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ON OPERATOR BOHR TYPE INEQUALITIES

LIMIN ZOU AND CHUANJIANG HE

(Communicated by M. S. Moslehian)

Abstract. The purpose of this paper is to discuss inequalities related to operator versions of the
classical Bohr inequality. We obtain refinements of some inequalities due to Cheung and Pečarić
[J. Math. Anal. Appl. 323 (2006) 403–412] and Zhang [J. Math. Anal. Appl. 333 (2007)
1264–1271]. Moreover, we present two inequalities for multiple operators, which are similar to
ones proposed by Chansangiam et al. [J. Math. Anal. Appl. 356 (2009) 525–536].

1. Introduction

Let B(H) be the algebra of all bounded linear operators on a complex separable
Hilbert space H . For A ∈ B(H) , A∗ denotes the adjoint operator of A . The absolute
value of operator A is defined by |A|= (A∗A)1/2 . If A, B∈ B(H) are self-adjoint, then
A � B means that A−B is a positive operator. Let Mn be the space of n×n complex
matrices. For X ∈ Mn , Xi j denotes the sub-matrix of X resulting from the deletion of

row i and column j . Throughout this paper, we assume that p, q∈ R with
1
p

+
1
q

= 1,

where R is the set of real numbers.
The classical Bohr inequality [2] for scalars asserts that for complex numbers

z1, z2 and p, q > 1,
|z1 − z2|2 � p |z1|2 +q |z2|2 .

A number of generalizations of Bohr inequality for operator in B(H) have been estab-
lished [1, 3–11] over the years. In 2003, Hirzallah [7, Theorem 1] obtained an operator
version of Bohr inequality, which says that if A,B ∈ B(H) and 1 < p � q , then

|A−B|2 + |(1− p)A−B|2 � p |A|2 +q |B|2 . (1.1)

Inequality (1.1) was extended to all possible cases of p, q by Cheung and Pečarić [4,
Theorem 1, Corollary 1, and Theorem 2] as follows:
(i) If p < 1, then

p |A|2 +q |B|2 � |A−B|2 + |(1− p)A−B|2 ,

p |A|2 +q |B|2 � |A−B|2 + |A− (1−q)B|2 .
(1.2)
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(ii) If 1 < p � 2, then

|A−B|2 + |(1− p)A−B|2 � p |A|2 +q |B|2 � |A−B|2 + |A− (1−q)B|2 . (1.3)

(iii) If p > 2, then

|A−B|2 + |A− (1−q)B|2 � p |A|2 +q |B|2 � |A−B|2 + |(1− p)A−B|2 . (1.4)

Recently, Zhang [10, Theorem 7] presented a generalization of operator Bohr in-
equality for multiple operators, which states that if k is a positive integer and Aj ∈
B(H) , j = 1, · · · , k , then for any positive numbers t1, · · · , tk with

k
∑
j=1

t j = 1,

∣∣∣∣∣
k

∑
j=1

t jA j

∣∣∣∣∣
2

�
k

∑
j=1

t j
∣∣Aj

∣∣2. (1.5)

Inequality (1.5) was generalized by Chansangiam et al. [3, Theorem 26] to the follow-
ing form:

Define X = [xi j] ∈ Mk , where

xi j =
{

α2
i −βi, i = j

αiα j, i �= j
, αi, βi ∈ R, 1 � i, j � k.

If X � 0, then ∣∣∣∣∣
k

∑
j=1

α jA j

∣∣∣∣∣
2

�
k

∑
j=1

β j
∣∣Aj

∣∣2. (1.6)

If X � 0, then ∣∣∣∣∣
k

∑
j=1

α jA j

∣∣∣∣∣
2

�
k

∑
j=1

β j
∣∣Aj

∣∣2. (1.7)

In this paper, we give refinements of inequalities (1.2)–(1.5). Moreover, we obtain
two inequalities for multiple operators, which are similar to inequalities (1.6) and (1.7).

2. Main results

In this section, we shall present some operator Bohr type inequalities. To achieve
it, we need an operator equality, which is equivalent to some existing results.

