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ON PROPERTIES FOR m–POLYNOMIALS OF UNIT p–BALLS

JESÚS YEPES NICOLÁS

(Communicated by I. Franjić)

Abstract. In this paper we study properties of ‘weighted’ Steiner polynomials associated to the
unit p -balls. We show that the corresponding functional can be bounded just by the last but
one relative quermassintegral. Then we give a general asymptotic relation between the roots of
Steiner polynomials and the above mentioned polynomials. These properties will be obtained as
consequences of more general results for the so called m -polynomials.

1. Introduction

Let K n be the set of all convex bodies, i.e., compact convex sets, in Rn . The
volume of a set M � Rn , i.e., its n -dimensional Lebesgue measure, is denoted by
vol(M) (or voln(M) if the distinction of the dimension is needed). We write Bp

n to
represent the unit p -ball associated to the p -norm | · |p , 1 � p � ∞ , and by κ p

n =
vol(Bp

n) , which takes the value

κ p
n =

(
2Γ
( 1

p +1
))n

Γ
(

n
p +1

) , (1.1)

where Γ denotes the gamma function (see e.g. [9, p. 11]). In the particular case p = 2,
we write for short Bn to denote the n -dimensional unit ball and κn = vol(Bn) . Finally,
with linM we represent the linear hull of M �Rn .

For convex bodies K,E ∈K n and a non-negative real number λ , the well-known
Steiner formula states that the volume of the Minkowski sum K +λE can be expressed
as a polynomial of degree (at most) n in the parameter λ ,

vol(K + λE) =
n

∑
i=0

(
n
i

)
Wi(K;E)λ i; (1.2)

here the coefficients Wi(K;E) are called the relative quermassintegrals of K with re-
spect to E , and they are a special case of the more general defined mixed volumes
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(see e.g. [10, s. 5.1] or [2, s. 6.2]). In particular, it holds W0(K;E) = vol(K) and
Wn(K;E) = vol(E) . If we have to distinguish the dimension in which the quermassin-

tegrals are computed, we will write W
(k)

i to denote the i-th quermassintegral in Rk .
In 1973 [13] Wills introduced and studied the related functional

n

∑
i=0

(
n
i

)
Wi(K;Bn)

κi
, (1.3)

which has many interesting applications, e.g., in Discrete Geometry or for Gaussian
random processes [11]. Many other nice properties of this functional, as well as re-
lations with other measures, have been studied in the last years, see e.g. [3, 4, 8, 13,
14, 15]. In particular, in [3] Hadwiger showed, among others, the following integral
representation:

n

∑
i=0

(
n
i

)
Wi(K;Bn)

κi
=
∫
Rn

e−πd(x,K)2dx, (1.4)

where d(x,K) denotes the Euclidean distance between x ∈ Rn and K . Recently, gen-
eralizations of the previous identity (1.4) have been studied when the ‘distance’

dE(x,K) = inf{r � 0 : x ∈ K + rE}
between x ∈ Rn and K , relative to a convex body E , is considered. Then it can be
proved, assuming (without loss of generality) that the origin 0 is a relative interior
point of E , that (see [6] and [7])∫

K+linE
e−πdE(x,K)2dx =

n

∑
i=0

(
n
i

)
Wi(K;E)

κi
, (1.5)

which is called the relative Wills functional. Now we consider the corresponding poly-
nomials coming from (1.2) and (1.5) regarded as formal polynomials in a complex
variable z ∈ C , which we call the relative Steiner and Wills polynomials, respectively,
and denote by

fK;E(z) =
n

∑
i=0

(
n
i

)
Wi(K;E)zi, f g

K;E(z) =
n

∑
i=0

(
n
i

)
Wi(K;E)

κi
zi.

Notice that the (relative) Wills polynomial can be seen as a Steiner polynomial with
certain ‘weights’. This leads to consider the following definition: given a sequence
m = (mi)i∈N of positive real numbers, for each n ∈ N and any pair K,E ∈ K n with
dimension dim(K +E) = n , let

f m
K;E(z) =

n

∑
i=0

(
n
i

)
Wi(K;E)miz

i,

which we call the m-polynomial of K and E . If the weights mi are the moments of
some measure μ on the non-negative real line R�0 , namely, if

mi = mi(μ) =
∫ ∞

0
ti dμ(t), i = 0, . . . ,n,
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then it can be shown that the functional ∑n
i=0

(n
i

)
Wi(K;E)mi(μ) corresponding to the

polynomial f μ
K;E (z) = ∑n

i=0

(n
i

)
Wi(K;E)mi(μ)zi has also an integral expression of the

form
n

∑
i=0

(
n
i

)
Wi(K;E)mi(μ) =

∫
K+linE

G
(
dE(x,K)

)
dx,

where G(t) = μ
(
[t,∞)

)
, t ∈ R�0 (see [6] and [7]).

