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ON MULTIPLE FOURIER COEFFICIENTS OF
FUNCTIONS OF ¢-A-BOUNDED VARIATION

R. G. VYAS AND K. N. DARIJI

(Communicated by L. Leindler)

Abstract. Here, we have estimated the order of magnitude of multiple Fourier coefficients of
functions of ¢(Al,...,AN)BV([0,2x]V).

1. Introduction

In 1982, M. Schramm and D. Waterman [5] estimated the order of magnitude of
Fourier coefficients of functions of ¢ ABV (T), where T = [0,27). Recently, V. Fiilop
and F. Méricz [2] studied the order of magnitude of multiple Fourier coefficients of

functions of BV(TN) in the sense of Vitali and Hardy. Here, we have generalized these
results by estimating the order of magnitude of multiple Fourier coefficients of complex
valued functions of ¢(A',...,AN)BV(T").

In the sequel, ¢ is an increasing convex function defined on the non-negative real
numbers such that ¢(0) =0, M —0asx—0, M — o0 as x — oo and L isthe
class of non-decreasing sequence A={A}7 of posmve numbers such that ¥, - -
diverges.

The function ¢ is said to have property A, if there is a constant d > 2 such that
®(2x) < do(x) forall x > 0.

Consider a function f on R*. For k =1 and I = [a,b], define Af> = f(I) =
f(b)— f(a). For k=2, I=la,b] and J = [c,d], define

A = fIxJ) = [(1,d) = f(I,¢) = [(b,d) — f(a,d) — (b,) + f(a,c).

DEFINITION 1. Let A = (A',A?), where Ak ={Af}* €L for k=1,2. A
complex valued measurable function f defined on a rectangle R? := [a,b] x [c,d] is
said to be of ¢-(A', A?)-bounded variation (thatis, f € ¢(A',A%)BV(R?)) if

o(lF (I} x 1))
V/\¢(f’R2 (ZZ 11;2 ) <

11 12 i
where I' and 7 are finite collections of nonoverlapping subintervals {I!} and {172} in
[a,b] and [c,d] respectively. ’
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Observe that a function f € ¢(A',A?)BV(R?) need not be bounded.
Consider [3, Example 1.19, p. 23] £ : [0,27]*> — R defined by

L_|_XL2 if x1£0 and x; #0,

X1

1 .

o if x;#0 and x, =0,
f(x1,.x2): ll .

> if x; =0 and x; #0,

0 if xy=0 and x, =0.

Then f € ¢(A',A%)BV(]0,27)?) but f is not bounded on [0,27]?.
If f € ¢(A',A%)BV(R?) is such that the marginal functions f(a,.) € A>BV ([c,d])
and f(.,c) € 9A'BV ([a,b]) (refer [6, p. 2] for the definition of ¢ A'BV ([a,b])) then f
is said to be of ¢-(A!,A?)*-bounded variation (that is, f € ¢(A',A%)*BV(R?)).
Observe that for ¢(x) = x (and for ¢(x) = x?, p = 1) the conditions @ — 0 as

x— 0 and @ — oo as X — oo are not valid.
Note that, for ¢(x) = x and A! = A®> = {1} classes ¢(A',A?)BV(R?) and

o (A',A%)*BV(R?) reduce to classes BVy (R?), of functions of bounded variation in the
sense of Vitali (refer [4, p. 279] for the definition of BVy/(R?)), and BVy(R?), of func-
tions of bounded variation in the sense of Hardy (refer [4, p. 280] for the definition of
BV (R?)), respectively; for ¢ (x) = x classes ¢(A!,A%)BV(R?) and ¢(A',A%)*BV (R?)
reduce to classes (A, A?)BV (R?) (see, [, Definition 2]) and (A', A?)*BV (R?) respec-
tively and for ¢(x) = x” (p > 1) classes ¢(A!,A*)BV(R?) and ¢(A',A?)*BV(R?)
reduce to classes (A',A?)BV(?)(R?) (see, [7, Definition 1.2]) and (A',A?)*BV(P)(R?)
respectively.

2. New results for functions of two variables

For any x = (x1,x2) € T° and k = (k1,k2) € Z2, denote their scalar product by
k-x = kx| +kyxp.
Forany f € L (Tz), where f is 2 w-periodic in each variable, its Fourier series is

defined as . ‘
fx)~ Y Fk)e ™),
kez?
where {
2 _ —i(k-x)
1) = Lo fe Vax

denotes the k' Fourier coefficient of f.
We prove the following results.

THEOREM 1. If ¢ satisfies Ay condition, f € ¢(A1,A2)BV(T2) nL! (Tz) and
k = (ki,ko) € 72 is such that ky -ky # O then

fky=0|¢! : (1)
SIS
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Theorem 1 generalize the result [5, Theorem 1(ii), p. 408] for functions of two
variables.

