121, . . . , I128 are integrals of the function (1/(2π)2)( f TMk)(x)e−i(nk·x) over the
rectangles [−δ ,a−α ]× [−δ ,b−β ] , [−δ ,a−α ]× [bβ ,δ ] , [aα ,δ ]× [−δ ,b−β ] , [aα ,δ ]×
[bβ ,δ ] , [a−α ,aα ]× [−δ ,b−β ] , [a−α ,aα ]× [bβ ,δ ] , [−δ ,a−α ]× [b−β ,bβ ] and [aα ,δ ]×
[b−β ,bβ ] respectively.

Since f ∈ φBVH(I(0,δ )) , it is bounded there and as TMk is a trigonometric poly-
nomial, there is a constant M � 0 such that |( f TMk)(x)|� M for all x∈ I(0,δ ) . There-
fore we have

|I121| � M
(2π)2

∫ a−α

−δ

∫ b−β

−δ
dxdy =

M
(2π)2 (a−α + δ )(b−β + δ ) � M

(2π)2 ·
2π
|u| ·

2π
|v| ,

showing that I121 = O
(

1
|uv|

)
.

Similarly, we have I122, I123, I124 = O
(

1
|uv|

)
.

Now we estimate I125 . We may assume without loss of generality that −δ < b−β ,
that is, bβ < δ , because otherwise −δ = b−β and then I125 = 0. Define a function h
on [a−α ,aα ]× [−δ ,b−β ] = J′ , say, by setting

h(x,y) = ( f TMk)(ar−1,y) (ar−1 � x < ar; −δ � y < b−β )

for r = −α + 1,−α + 2, . . . ,α . Since f ∈ φBVH(I(0,δ )) , J′ ⊂ I(0,δ ) and TMk is
a trigonometric polynomial, h ∈ φBVH (J′) and hence ( f TMk − h) ∈ φBVH (J′) ⊂
L1 (J′) . Further in view of Fubini’s theorem and (9) we have∫ aα

a−α

∫ b−β

−δ
h(x,y)e−iuxe−ivydxdy

=
α

∑
r=−α+1

∫ ar

ar−1

∫ b−β

−δ
h(x,y)e−iuxe−ivydxdy

=
α

∑
r=−α+1

∫ b−β

−δ

[
( f TMk)(ar−1,y)

{∫ ar

ar−1

e−iuxdx

}
e−ivy

]
dy = 0.

Thus

(2π)2|I125| =
∣∣∣∣
∫ aα

a−α

∫ b−β

−δ
( f TMk)(x,y)e

−iuxe−ivydxdy

∣∣∣∣
=
∣∣∣∣
∫ aα

a−α

∫ b−β

−δ
( f TMk −h)(x,y)e−iuxe−ivydxdy

∣∣∣∣
�
∫ aα

a−α

∫ b−β

−δ

∣∣( f TMk −h)(x,y)
∣∣dxdy. (15)
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Now, again by Jensen’s inequality, for c > 0

φ
(

c
2aα(b−β + δ )

∫ aα

a−α

∫ b−β

−δ

∣∣( f TMk −h)(x,y)
∣∣dxdy

)

� 1
2aα(δ −bβ )

∫ aα

a−α

∫ b−β

−δ
φ (c|( f TMk −h)(x,y)|)dxdy

=
1

2aα(δ −bβ )

α

∑
r=−α+1

∫ ar

ar−1

∫ b−β

−δ
φ (c|( f TMk −h)(x,y)|)dxdy

=
1

2aα(δ −bβ )

∫ b−β

−δ

[
α

∑
r=−α+1

∫ ar

ar−1

φ(c|( f TMk)(x,y)− ( f TMk)(ar−1,y)|)dx

]
dy

� 1
2aα(δ −bβ )

∫ b−β

−δ

[
α

∑
r=−α+1

Vφ ((c f TMk)(·,y); [ar−1,ar]) (ar −ar−1)

]
dy

� 1
2aα(δ −bβ )