In [6] we have investigated the structure of the roots of the family of m-polynomi-
als of convex bodies when m is associated to a given measure μ on the non-negative
real line R�0 .

A particulary interesting case of m-polynomial associated to a measure on R�0

is the following one. Let Gp(t) = e−Cpt p be the function associated to the measure

μp(A) =
∫

A
pCp e−Cpt pt p−1 dt

on the non-negative real line R�0 , where Cp =
(
2Γ(1/p+1)

)p
. Then it can be checked

that the moments mi(μp) = 1/κ p
i , i = 0, . . . ,n (see Lemma 2.3). Therefore, the m-

polynomials associated to the measure μp , which we call μp -polynomials, are given
by

f
μp
K;E(z) =

n

∑
i=0

(
n
i

)
Wi(K;E)

κ p
i

zi, K,E ∈ K n.

Here we are mainly interested in studying several properties of the μp -polynomial
f

μp

K;Bp
n
(z) , K ∈ K n . First we show that the corresponding functional in K obtained

when z = 1 can be bounded just by the last but one relative quermassintegral.

THEOREM 1.1. For any convex body K ∈ K n and all 1 � p � ∞ , it holds

n

∑
i=0

(
n
i

)
Wi(K;Bp

n)
κ p

i
� enWn−1(K;Bp

n )/κ p
n−1 .

This property will be obtained as a consequence of a more general inequality for
m-polynomials (see Proposition 3.1). These results will be proved in Section 3. Fi-
nally, in Section 4, we give a general asymptotic relation involving the roots of Steiner
polynomials and m-polynomials, and then we particularize it to provide the connection
between the roots of the Steiner polynomial and the μp -polynomials f

μp

K;Bp
n
(z) .

THEOREM 1.2. For s ∈ N fixed, let K ∈ K s and let ν1, . . . ,νs be the roots of
f

μp

K;Bp
s
(z) , 1 � p � ∞ . Embedding K �Rn , n � s, let γ1,n, . . . ,γs,n be the non-zero roots

of fK;Bp
n
(z) . Then, reordering if necessary, it holds

lim
n→∞

κ p
n

κ p
n−1

γi,n = νi, i = 1, . . . ,s.
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2. Some preliminary results

In this section we collect several results which will be needed in the proofs of the
main theorems. The proof of the first lemma includes the construction of an special
family of gauge bodies which will be used in the following.

LEMMA 2.1. Let [a,b] be a closed interval in R containing the origin 0 and let
r : [a,b] −→ [0,∞) be a continuous concave (and not identically zero) function. Then
there exists a sequence of convex bodies {En}n∈N with dimEn = n, such that

voln−k(En−k)
voln(En)

voln(En)k

voln−1(En−1)k =

(∫ b
a r(t)n−1dt

)k

∏k−1
i=0

∫ b
a r(t)n−k+idt

, 2 � k � n.

Proof. We consider the family of convex bodies inductively defined by

E0 = {0}, E1 = [a,b], En =
⋃

t∈[a,b]

(
r(t)En−1×{t}

)
. (2.1)

From the concavity and the continuity of r(t) , it is easy to see that En is, in fact, a
convex body in Rn , and since r(t) is not identically zero, dimEn = n . Moreover, we
have that, for all 0 � k � n ,

voln(En) =
∫ b

a
voln−1

(
r(t)En−1

)
dt = voln−1(En−1)

∫ b

a
r(t)n−1dt

= · · · = voln−k(En−k)
k−1

∏
i=0

∫ b

a
r(t)n−k+idt

which gives the required identity. �
If for some fixed s ∈ N , the limits

lim
n→∞

(∫ b
a r(t)n−1dt

)k

∏k−1
i=0

∫ b
a r(t)n−k+idt

exist and are positive, k = 2, . . . ,s , then we define (see Lemma 2.1)

λk = lim
n→∞

(∫ b
a r(t)n−1dt

)k

∏k−1
i=0

∫ b
a r(t)n−k+idt

= lim
n→∞

voln−k(En−k)voln(En)k

voln(En)voln−1(En−1)k > 0, (2.2)

k = 2, . . . ,s , and λ0 = λ1 = 1.

