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ON PROPERTIES FOR m-POLYNOMIALS OF UNIT p-BALLS

JESUS YEPES NICOLAS

(Communicated by I. Franjic)

Abstract. In this paper we study properties of ‘weighted’ Steiner polynomials associated to the
unit p-balls. We show that the corresponding functional can be bounded just by the last but
one relative quermassintegral. Then we give a general asymptotic relation between the roots of
Steiner polynomials and the above mentioned polynomials. These properties will be obtained as
consequences of more general results for the so called m-polynomials.

1. Introduction

Let #" be the set of all convex bodies, i.e., compact convex sets, in R”. The
volume of a set M C R”, i.e., its n-dimensional Lebesgue measure, is denoted by
vol(M) (or vol,(M) if the distinction of the dimension is needed). We write B}, to
represent the unit p-ball associated to the p-norm |- | p» 1 < p < oo, and by Kl =
vol(BY), which takes the value

(2r(4+1))"

K=~ (1.1)
r (5 + 1)
where I' denotes the gamma function (see e.g. [9, p. 11]). In the particular case p =2,
we write for short B, to denote the n-dimensional unit ball and x, = vol(B,,). Finally,
with linM we represent the linear hull of M C R".
For convex bodies K, E € #™ and a non-negative real number A, the well-known

Steiner formula states that the volume of the Minkowski sum K + AE can be expressed
as a polynomial of degree (at most) n in the parameter A,

vol(K + AE) = 2 (’Z)Wi(K;E)JLi; (1.2)
i=0

here the coefficients W;(K;E) are called the relative quermassintegrals of K with re-
spect to E, and they are a special case of the more general defined mixed volumes
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(see e.g. [10, s. 5.1] or [2, s. 6.2]). In particular, it holds W(K;E) = vol(K) and
W, (K;E) = vol(E). If we have to distinguish the dimension in which the quermassin-
tegrals are computed, we will write Wi-k) to denote the i-th quermassintegral in R¥.

In 1973 [13] Wills introduced and studied the related functional

i <”>w7 (1.3)

=0 \! Ki

which has many interesting applications, e.g., in Discrete Geometry or for Gaussian
random processes [11]. Many other nice properties of this functional, as well as re-
lations with other measures, have been studied in the last years, see e.g. [3, 4, 8, 13,
14, 15]. In particular, in [3] Hadwiger showed, among others, the following integral

representation:

n X .

Z (n) WZ(K9BVI) :/ e—ﬂd(X,K)zdx’ (14)
i—0 \! Ki "

where d(x,K) denotes the Euclidean distance between x € R” and K. Recently, gen-
eralizations of the previous identity (1.4) have been studied when the ‘distance’

dp(x,K)=inf{r>0:x€e K+rE}

between x € R"” and K, relative to a convex body E, is considered. Then it can be
proved, assuming (without loss of generality) that the origin O is a relative interior
point of E, that (see [6] and [7])

/ o TE (K gy — i (’I) Wi(K;E) (1.5)
K+linE =\ ’

Ki

which is called the relative Wills functional. Now we consider the corresponding poly-
nomials coming from (1.2) and (1.5) regarded as formal polynomials in a complex
variable z € C, which we call the relative Steiner and Wills polynomials, respectively,
and denote by

Trie(z) = ﬁ() (;:) Wi(KE)Y,  fip(x) = lié (rz) %llz)z’

Notice that the (relative) Wills polynomial can be seen as a Steiner polynomial with
certain ‘weights’. This leads to consider the following definition: given a sequence
m = (m;);en of positive real numbers, for each n € N and any pair K,E € " with
dimension dim(K +E) = n, let

@)=Y, (r;) Wi(K:E)m;z',
i=0

which we call the m-polynomial of K and E. If the weights m; are the moments of
some measure (L on the non-negative real line R>(, namely, if

mizm,-([.t)zfo ddu(t), i=0,...,n,
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then it can be shown that the functional ¥}, (',-')Wi(K ;E)m;i(u) corresponding to the
polynomial f,’é £(@) =31 ())Wi(K;E)m;(1)Z' has also an integral expression of the
form

X (n
> () wiksE (o = [ Glas(K) s
i—o \! K+linE
where G(t) = p([t,0)), t € Rxq (see [6] and [7]).
In [6] we have investigated the structure of the roots of the family of m-polynomi-
als of convex bodies when m is associated to a given measure ([ on the non-negative
real line R>¢.