2π
|u|

∫ b−β

−δ
Vφ ((c f TMk)(·,y); [a−α ,aα ])dy

� 1
2aα(δ −bβ )

2π
|u|

∫ b−β

−δ
d[Vφ

(
c f TMk ; [a−α ,aα ]× [−δ ,b−β ]

)
+Vφ ((c f TMk)(·,−δ ); [a−α ,aα ])]dy

=
d[Vφ

(
c f TMk ; [a−α ,aα ]× [−δ ,b−β ]

)
+Vφ ((c f TMk)(·,−δ ); [a−α ,aα ])]

2aα(δ−bβ )
2π
|u| (b−β +δ )

�
πd[Vφ

(
c f TMk ; [a−α ,aα ]× [−δ ,b−β ]

)
+Vφ ((c f TMk)(·,−δ ); [a−α ,aα ])]

(δ −2π/|u|)
1
|u| ,

(16)

in view of Lemma 3 (for a function of one variable) and Lemma 2. Since φ is convex
and φ(0) = 0, now we can choose c ∈ (0,1) such that

πdVφ
(
c f TMk ; [a−α ,aα ]× [−δ ,b−β ]

)
(δ −2π/|u|) � 1

2

and
πdVφ ((c f TMk)(·,−δ ); [a−α ,aα ])

(δ −2π/|u|) � 1
2
.

Using these inequalities in (16) we get

φ
(

c
2aα(b−β + δ )

∫ aα

a−α

∫ b−β

−δ

∣∣( f TMk −h)(x,y)
∣∣dxdy

)
� 1

|u| ,

which implies that∫ aα

a−α

∫ b−β

−δ

∣∣( f TMk −h)(x,y)
∣∣dxdy �

2aα(b−β + δ )
c

φ−1
(

1
|u|
)

� 2δ
c

· 2π
|v| ·φ

−1
(

1
|u|
)

. (17)



1150 BHIKHA LILA GHODADRA

Since φ is convex and φ(0) = 0, it follows that

αφ−1(y) � φ−1(αy) for 0 � α � 1 and y � 0. (18)

As 0 < 1/|v|< 1, from (17) and (18) we get

∫ aα

a−α

∫ b−β

−δ

∣∣( f TMk −h)(x,y)
∣∣dxdy � 4πδ

c
·φ−1

(
1

|uv|
)

.

Using this inequality in (15) we get

I125 = O

(
φ−1

(
1
|uv|

))
.

Similar arguments shows that

I126, I127, I128 = O

(
φ−1

(
1

|uv|
))

.

Since φ is convex, φ(0) = 0, and φ(1) = 1, it follows that φ(x) � x and hence x �
φ−1(x) for 0 � x � 1. In particular, we have

1
|uv| � φ−1

(
1
|uv|

)
. (19)

Using estimates of I121, . . . , I128 in (14), in view of (19), we obtain

I12 = O

(
φ−1

(
1
|uv|

))
. (20)

The proof of the theorem is now completed in view of (4), (6), (8), (13), (19), and (20).
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[9] F. MÓRICZ, Order of magnitude of double Fourier coefficients of functions of bounded variation,
Analysis, 22, (2002), 335–345.

[10] M. E. NOBLE, Coefficient properties of Fourier series with a gap condition, Math. Ann., 128, (1954),
55–62.

[11] J. R. PATADIA, Local theorems for the absolute convergence of multiple lacunary Fourier series,
Math. Ann., 271, (1985), 81–89.

[12] L. C. YOUNG, Sur une generalization de la Notion de variation de puissance p-ieme boranee au sense
de M. Wiener, et sur la convergence de series de Fourier, C. R. Acad. Sci. Paris, 204, (1937), 470–472.

(Received February 15, 2013) Bhikha Lila Ghodadra
Department of Mathematics, Faculty of Science
The Maharaja Sayajirao University of Baroda

Vadodara – 390 002 (Gujarat), India
e-mail: bhikhu ghodadra@yahoo.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