For 1 � p < ∞ , we consider the function

rp : [−1,1]−→ [0,∞) given by rp(t) =
(
1−|t|p)1/p

. (2.3)
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We observe that the family of unit p -balls

Bp
n =

⎧⎨⎩x = (x1, . . . ,xn) ∈Rn : |x|p =

(
n

∑
i=1

|xi|p
)1/p

� 1

⎫⎬⎭ ,

can be derived from (2.1) using the function rp . Next lemma shows that rp satisfies
the limit condition defining λk (cf. (2.2)).

LEMMA 2.2. For all k � 1 ,

lim
n→∞

(∫ 1
−1 rp(t)n−1dt

)k

∏k−1
i=0

∫ 1
−1 rp(t)n−k+idt

= 1.

Proof. First we observe that, for any i � 0,∫ 1

−1
rp(t)i dt = 2

∫ 1

0
(1− t p)i/p dt =

4
p

∫ π/2

0
(coss)(2i/p)+1(sins)(2/p)−1 ds

=
2
p

B

(
i
p

+1,
1
p

)
=

2i
p(i+1)

Γ( i
p )Γ( 1

p)

Γ( i+1
p )

,

where B denotes the beta function (see e.g. [12, p. 215]). Then, it is an easy computa-
tion to check that, for all k � 1,(∫ 1

−1 rp(t)n−1dt
)k

∏k−1
i=0

∫ 1
−1 rp(t)n−k+idt

=

(
n−1
n

)k(Γ
(

n−1
p

)
/Γ
(

n
p

))k

(
n−k
n

)(
Γ
(

n−k
p

)
/Γ
(

n
p

)) ,

and since limn→∞
(
(n−1)/n

)k
/
(
(n− k)/n

)
= 1, it suffices to prove that

lim
n→∞

(
Γ
(

n−1
p

)
/Γ
(

n
p

))k

Γ
(

n−k
p

)
/Γ
(

n
p

) = 1. (2.4)

Stirling’s formula for the gamma function (see e.g. [1, p. 24]) yields the asymptotic
formula

lim
n→∞

Γ(xn)√
2π
( xn

e

)xn 1√
xn

= 1,

when the sequence (xn)n∈N → ∞ if n goes to ∞ . Therefore we get

lim
n→∞

(
Γ
(

n−1
p

)
/Γ
(

n
p

))k

Γ
(

n−k
p

)
/Γ
(

n
p

) = lim
n→∞

⎛⎝( n−1
e

)(n−1)/p 1√
n−1(

n
e

) n
p 1√

n

⎞⎠k (
n
e

)n/p 1√
n(

n−k
e

) n−k
p 1√

n−k

= lim
n→∞

(n−1)(n−1)k/pnn/p

(n− k)(n−k)/p nnk/p
= 1. �
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Next result shows that the (inverse of the) volumes of unit p -balls can be obtained
as the moments of a certain measure.

LEMMA 2.3. Let μp be the measure on the non-negative real line R�0 associated
to the function Gp(t) = e−Cpt p , t � 0 , with Cp =

(
2Γ(1/p+ 1)

)p
, 1 � p < ∞ . Then

the moments mi(μp) = 1/κ p
i , i � 0 .

Proof. It is just an easy computation to check that (see (1.1))

mi(μp) = pCp

∫ ∞

0
ti e−Cpt pt p−1 dt =

1

Ci/p
p

∫ ∞

0
si/pe−s ds

=
Γ
(

i
p +1

)
(
2Γ
(

1
p +1

))i =
1

κ p
i

. �

REMARK 2.1. If p = ∞ , the corresponding measure μ∞ is the discrete one given
by μ∞

({1/2})= 1, μ∞
(
R�0 \ {1/2})= 0, for which mi(μ∞) = 1/κ∞

i .

3. On inequalities for m-polynomials

The well-known inequalities

Wi(K;E)2 � Wi−1(K;E)Wi+1(K;E), 1 � i � n−1, (3.1)

particular cases of the Aleksandrov-Fenchel inequality (see e.g. [10, s. 6.3]), will be
the main ingredient for the proof of the following result. It generalizes the inequality
obtained in [8] for the Wills functional (1.3), namely, that ∑n

i=0

(n
i

)
Wi(K;Bn)/κi �

enWn−1(K;Bn)/κn−1 . The proof follows the idea of the one in [8].