A particulary interesting case of m-polynomial associated to a measure on R>¢
is the following one. Let G,(r) = ¢~%"" be the function associated to the measure

p() = [ pCpe ity
A

on the non-negative real line R>¢, where C, = (2I'(1/p+1))”. Then it can be checked
that the moments m;(u,) = I/Kip, i=0,...,n (see Lemma 2.3). Therefore, the m-
polynomials associated to the measure u,, which we call u,-polynomials, are given
by
L (n\ Wi(K;E) ;
,?f’E(z) =y () Mz‘, K,Eex".

iz
i=0 \! K;

Here we are mainly interested in studying several properties of the i, -polynomial
flgf;p (z), K € #". First we show that the corresponding functional in K obtained
when z =1 can be bounded just by the last but one relative quermassintegral.

THEOREM 1.1. For any convex body K € ™ and all 1 < p < oo, it holds

En <n) 1(7’35) < ean,l(K;B,’;)/K,ILI
. 17 ~ .
i=0 \! Ki

This property will be obtained as a consequence of a more general inequality for
m-polynomials (see Proposition 3.1). These results will be proved in Section 3. Fi-
nally, in Section 4, we give a general asymptotic relation involving the roots of Steiner
polynomials and m-polynomials, and then we particularize it to provide the connection
between the roots of the Steiner polynomial and the (1, -polynomials fg;’,; (2).

THEOREM 1.2. For s € N fixed, let K € J° and let vy,...,Vs be the roots of

f;;;,, (z), 1 < p<eoo. Embedding K CR", n>s, let ¥i,...,%n be the non-zero roots

of fx.pr (2). Then, reordering if necessary, it holds

P

. Kn .
lim ——y%,=Vvi, i=1,...,s
n—oo Kn_l
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2. Some preliminary results

In this section we collect several results which will be needed in the proofs of the
main theorems. The proof of the first lemma includes the construction of an special
family of gauge bodies which will be used in the following.

LEMMA 2.1. Let [a,b] be a closed interval in R containing the origin 0 and let
r:[a,b] — [0,00) be a continuous concave (and not identically zero) function. Then
there exists a sequence of convex bodies {E,},en with dimE, = n, such that

k
vol,_x(En_g)  voly(En)F (ffr(f YHdt)

= , 2<k<n.
vol,(E,)  vol,—1(E,—1)k | b p(e)n—k+ids

Proof. We consider the family of convex bodies inductively defined by

Ey={0}, Ei=lab], E,= |J (r(t)En_lx{t}) 2.1)

t€la,b)

From the concavity and the continuity of r(), it is easy to see that E, is, in fact, a
convex body in R”, and since r(¢) is not identically zero, dimE, = n. Moreover, we
have that, forall 0 <k <n,

b b
vol,(E,) = / vol,_ (r(t)E,—1)dt = Vol,,_l(E,,_l)/ r(0)" dr
a a
k=1 b _
= ... = VOlnfk(Enfk) H/ r(l‘)n_k-Hdt
i=0”/a

which gives the required identity. [l

If for some fixed s € N, the limits

(2 r(eytar)’

im -
I oy

exist and are positive, k = 2,...,s, then we define (see Lemma 2.1)

k
b -1
sz = lim (fa r(t)n dt) = lim Volnfk(Enfk) VOln(En)k

— = >0, (2.2)
n=e [0 [0 r()n—ktids e voly(En) voly—1 (Ey—1)*

k=2,....5s,and Ao =A; = 1.
For 1 < p < oo, we consider the function

rpi[—1,1] —[0,00) givenby r,(t) = (1—[t[7)"". (2.3)
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We observe that the family of unit p-balls

1/p
n
By = x=<x1,...,xn>eR":|x|p=<2|xl-|f’> <1y,
i=1

can be derived from (2.1) using the function r,. Next lemma shows that 7, satisfies
the limit condition defining A (cf. (2.2)).