LEMMA 2.1. Let A,B ∈ B(H) , p, q �= 0,1 , and 0 � λ � 1 . Then

p |A|2 +q |B|2 = |A−B|2 +
λ

p−1
|(p−1)A+B|2 +

1−λ
q−1

|A+(q−1)B|2 . (2.1)
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Proof. Note that

λ
p−1

|(p−1)A+B|2 = λ (p−1) |A|2 +
λ

p−1
|B|2 + λ (A∗B+B∗A) ,

1−λ
q−1

|A+(q−1)B|2 =
1−λ
q−1

|A|2 +(1−λ)(q−1) |B|2 +(1−λ)(A∗B+B∗A) ,

and
q
p

= q− 1 =
1

p−1
. By simple calculations, equality (2.1) follows from above

equalities. This completes the proof. �

REMARK 2.1. Abramovich et al. [1, Equality 2.2] proved that for any α ∈ R ,

α (1−α) |A−B|2 + |αA+(1−α)B|2 = α |A|2 +(1−α) |B|2 . (2.2)

The special case for 0 � α � 1 has been obtained earlier by Zhang [10, Theorem 2].
Note that for α �= 0, 1, equality (2.2) is equivalent to

|A−B|2 +
α

1−α

∣∣∣∣A+
1−α

α
B

∣∣∣∣
2

=
1

1−α
|A|2 +

1
α
|B|2 .

Taking
1

1−α
= p,

1
α

= q and using equality

1
p−1

|(p−1)A+B|2 =
1

q−1
|A+(q−1)B|2

in the last equality, we can easily conclude that (2.2) is equivalent to (2.1). Fujii and
Zuo [6, Theorem 4.1] proved that for t �= 0,

|A+B|2 +
1
t
|tA−B|2 = (1+ t) |A|2 +

(
1+

1
t

)
|B|2 .

Simple calculations show that above equality is also equivalent to (2.1).

Now, we refine inequalities (1.2)–(1.4) by utilizing equality (2.1).

THEOREM 2.1. Let A,B ∈ B(H) , p, q �= 0,1 , and 0 � λ � 1 .
(i) If p < 1 , then

p |A|2 +q |B|2 � |A−B|2 + λq |(1− p)A−B|2 ,

p |A|2 +q |B|2 � |A−B|2 +(1−λ) p |A− (1−q)B|2 .
(2.3)

(ii) If 1 < p � 2 , then

|A−B|2 + |(1− p)A−B|2 � |A−B|2 +((q−1)(1−λ)+ λ) |(1− p)A−B|2
� p |A|2 +q |B|2
� |A−B|2 +((p−1)λ +1−λ) |A− (1−q)B|2
� |A−B|2 + |A− (1−q)B|2 .

(2.4)
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(iii) If p > 2 , then

|A−B|2 + |(1−q)A−B|2 � |A−B|2 +((p−1)λ +1−λ) |A− (1−q)B|2
� p |A|2 +q |B|2
� |A−B|2 +((q−1) (1−λ)+ λ) |(1− p)A−B|2
� |A−B|2 + |A− (1− p)B|2 .

(2.5)

Proof. Let p < 1, then q < 1 and pq < 0. It follows that

1
p−1

|(p−1)A+B|2 � 0

and
1

q−1
|A+(q−1)B|2 � 0.

By (2.1), we obtain

p |A|2 +q |B|2 � |A−B|2 +
λ

p−1
|(1− p)A−B|2

� |A−B|2 +
(

λ
p−1

+λ
)
|(1− p)A−B|2

= |A−B|2 + λq |(1− p)A−B|2

and

p |A|2 +q |B|2 � |A−B|2 +
1−λ
q−1

|A− (1−q)B|2

� |A−B|2 +
(

1−λ
q−1

+1−λ
)
|A− (1−q)B|2

= |A−B|2 +(1−λ) p |A− (1−q)B|2 .

Then, inequality (2.3) holds.

Since 1 < p � 2 implies q � 2, it follows that
1

p−1
� 1 and

1
q−1

� 1. Now,

we prove the second and third inequalities of (2.4). By (2.1), we have

p |A|2 +q |B|2 � |A−B|2 + λ |(p−1)A+B|2 +
1−λ
q−1

|A+(q−1)B|2

= |A−B|2 + λ |(p−1)A+B|2 +
1−λ
p−1

|(p−1)A+B|2

= |A−B|2 +
(

λ +
1−λ
p−1

)
|(p−1)A+B|2

= |A−B|2 +((q−1) (1−λ)+ λ) |(1− p)A−B|2 .
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This is the second inequality of (2.4). Meanwhile, by (2.1), we also have

p |A|2 +q |B|2 � |A−B|2 +
λ

p−1
|(p−1)A+B|2 +(1−λ) |A+(q−1)B|2

= |A−B|2 +
λ

q−1
|A+(q−1)B|2 +(1−λ) |A+(q−1)B|2

= |A−B|2 +
(

λ
q−1

+1−λ
)
|A+(q−1)B|2

= |A−B|2 +((p−1)λ +1−λ) |A− (1−q)B|2 .