PROPOSITION 3.1. Let m = (mi)i∈N be a sequence of positive real numbers such
that

(
(n+1)m2

n/(nmn−1mn+1)
)
n∈N is a decreasing sequence and with

λ = lim
n→∞

(n+1)
n

m2
n

mn−1mn+1
> 0.

Then, denoting by C(λ ) = (1/λ )n(n−1)/2 if 0 < λ < 1 , and C(λ ) = 1 otherwise, it
holds

f m
K;E(1) � mnvol(E)C(λ )enmn−1Wn−1(K;E)/(mnvol(E)). (3.2)

Proof. For the sake of brevity we will write W̃r =
( n
n−r

)
Wn−r(K;E)mn−r . Then,

by the Aleksandrov-Fenchel inequalities (3.1) we get

W̃2
r � r+1

r

(n− r+1)m2
n−r

(n− r)mn−r−1mn−r+1
W̃r−1W̃r+1,
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and the monotonicity hypothesis yields W̃2
r �

(
(r+1)/r

)
λ W̃r−1 W̃r+1 . Thus

W̃r

W̃r+1
� r+1

r
λ

W̃r−1

W̃r
� r+1

r−1
λ 2 W̃r−2

W̃r−1
� . . . � λ r (r+1)

W̃0

W̃1
,

and consequently

W̃r � W̃0
1

λ r(r−1)/2

1
r!

(
W̃1

W̃0

)r

� W̃0C(λ )
1
r!

(
W̃1

W̃0

)r

.

Therefore, summing in r , for r = 0, . . . ,n , we obtain

f m
K;E(1) � W̃0C(λ )eW̃1/W̃0 . �

REMARK 3.1. The sequence m = (1)n∈N trivially verifies the conditions of Propo-
sition 3.1 and hence, Steiner polynomials satisfy a (3.2)-type inequality, namely,

fK;E(1) � vol(E)enWn−1(K;E)/vol(E).

Next we show that μp -polynomials also verify a (3.2)-type inequality, i.e., we
prove Theorem 1.1.

Proof of Theorem 1.1. Since f
μp

K;Bp
n
(z)= ∑n

i=0

(n
i

)
Wi(K;Bp

n)/κ p
i zi , we have to check

that the conditions of Proposition 3.1 are satisfied for the sequence (1/κ p
n )n∈N , 1 � p �

∞ .
First we notice that for p = ∞ we get

n+1
n

κ∞
n−1κ∞

n+1

(κ∞
n )2 =

n+1
n

2n−12n+1

(2n)2 =
n+1

n
,

which is clearly a decreasing sequence and limn→∞(n + 1)/n = 1. So, we assume
1 � p < ∞ . On the one hand, it is easy to check that (cf. (1.1))

n+1
n

κ p
n−1κ p

n+1

(κ p
n )2

=
n

n−1

Γ
(

n
p

)2

Γ
(

n−1
p

)
Γ
(

n+1
p

) ,

and using (2.4) for k = 2 we get that it converges to 1 when n goes to ∞ . Therefore
λ = 1 and so C(λ ) = 1.

So, it remains to be studied the monotonicity of the above sequence, which, for
convenience, can be also rewritten as

n+1
n

κ p
n−1κ p

n+1

(κ p
n )2

=
Γ
(

n
p

)
Γ
(

n
p +1

)
Γ
(

n
p +1− 1

p

)
Γ
(

n
p + 1

p

) . (3.3)
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In order to do it, we consider the real functions fi : (0,∞) −→ R , i = 1,2, given by
f1(x) = (x−1/2) logx and f2(x) = θ/(12x) for a fixed 0 < θ < 1 which will be suit-
ably chosen later on. The concavity of their first derivatives, f ′i , i = 1,2, together with
the Mean-Value Theorem, allows to deduce that, in both cases 1 � p � 2 and p � 2, it
holds

f ′i (x)+ f ′i (x+1)− f ′i

(
x+

1
p

)
− f ′i

(
x+1− 1

p

)
< 0.