LEMMA 2.2. Forall k> 1,

lim (s rtotar)

k—1 1 i =1
e izg Jorp(0) i

Proof. First we observe that, for any i > 0,

o 1 .
/ rp(t)’dt:Z/ (1—1P)/Pdr = 4
= 0

/2 .
/ (coss)?/P)H1 (sins) /P~ g5
P Jo
. R NEA e
%B<i+l7l) 2i (p) (p)
p p

p) " pl+1) T(EL

where B denotes the beta function (see e.g. [12, p. 215]). Then, it is an easy computa-
tion to check that, forall k > 1,

(Pirpor=tan) () (r(e

mk) (0(254) /1
and since limy, .. ((n— 1)/n)k/((n —k)/n) = 1, it suffices to prove that
1 k
(r(=h)/r(2)

n— n =1 (24)
e T()/T(3)

Stirling’s formula for the gamma function (see e.g. [1, p. 24]) yields the asymptotic
formula

g St rp(e)yAride

r
"V ()"
when the sequence (xy),cn — o0 if n goes to eo. Therefore we get
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Next result shows that the (inverse of the) volumes of unit p-balls can be obtained
as the moments of a certain measure.

LEMMA 2.3. Let u, be the measure on the non-negative real line R associated
to the function G,(t) = e " >0, with C,= (2F(l/p+ 1))p, 1 < p<oo. Then

the moments m;(Up,) = 1/k’, i > 0.

Proof. 1t is just an easy computation to check that (see (1.1))

e " 1 < .
mi(l-‘p):l?cp/o e~ P=ldr = '/p/() s'/Pe™ ds

Cy
(er(z+n) "

REMARK 2.1. If p = oo, the corresponding measure .. is the discrete one given
by fe ({1/2}) =1, oo (R0 \ {1/2}) = 0, for which m;(pt.) = 1/x.
3. On inequalities for m-polynomials
The well-known inequalities
Wi(K;E)* > W, (K E)Wip (K3E), 1<i<n—1, (3.1)

particular cases of the Aleksandrov-Fenchel inequality (see e.g. [10, s. 6.3]), will be
the main ingredient for the proof of the following result. It generalizes the inequality
obtained in [8] for the Wills functional (1.3), namely, that ¥ (’;)W,-(K ;Bn) /K <
"Wn-1(K:Bn)/Ka-1 The proof follows the idea of the one in [8].

PROPOSITION 3.1. Let m = (m;);en e a sequence of positive real numbers such
that ((n+ l)mﬁ/(nmn_lmnﬂ))neN is a decreasing sequence and with

. +1 2
A = lim (n+l)  m
n—ee M My Mgy

> 0.

Then, denoting by C(A) = (1/A)""=D/2 if 0 < A < 1, and C(A) = 1 otherwise, it
holds
FBe(1) < mpvol(E) C() "Mt Wit (KE)/(mavol(E)) (3.2)

Proof. For the sake of brevity we will write W, = (," )Wu—r(K;E)m,_,. Then,
by the Aleksandrov-Fenchel inequalities (3.1) we get

W2 r+1  (n—r+1D)m’_,
r (n - r)mn—r—lmn—r+l

WV

erlWrJrl )

r
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and the monotonicity hypothesis yields W2 > ((r+1)/r)A W,_; W41 . Thus

\W 1. W,_ 1., W,_ W,
AL Al B R T A
Wit r W, r—1 W1 Wi

and consequently

. 11 (w,\ - WATAY

Therefore, summing in r, for r =0,...,n, we obtain

£m(1) S WoC(A)eMi/Wo,

(1),ey trivially verifies the conditions of Propo-

O

REMARK 3.1. The sequence m =
sition 3.1 and hence, Steiner polynomials satisfy a (3.2)-type inequality, namely,

VOI(E) e"Wn-1 (K;E)/vol(E)

fK;E(I) <

Next we show that p,-polynomials also verify a (3.2)-type inequality, i.e., we

prove Theorem 1.1.