This is the third inequality of (2.4). Next, we prove the first inequality of (2.4). A
simple calculation shows that

|(1− p)A−B|2 − ((q−1)(1−λ)+ λ) |(1− p)A−B|2
= (1−λ)(2−q) |(1− p)A−B|2
� 0.

Consequently,

|A−B|2 + |(1− p)A−B|2 � ((q−1)(1−λ)+ λ) |(1− p)A−B|2 .

Finally, we prove the fourth inequality of (2.4). Similarly, we have

|A− (1−q)B|2 − ((p−1)λ +1−λ) |A− (1−q)B|2
= λ (2− p) |A− (1−q)B|2
� 0.

So,

|A−B|2 +((p−1)λ +1−λ) |A− (1−q)B|2 � |A−B|2 + |A− (1−q)B|2

Similar to the case of 1 < p � 2, we can prove inequality (2.5), so we omit the
details. This completes the proof. �

REMARK 2.2. Inequalities (2.3)–(2.5) are refinements of inequalities (1.2)–(1.4),
respectively. Zou et al. [11, Lemma 2.1] proved that

|A−B|2 +
2
p
|(p−1)A+B|2 � p |A|2 +q |B|2 � |A−B|2 +

2
q
|A+(q−1)B|2 (2.6)

for 1 < p � 2 and

|A−B|2 +
2
q
|A+(q−1)B|2 � p |A|2 +q |B|2 � |A−B|2 +

2
p
|(p−1)A+B|2 (2.7)

for p > 2. Taking λ =
q−2
q− p

in (2.4) and (2.5), we obtain inequalities (2.6) and (2.7)

respectively.



1166 LIMIN ZOU AND CHUANJIANG HE

REMARK 2.3. Cheung and Pečarić [4, Theorems 3, 4] obtained some Bohr type
inequalities for operators in B(H) by using inequalities (1.2)–(1.4). By utilizing in-
equalities (2.3)–(2.5), we can refine some results obtained by Cheung and Pečarić [4,
Theorems 3, 4].

REMARK 2.4. Chansangiam et al. [3] established some generalizations of Bohr
inequality for operators in B(H) , such as inequalities (19)–(34) in [3]. The crucial tool
for these results is Theorem 10 in [3], i.e., inequalities (1.2)–(1.4) of this paper. We can
obtain some refinements of these inequalities by using (2.3)–(2.5).

The following result is a refinement of inequality (1.5).

THEOREM 2.2. Let k be a positive integer and let A j ∈ B(H) , j = 1, · · · , k .

Then for any positive numbers t1, · · · , tk with
k
∑
j=1

t j = 1, t j �= 1 , it holds that

∣∣∣∣∣
k

∑
j=1

t jA j

∣∣∣∣∣
2

+
1
2

min{ti, 1− ti}
∣∣∣∣∣Ai −

k

∑
j=1, j �=i

t j

1− ti
A j

∣∣∣∣∣
2

�
k

∑
j=1

t j
∣∣Aj

∣∣2 (2.8)

for 1 � i � k .

Proof. For 0 � α � 1, by (2.2), we have

|αA+(1−α)B|2 +
1
2

min{α, 1−α}|A−B|2 � α |A|2 +(1−α) |B|2 . (2.9)

Note that

|t1A1 + · · ·+ tkAk|2 =

∣∣∣∣∣tiAi +(1− ti)
k

∑
j=1, j �=i

t j

1− ti
A j

∣∣∣∣∣
2

, 1 � i � k.