Hence, the real functions hi : (0,∞) −→R , i = 1,2, given by

hi(x) = fi(x)+ fi(x+1)− fi

(
x+

1
p

)
− fi

(
x+1− 1

p

)
,

are strictly decreasing, which implies that eh1(x)+h2(x) is so. Now, Stirling’s formula for
the gamma function Γ(x) (see e.g. [1, p. 24]) allows to write

Γ(x)Γ(x+1)
Γ(x+1− 1

p)Γ(x+ 1
p )

= eh1(x)+h2(x)

for a suitable θ ∈ (0,1) (see [1, (3.9)]). Thus, all together, we can conclude that the
sequence in (3.3) is strictly decreasing in n .

Therefore, all conditions in Proposition 3.1 are satisfied, and thus, inequality (3.2)
for E = Bp

n and m = (1/κ p
n )n∈N shows that

f
μp

K;Bp
n
(1) � enWn−1(K;Bp

n)/κ p
n−1 ,

as desired. �

4. (Asymptotically) relating the roots of Steiner and m-polynomials

In this section we state and prove one of the main theorems in the paper. From it, a
consequence for particular m -polynomials involving the unit p -balls will be obtained.

THEOREM 4.1. Let s ∈ N and r : [a,b] −→ [0,∞) be a continuous concave (non
zero) function, 0 ∈ [a,b] , such that λk exists, 0 � k � s (cf. (2.2)). Let K ∈ K s and
m =

(
λs−i/voli(Ei)

)
i∈N , with mi = 0 for i > s, and Ej defined by (2.1). Embedding

K � Rn , n > s, let γ1,n, . . . ,γs,n be the non-zero roots of fK;En(z) and let ν1, . . . ,νs be
the roots of the m-polynomial fm

K;Es
(z) . Then, reordering if necessary, it holds

lim
n→∞

voln(En)
voln−1(En−1)

γi,n = νi, i = 1, . . . ,s.
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Proof. For t ∈R , let H(t) =
{
(x1, . . . ,xn)∈Rn : xn = t

}
. We may assume without

loss of generality that K � H(0) . Then,

n

∑
i=0

(
n
i

)
Wi(K;En)λ i = vol(K + λEn)

=
∫ λb

λa
voln−1

(
(K + λEn)∩H(t)

)
dt

=
∫ λb

λa
voln−1

(
K + λ r

(
t
λ
)
En−1

)
dt

=
n−1

∑
i=0

(
n−1

i

)
W

(n−1)

i (K;En−1)
∫ λb

λa
λ i r
(

t
λ
)i

dt

=
n−1

∑
i=0

(
n−1

i

)
W

(n−1)

i (K;En−1)
1

voli(Ei)

∫ λb

λa
voli
(

λ r
(

t
λ
)
Ei

)
dt

=
n−1

∑
i=0

(
n−1

i

)
W

(n−1)

i (K;En−1)
voli+1(Ei+1)

voli(Ei)
λ i+1,

and identifying coefficients of both polynomials, we get that

Wi(K;En) =
ivoli(Ei)

nvoli−1(Ei−1)
W

(n−1)

i−1 (K;En−1).

Thus, using the above relation recursively, we obtain

Wn−s+ j(K;En) =
voln−s+ j(En−s+ j)( n

n−s+ j

) (s
j

)
W

(s)

j (K;Es)

vol j(Ej)
, j = 0, . . . ,s,

and, since dimK = s , the (relative) Steiner polynomial takes the form

fK;En(z) = zn−s
s

∑
j=0

(
n

n− s+ j

)
Wn−s+ j(K;En)z j

= zn−s
s

∑
j=0

voln−s+ j(En−s+ j)

(s
j

)
W

(s)

j (K;Es)

vol j(Ej)
z j.

The rest of the argument is similar to the one in [5, Theorem 1.3]; we include it here
for completeness.

Then, for all i = 1, . . . ,s , γi,n is a (non-zero) root of fK;En(z) if and only if the
complex number γ̃i,n =

(
voln(En)/voln−1(En−1)

)
γi,n satisfies

s

∑
j=0

voln−s+ j(En−s+ j)
voln(En)

(
voln−1(En−1)

voln(En)

) j
(s

j

)
W

(s)

j (K;Es)

vol j(Ej)
γ̃ j
i,n = 0,
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or equivalently, dividing by
(
voln−1(En−1)/voln(En)

)s , if and only if γ̃i,n is a root of
the polynomial

s

∑
j=0

voln−(s− j)
(
En−(s− j)

)
voln(En)s− j

voln(En)voln−1(En−1)s− j

(s
j

)
W

(s)

j (K;Es)

vol j(Ej)
z j

= zs +
sW

(s)

s−1(K;Es)
vols−1(Es−1)

zs−1 +
s−2

∑
j=0

βs− j,n

(s
j

)
W

(s)
j (K;Es)

vol j(Ej)
z j

where, for the sake of brevity we are writing, for each k = 2, . . . ,s ,

βk,n =
voln−k

(
En−k

)
voln(En)k

voln(En)voln−1(En−1)k .