Proof of Theorem 1.1. Since flgf;p (z) =X (1) Wi(K;BE)/x!'Z, we have to check
that the conditions of Proposition 3.1 are satisfied for the sequence (1/x3 )nen, 1 < p <

oo,

First we notice that for p =« we get
n+12nIgntl _n+1
@72 " n

b

n+ 1K K
no () on

. So, we assume

which is clearly a decreasing sequence and lim,_..(n+1)/n =1
1 < p < oo. On the one hand, it is easy to check that (cf. (1.1))

2
n+lK Ky on F(%>
no(x)? _n—lr(ﬂ>r<w>’
P P

and using (2.4) for k =2 we get that it converges to 1 when n goes to co. Therefore

A=1andso C(A)=1.
So, it remains to be studied the monotonicity of the above sequence, which, for

convenience, can be also rewritten as

pop
n+18_ 1K1

no (k) r( +1——)

<ﬂ> <’%+l> : (3.3)
(3+

nyl
p'p
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In order to do it, we consider the real functions f; : (0,00) — R, i = 1,2, given by
fi(x) = (x—1/2)logx and f>(x) = 6/(12x) for a fixed 0 < 6 < 1 which will be suit-
ably chosen later on. The concavity of their first derivatives, fl-’ , 1=1,2, together with
the Mean-Value Theorem, allows to deduce that, in both cases 1 <p <2 and p > 2, it
holds

A0+ A+ 1) = (”1) ~f! (x+1—1) <o.
p P

Hence, the real functions #; : (0,00) — R, i = 1,2, given by
1 1
hi(x) = fi(x)+ filx+ 1) — f; <x+ 1_7) —fi <x+ 1 _I_?> ,

are strictly decreasing, which implies that ¢1(9+/2(%) is s0. Now, Stirling’s formula for
the gamma function I'(x) (see e.g. [1, p. 24]) allows to write

TP+ @

T(x+1—)0(x+ 1)

for a suitable 6 € (0,1) (see [, (3.9)]). Thus, all together, we can conclude that the
sequence in (3.3) is strictly decreasing in n.

Therefore, all conditions in Proposition 3.1 are satisfied, and thus, inequality (3.2)
for E =B}, and m = (1/k}),en shows that

I nW,,_ (K:B) /!
fKi;”;(l) < etn 1( )/ nfl’

as desired. [

4. (Asymptotically) relating the roots of Steiner and m-polynomials

In this section we state and prove one of the main theorems in the paper. From it, a
consequence for particular m-polynomials involving the unit p-balls will be obtained.

THEOREM 4.1. Let s € N and r: [a,b] — [0,00) be a continuous concave (non
zero) function, 0 € [a,b], such that Ay exists, 0 < k < s (cf. (2.2)). Let K € X and
m = (ls_i/voli(E,-))ieN, with m; =0 for i > s, and E; defined by (2.1). Embedding
K CR", n>s,let Yin,...,Y%n be the non-zero roots of fx.g,(z) andlet vi,..., Vs be
the roots of the m-polynomial fg'p (2). Then, reordering if necessary, it holds

1,(E,
lim —vOh(En)

——Yin =V, i=1,...,5s.
n—oo VOlnfl (Enfl) %Jl v ’ ’
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Proof. Fort € R, let H(t { ) €R":x, =1} . We may assume without
loss of generality that K C H ( ). The

i (':) Wi(K; En)A! = vol(K + AEy)

i=0

Ab
:A vol, 1 (K +AE,) NH(r))de

Ab ,
_ /M vol,_1 <K+/lr(I)En,1>dt

n—1 1 " Ab i
-y (”i )Wﬁ l)(K;En,l)/)L ATr(E) de
i=0
_”71 n—1\_ou, 1 Ab ;
= lgo ( ; )Wt (K,Enfl)m/a VOIi(A I"(I)El>dl

n—1
n—1\_ (-1 Vol 1(Eiy1) o 41
= W, (KE,_|)————Z 1
Z{) < i ) ! ( " 1) VOli(Ei)
and identifying coefficients of both polynomials, we get that

ivol;(E;) W(-nfll)(K'E )
—_ s ~n— N

1

Wi(K;E,) = ——————
( ) nVOl,;l (E,;l)

Thus, using the above relation recursively, we obtain

K (s) .
VOln—s+j(En—s+j) (j)w (K’ES)

J
() vol;(Ej)

and, since dimK = s, the (relative) Steiner polynomial takes the form

Wi—stj (K; En) =

fre, () =2 2( " .)W,,_Hj(K;En)zj

o \n— st
®)

s (‘) W (K;Ejs)
_ NS lnfx' X Enfs‘ AW J
‘ ZE)VO st 7Ensts) vol;(Ej)

The rest of the argument is similar to the one in [5, Theorem 1.3]; we include it here
for completeness.