It follows from (2.9) and (1.5) that

|t1A1 + · · ·+ tkAk|2 +
1
2

min{ti, 1− ti}
∣∣∣∣∣Ai −

k

∑
j=1, j �=i

t j

1− ti
A j

∣∣∣∣∣
2

=

∣∣∣∣∣tiAi +(1− ti)
k

∑
j=1, j �=i

t j

1− ti
A j

∣∣∣∣∣
2

+
1
2

min{ti,1− ti}
∣∣∣∣∣Ai−

k

∑
j=1, j �=i

t j

1− ti
A j

∣∣∣∣∣
2

� ti |Ai|2 +(1− ti)

∣∣∣∣∣
k

∑
j=1, j �=i

t j

1− ti
A j

∣∣∣∣∣
2

� t1 |A1|2 + · · ·+ tk |Ak|2
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for 1 � i � k . Thus,∣∣∣∣∣
k

∑
j=1

t jA j

∣∣∣∣∣
2

+
1
2

min{ti, 1− ti}
∣∣∣∣∣Ai −

k

∑
j=1, j �=i

t j

1− ti
A j

∣∣∣∣∣
2

�
k

∑
j=1

t j
∣∣Aj

∣∣2.
This completes the proof. �

Finally, we present two inequalities for multiple operators, which are similar to
inequalities (1.6) and (1.7).

Let k be a positive integer. For β j ∈ R, 1 � j � k and any positive numbers

α1, · · · , αk with
k
∑
j=1

α j = 1, α j �= 1, we define Y = [y js] ∈ Mk , where

y js =
{

α2
j − (1−αi)β j, j = s

α jαs, j �= s
, 1 � j, s � k, i �= j. (2.10)

THEOREM 2.3. Let A j ∈ B(H) , j = 1, · · · , k . If Y = [y js] is as (2.10) and Y � 0 ,
then∣∣∣∣∣

k

∑
j=1

α jA j

∣∣∣∣∣
2

+
1
2

min{αi, 1−αi}
∣∣∣∣∣Ai −

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

� αi |Ai|2 +
k

∑
j=1, j �=i

β j
∣∣Aj

∣∣2

for 1 � i � k .

Proof. It is known that −Y � 0 is equivalent to −Z =
−Y

(1−αi)
2 � 0, which im-

plies Zii � 0. It follows from (1.6) and (2.9) that

αi |Ai|2 +(1−αi)
k

∑
j=1, j �=i

β j

1−αi

∣∣Aj
∣∣2 � αi |Ai|2 +(1−αi)

∣∣∣∣∣
k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

�
∣∣∣∣∣αiAi +(1−αi)

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

+
1
2

min{αi, 1−αi}
∣∣∣∣∣Ai −

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

= |α1A1 + · · ·+ αkAk|2 +
1
2

min{αi, 1−αi}
∣∣∣∣∣Ai −

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

for 1 � i � k . This completes the proof. �

THEOREM 2.4. Let A j ∈ B(H) , j = 1, · · · , k . If Y = [y js] is as (2.10) and Y � 0 ,
then∣∣∣∣∣

k

∑
j=1

α jA j

∣∣∣∣∣
2

+min{αi, 1−αi}
∣∣∣∣∣Ai−

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

� αi |Ai|2 +
k

∑
j=1, j �=i

β j
∣∣Aj

∣∣2

for 1 � i � k .
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Proof. By (2.2), we know that for 0 � α � 1,

α |A|2 +(1−α) |B|2 � |αA+(1−α)B|2 +min{α, 1−α}|A−B|2 . (2.11)

It is known that Y � 0 is equivalent to Z =
Y

(1−αi)
2 � 0, which implies Zii � 0. It

follows from (1.7) and (2.11) that

αi |Ai|2 +(1−αi)
k

∑
j=1, j �=i

β j

1−αi

∣∣Aj
∣∣2 � αi |Ai|2 +(1−αi)

∣∣∣∣∣
k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

�
∣∣∣∣∣αiAi +(1−αi)

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

+min{αi, 1−αi}
∣∣∣∣∣Ai−

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

= |α1A1 + · · ·+ αkAk|2 +min{αi, 1−αi}
∣∣∣∣∣Ai−

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

for 1 � i � k . This completes the proof. �

REMARK 2.5. By Theorem 2.4 and inequality (2.8), we have

αi |Ai|2 +
k

∑
j=1, j �=i

β j
∣∣Aj

∣∣2 �
k

∑
j=1

α j
∣∣Aj

∣∣2+1
2

min{αi, 1−αi}
∣∣∣∣∣Ai−

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

.

Consequently,

k

∑
j=1, j �=i

β j
∣∣Aj

∣∣2 �
k

∑
j=1, j �=i

α j
∣∣Aj

∣∣2+1
2

min{αi, 1−αi}
∣∣∣∣∣Ai−

k

∑
j=1, j �=i

α j

1−αi
A j

∣∣∣∣∣
2

.

This is also an inequality for multiple operators.
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