By assumption (cf. (2.2)), limn→∞ βk,n = λk , k = 2, . . . ,s , which shows that the point-
wise limit

lim
n→∞

⎛⎝zs +
sW

(s)

s−1(K;Es)
vols−1(Es−1)

zs−1 +
s−2

∑
j=0

βs− j,n

(s
j

)
W

(s)
j (K;Es)

vol j(Ej)
z j

⎞⎠= f m
K;Es

(z).

This, together with the fact that the roots of a polynomial are continuous functions of
the coefficients, concludes the proof. �

As a direct consequence of Theorem 4.1 for unit p -balls we obtain Theorem 1.2.
In a sense, this result is saying that for high dimension n , the (n -dimensional) Steiner
polynomial fK;Bp

n
(z) = ∑n

i=n−s

(n
i

)
Wi(K;Bp

n)zi of a convex body K with fixed dimen-

sion dimK = s ‘behaves as’ its μp -polynomial f
μp

K;Bp
s
(z) = ∑s

i=0

(s
i

)
W

(s)
i (K;Bp

s )/κ p
i zi .

Proof of Theorem 1.2. For 1 � p < ∞ , let rp be the function given by (2.3), which
yields the unit p -balls via (2.1), i.e., Ei = Bp

i .
Then, Lemma 2.2 ensures that λk = 1 for all k � 1 (cf. (2.2)), and thus we can

apply Theorem 4.1 to get the required result. Notice that now, mi = 1/κ p
i , i = 1, . . . ,s .

Finally, we deal with p = ∞ . In that case B∞
n is the n -dimensional regular cube

with edge-length 2, and hence

κ∞
n

κ∞
n−1

γi,n =
2n

2n−1 γi,n = 2γi,n.

Now we observe that, since dimK = s , identifying K with its canonical embedding in
e⊥s+1 �R

s+1 (ei denotes the i-th canonical unit vector), then

s+1

∑
i=1

(
s+1

i

)
W

(s+1)

i (K;B∞
s+1)λ

i = vols+1(K + λB∞
s+1) = 2λvols(K + λB∞

s )

= 2λ
s

∑
i=0

(
s
i

)
W

(s)

i (K;B∞
s )λ i,
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and identifying coefficients of both polynomials we get(
s+1

i

)
W

(s+1)

i (K;B∞
s+1) = 2

(
s

i−1

)
W

(s)

i−1(K;B∞
s ), i = 1, . . . ,s+1.

Iterating this embedding-process till K �Rn , we finally get the identities(
n
i

)
Wi(K;B∞

n ) = 2n−s
(

s
i− (n− s)

)
W

(s)

i−(n−s)(K;B∞
s ), i = n− s, . . . ,n,

and hence,

fK;B∞
n (z) =

n

∑
i=n−s

(
n
i

)
Wi(K;B∞

n )zi = zn−s
n

∑
i=n−s

(
n
i

)
Wi(K;B∞

n )zi−n+s

= zn−s
n

∑
i=n−s

2n−s
(

s
i− (n− s)

)
W

(s)

i−(n−s)(K;B∞
s )zi−n+s

= (2z)n−s
s

∑
j=0

(
s
j

)
W

(s)

j (K;B∞
s )z j

= (2z)n−s
s

∑
j=0

(
s
j

)
W

(s)
j (K;B∞

s )
2 j (2z) j

= (2z)n−s
s

∑
j=0

(
s
j

)
W

(s)

j (K;B∞
s )

κ∞
j

(2z) j = (2z)n−s f μ∞
K;B∞

s
(2z).

Therefore, 2γi,n = νi . It concludes the proof. �
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Universidad de Murcia

Campus de Espinardo, 30100-Murcia
Spain

e-mail: jesus.yepes@um.es

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