Proof. Since

n 1 2n 2w L L
f(kl,kz) = W/o ) f(X1,)C2) e Hix e s dx1 d)CQ,

we have
" 1 2n r2m T T T
4| f(ky k)| = — r _> — o+
|f (k1 k2)| P /0 /0 <f(x1+k1 x2+k2 f(xl x2+k2>
T —ikyxy ,—ikox
—f(x1+k—7x2>—|—f(x1,x2))e X o722y dxy|.
1

Because of the periodicity of f in each variable, we get

2n 2w
/0 /0 |Afrim (x1,22)| dxy dxy

2 2w s T T -
- ot )T — )= — dx; d
/0 /0 f(xH—kl ,x2+k2> f<x1’x2+k2> f<x1+k1,xz>+f(x1,x2)‘ x1 dxp,
where
T Y - n T
Afrir (x1,%2) = f(m + 0% m rz—) —f<x1 LTy ’2_>
ky ko ki kr
rm (rz—l)n) (n—hirm (rn—1)rx
f<x1+ w2t T +f<x1+ oot >,

forany ri,r € Z.
Therefore

. 1 2r r2m
Pk < foms [ [ 1880 dx dx,

1 2n 2m
< W/O /0 |Afr1r2(x17x2)‘ dxy dx;.
For ¢ > 0, by Jensen’s inequality for integrals, we have

R 1 2r r2r;
S(el itk k)) < g [ [ 0(ElAfn (1,02 di d

Dividing both sides of above inequality by /1,11 /1,22 and then summing over r; =1 to

|k1| and r, =1 to |ky|, we get

. kil k2| 1
¢(c|f<k1,kz>|><2 ) W)

l 2T 2r ‘kl |k2‘ ¢(C|Afr T (Xl,x2)|)
<@l | (2 L o
ry

r1=1r2=1

<V, (ef. T, @)
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where cf € 9(A',A2)BV(T"), as ¢ satisfies A condition.

Since ¢ is convex and ¢(0) = 0, for ¢ € (0,1] we have ¢(cx) < c¢(x) and hence
we can choose sufficiently small ¢ € (0,1] such that V) ocf ,TZ) < 1. Thus, in view of
(2), we get

1

. 1
< = —1
|/ (ki,k2)] < -0 sl skl 1
ri=14r=1 Arlllrzz

This completes the proof of Theorem 1. [

COROLLARY 1. If ¢ satisfies Ay condition, f € (P(Al,Az)*BV(Tz) and k =
(ki,ko) € 72 is such that ky -ky # O then (1) holds true.

Proof. Forany f € ¢(A',A2)*BV(T"),

[f(xr,x2) ] < |f(ensx2) = £(0,x2) — f(x1,0) 4 £(0,0)[ +[£(0,x2) — £(0,0)]

+1f(x1,0) = (0,0)[ + |£(0,0)]
< (AN (Va, (1 T) + (D)9~ (Vi (£(0,.),T)
+(21)0 (Vi ((-,0),T)) +[£(0,0)|

implies f is bounded on T-. [J

Since ¢(A!,A2)*BV(T°) C ¢(A',A2)BV(T"), the Corollary 1 follows from The-
orem 1.

COROLLARY 2. If ¢ satisfies Ay condition, f € ¢(A',A*)*BV (T ) and k =
(k1,0) € Z? is such that ky # 0 then

Proof. Since
R 1 2n 2w ik
F(k1,0) = W/o [ flrm) e M dx din,
we have
4 271' .
2|f k1,0) 471_2 )/ / x1 + — )Q) f(X1,.X2)> e tn dxy dXQ).

Because of the periodicity of f in each variable, we get

2n 2w 2n r2m
/ / |Afr, (x1,%2)| dx1 dxa =/ / f
o Jo o Jo

T
<x1 + k_’x2> —f(xl,xz)) dxy dx;,
1
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where

>—f(x1+w7x2>7 for any r| € Z.

nw
Afrl(x17x2) :f<xl+1_7x2 kl

ky
Therefore
R 1 2n 21

P01 < gz [ 7 1800 1.x2) i dxy

1 2n 21
S W/O /O |Afr1 (xlax2)‘ dX1 dJCz.

For ¢ > 0, by Jensen’s inequality for integrals, we have

R 1 2n 27
O(el b0 < 7 [ [ 0l (o )l) da da,

Dividing both sides of above inequality by JL,II and then summing over r; = 1 to |k,
we get

V<1| 2 2 V<1|
; e ¢C\Afrl(xl,xz)|)
¢(c|f<k1,o>>< 7 ) =] ( )mm

rn=
< Vg (ef (). T). G)
As ¢ is satisfying A, condition and is increasing implies

¢(x+y) < ¢(2max{x,y}) < dg(max{x,y}) < d(¢(x) +¢(y)), for any x,y>0.