Then, for all i =1,...,s, ¥, is a (non-zero) root of fx.g,(z) if and only if the
complex number 7, = (vol,(E,)/vol,—1(Ey—1)) i satisfies

§ Yolu-sts(Enss) (voln_l(En_o)f ()W) (K:Ey)

J
= vol,(E,) vol,(E,) vol;(E;)
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or equivalently, dividing by (vol,_(E,_1)/vol,(E,))’, if and only if 7, is a root of
the polynomial

SN—
<
=]
=

=
—
o
-
=]
|
~
—
N
=
—
i
o
~—

ivoln_@_,-) (Bn—(s-j)
vol, (Ey,)vol,—;(

D'J

o) n— l)s—j VOlj(Ej)

(5)
o SW(KLEy) i :
=P L s N B
VOlsfl(Esfl) ngﬁ a VOlj(Ej)

x

where, for the sake of brevity we are writing, for each k =2,...,s,

vol,_j (E,,,k) vol, (E,)*
vol, (Ey)vol, 1 (E,—1)¢

ﬁk,n =

By assumption (cf. (2.2)), lim,— Brn = A%, k=2,...,s, which shows that the point-
wise limit

li S_’_SWEA) I(K’E\)

m|zZ+———

e volg I(Es 1)

s W(f‘) K:E,) .
2" 1+2BS Jn()voli(())zj :fll(n;Es(Z)'

This, together with the fact that the roots of a polynomial are continuous functions of
the coefficients, concludes the proof. [

As a direct consequence of Theorem 4.1 for unit p-balls we obtain Theorem 1.2.
In a sense, this result is saying that for high dimension n, the (n-dimensional) Steiner
polynomial fy.pr(z) = XL, (1) Wi(K;Bf)Z of a convex body K w1th fixed dimen-

i=n—s

sion dimK = s ‘behaves as’ its p,,-polynomial f”’;p (2) =Xl (2) (KB /K7

Proof of Theorem 1.2. For 1 < p < o, let r, be the function given by (2.3), which
yields the unit p-balls via (2.1), i.e., E; = B .

Then, Lemma 2.2 ensures that A4z = 1 for all k > 1 (cf. (2.2)), and thus we can
apply Theorem 4.1 to get the required result. Notice that now, m; = 1/x”, i=1,...,s

Finally, we deal with p = co. In that case B;, is the n-dimensional regular cube
with edge-length 2, and hence

oo n
K’fﬁ? n = %Y =2%n-

n—1

Now we observe that, since dimK = s, identifying K with its canonical embedding in
ey & R (e denotes the i-th canonical unit vector), then

st S+1 (s+1)
2( ) )W (KBSH))L =voly 1 (K+AB, ) =2Avol (K +ABY)

i=1 !
=22 Z (s> W (K B)A
- 70 l 1 9 Ky b
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and identifying coefficients of both polynomials we get

l B 5
(W =20 JWED, =,
l 1 —

Iterating this embedding-process till K C R", we finally get the identities

n eon ans s © L
(i)WZ(K,Bn)—2 (i ( )>W1 (n-s)(K:BY), i=n—s,....n,

—(n—-9s

and hence,

frar@= 3, (”)wm Z( ) (KB )

i=n

n—s . n—s s () i—n+s
= 2 W. K;B
Z ‘ z (l— ( —S)) i—(n— s)( )

(s (s) -
£ (wiwene
j=0

s /s\ WK B .
_ (22)"7'Y ‘ < ) %(ZZ)J

s

= (22)" i ( )#M)(Zz)j = (2Z)"_Sf,’é‘;’}}§o(22).

Therefore, 27; , = v;. It concludes the proof. [
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