Therefore, for any 0 < x; < 27,
Vi (F(2),10,27)) < dRFV, (1,10, 27) + Y, (£(.,0), 10, 2]

Thus, in view of (3), we get
" |k1| 1 ) — _
o(elfin0 | X 71 | SARIA (fT) +Vyy (0T @)
at

ri=1

Since ¢ is convex and ¢(0) = 0, so we can choose sufficiently small ¢ € (0, 1] such
that Vy,, (cf, T)) < 5oz and Vi) (cf(.,0),T) < 5. Hence, from (4), we have
1

|/ (k1,0) < ~ T |- O
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3. Extension of the results for functions of several variables

Let I* = [a;,b] C R, for k=1 to N. In the above section-1, we have already
define f(I') for a function f of one variable and f(I' x I?) for a function f of two
variables. Similarly for a N— variables function f on RY, by induction, defining the
expression f(I' x ... x IN~1) for a function of N — 1 variables, one gets

FI < ox Yy = f L ox VU b)) — fI o x VT ay).
Observe that, f(I' x ... x IV) can also be express as

FI' <INy = Af2 = f(b)— f(a) = Y k(e) f(c),

C

where a = (aj,az,---,ayn), b = (by,by,---,by) € RV, the summation is over all ¢ =
(c1,¢2---,cn) € RN such that ¢; € {a;,b;}, for i=1,---,N, and for any such ¢, k(c) =
ki ...ky,in which, for 1 <i <N,

1 if¢; =b;,
ki_ { —1 ifci:ai.
If N=1 then
Afy =D —Zk f(br) = f(ar),
while, if N =2 then
Afy = :11522 Y, ke f(b1,b2) + f(ar,a2) — f(b1,a2) — f(a1,b2).

(c1,¢2)

Similarly, if N =3 then we get

DR = M) = KOS
€1,02,€3

= f(b1,b2,b3) + f(b1,a2,a3) + f(ai,bs,a3) + f(ai,az,b3)
—f(b1,b2,a3) — f(ay,ba,b3) — f(by,a2,b3) — f(ai,az,a3).

Let A= (Al,---,A"), where A* = {2} €L for k=1,...,N. A complex valued
measurable function f defined on RY :=[I}_, [ax, by] is said to be of ¢-(Al,--- AN)-
bounded variation (that is, f € ¢(Al,--- AN)BV(RY)) if

O(FIL x ... x 1Y)
Vpo(FoRY) = sup (XY ) <=,
ki kn

LIV kn

where I',...,I" are finite collections of non-overlapping subintervals {I} },...,{Iy }
in [ay,b],...,[an,bn] respectively.
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Moreover, a function f € ¢(A!,---,AN)BV(RV) is said to be of ¢-(Al,---, AN)*
bounded variation (thatis, f € ¢(A!,---,A¥)*BV(RV)) if for each of its marginal func-
tions

f(xl7"'7xi717ai7xi+17"'7xN) S (P(Ala"'7Ai_17Ai+17'"7AN)*BV(RN(ai))7
Vi=1,2,---,N, where
RN(ai) = {(xl,---,xi,l,x,-+17---7xN) GRN_I Xg € [ak,bk] for k= 1,-",i—17i+17"'7N}.

Note that, for ¢(x) =x and A' =--- = A¥ = {1} classes ¢(A',---,AY)BV(R") and
(AL, AV)*BV(RY) reduce to classes BVy(RY) and BVy(RV) respectively; for
¢(x) = x classes ¢(Al,--- AM)BV(RY) and ¢(A!,---,AN)*BV(R") reduce to classes
(AL, AMYBV(RM) and (A!,---,AN)*BV(RV) respectively and for ¢ (x) =x” (p > 1)
classes ¢(A!,---,AN)BV(RY) and ¢(A!,---,AN)*BV(RY) reduce to classes (Al,---,
AMBV(P)/(RNY and (A!,---,AN)*BV(P)(RN) respectively.

It is easy to prove that f € ¢(Al,--- AV)*BV(RV) implies it is bounded.

For any x = (x1,---,xy) € T and k = (ki,---,ky) € ZV, denote their scalar
product by

k-x=kx;+--+kyxy.

For feL! (TN), where f is complex valued function which is 2 -periodic in each
variable, its Fourier series is defined as

Fx)~ Y Flk)e®),

kezZN

where

7 1 —i(k-x
700 = G fo 0 *ax

denotes the k™ Fourier coefficient of f.
Now, we extend the above mentioned results for higher dimensional spaces as
follow.

THEOREM 2. If ¢ satisfies Ay condition, f € ¢(A1,~~~,AN)BV(TN) NnL! (TN)
and k = (ky,---,ky) € ZV is such that ky ---ky # 0 then

1

fey =0 07" | qor——mr—

27‘1:1 o .eril lrll A;X]

&)

Theorem 2 generalize the result [2, Theorem, p. 99].

COROLLARY 3. If ¢ satisfies Ay condition, f € ¢(A!,--- 7AN)*BV(TN) and k =
(ki,--- k) € ZN is such that ky ---ky # O then (5) holds true.
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COROLLARY 4. If ¢ satisfies Ay condition, f € ¢(A',... ,AN)*BV(TN) and k =
..skn) € ZN is such that k; # 0 for (1 <)j; < -+ < ju(<N) and k; =0 for

(1L < <Iy-m(<N), where {ly,--,In_p} is the complementary set of {j1,--,
Jm} with respect to {1,---,N}, then

NN 1
=019 ST

ry=1 )Lrjll }L’JAA/;I

Corollary 4 generalize the result [2, Corollary, p. 103].
Extended results of this section can be prove in the same way as we proved the

results in section 2.
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