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SOME DYNAMIC INEQUALITIES OF HARDY TYPE ON TIME SCALES

S. H. SAKER, DONAL O’REGAN AND R. P. AGARWAL

(Communicated by Josip Pecaric)

Abstract. In this paper we prove some new dynamic inequalities of Hardy type on time scales.
The main results will be proved using algebraic inequalities, Holder inequality and Keller’s chain
rule on time scales.

1. Introduction

The classical Hardy inequality states that if f > 0 and integrable over any finite
interval (0,x) and f? is integrable and convergent over (0,e) and p > 1, then

| G/()xf(t)dt>pdx< (%)p/:fp(x)dx. I

The constant (p/(p —1))? is the best possible. The discrete version [5] of (1) is

S(13a) <(-2)'s
- Y a | < (—) an, (@, >0, p>1).
n=1 \" k=1 p—1) ;3

We refer the reader to the books [11, 12, 16] and the papers [1, 4, 9, 10, 13, 14, 15, 18,
19] for various generalizations and extensions of these results. Hardy’s inequality (1)
was generalized by Hardy himself in [6] and he showed that for any integrable function
f(x) >0 on (0,0), p> 1, then

e 1 X p p P
[ (fms) e () [orom et

oo 1 oo )4 p p o 1
/O W(/X f(t)dt> dXS<1_m) /0 xm_pf”(x)dx,m<1. (3)

Recently, a number of dynamic inequalities of Hardy type on time scales was estab-
lished in [17, 20, 21, 22]. Hardy type inequalities on time scales not only give a unifi-
cation of continuous and discrete inequalities of Hardy type but also can be extended

and
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to different types of time scales. The general idea is to prove a result for a dynamic in-
equality where the domain of the unknown function is a so-called time scale T, which
may be an arbitrary closed subset of the real numbers R. In [20] the author proved the
time scale version of (1) and proved that if p > 1 and g is a nonnegative and such that
the delta integral [ (g(¢))” Ar exits as a finite number, then

[ (ﬁ/jmg(’)m)lym < (,%)p | srax 4)

here 6(¢) :=inf{s € T: s >¢}. If in addition u(¢)/t — 0 as t — o, then the constant
is the best possible (here u(r) := o(r) —1).

In [17] the authors established a new inequality with weighted functions and they
proved that if u € C,y([a,b],R) (the set of rd—continuous functions) is a nonnegative
function such that the delta integral ftb %As exists as a finite number and the

function v is defined by

u(s)

b
v(t) = (z—a)[ T ae e € el

and @ : (¢,d) — R, is continuous and convex, where ¢,d € R, then the inequality

[ (= [ eons) 2 < [ o)

holds for all delta integrable functions g € C,y([a,b],R) such that g(z) € (¢,d). The
inequality (5) can be considered as the time scale version of the (Hardy-Knopp type)

inequality
o 1 r~ dx ° dx
/0 q’(;/o f(’)df);gfo d)(f(x));, (6)

that was proved by Kaijser et al [10], where @ is a convex function on (0, o).

Our aim in this paper is to prove some new inequalities of Hardy type on time
scales using the chain rule, Holder’s inequality and some algebraic inequalities. These
inequalities contain the inequalities (2) and (3) and some new discrete inequalities.

2. Main results

A time scale T is an arbitrary nonempty closed subset of the real numbers R. We
assume throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The forward jump operator and the backward jump operator
are defined by:

o(t):=inf{seT: s>t}, p(t):=sup{seT: s<t},

where sup® = infT. A point 7 € T, is said to be left-dense if p(z) =¢ and 7 > infT, is
right—dense if o(r) =1, is left—scattered if p(z) <t and right-scattered if 6(z) >¢. A
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function g : T — R is said to be right—dense continuous (rd—continuous) provided g is
continuous at right—dense points and at left—dense points in T, left hand limits exist and
are finite. The set of all such rd—continuous functions is denoted by C,;(T). We assume
that sup T = oo, and define the time scale interval [fy, )T by [f9,o°)T := [f9,°2) N'T. For
more details of time scale analysis, we refer the reader to the two books by Bohner and
Peterson [2], [3].

The graininess function p for a time scale T is defined by u(z) := o(r) —¢, and
for any function f: T — R the notation f°(r) denotes f(c(¢)). We will assume that
supT = o, and define the time scale interval [a,b]r by [a,b]T := [a,b]NT. Fix t € T
and let x: T — R. Define x*(¢) to be the number (if it exists) with the property that
given any € > 0 there is a neighborhood U of ¢ with

(o (t)) — x(s)] —x2(1)[6(r) —5]| < e|o(r) —s|, forallseU.

In this case, we say xA(t) is the (delta) derivative of x at ¢ and that x is (delta) differ-
entiable at 7.

We will frequently use the results in the following theorem which is due to Hilger
[8]. Assume that g: T — R andlet 7 € T.
(1) If g is A-differentiable at 7, then g is continuous at ¢.

(ii) If g is continuous at ¢ and 7 is right-scattered, then g is A-differentiable at ¢ with
gA(t) _ gla()—g() .

()
(iii) If g is A-differentiable and ¢ is right-dense, then

gA(I) :ng(t) —g(s)'

s—t r—s

(iv) If g is A-differentiable at 7, then g(o () = g(t) + u(t)g™(t).
Note thatif T =R then

b

o=t k=0, PO=r0, [ = s

a

if T=7Z, then
b—1
cW=+1, w=1, PO=80), [ r08=3 50,

if T=hZ, h>0, then 6(t) =t+h, u(t)=nh, and

t+h)—y(t b L
(0 = ) = A0,

a

andif T={t:t=qg~, ke Ng, g>1},then o(t) =qt, u(t) = (g— 1),

A1) = Agx(r) = (" / £(0) Z F(d)u(q),



1186 S. H. SAKER, DONAL O’REGAN AND R. P. AGARWAL
where 7 = ¢", and if T = N3 := {n*: n € No}, then o(t) = (v +1)?,

(Wi +1)?) =)
142yt '

In this paper we will refer to the (delta) integral which we can define as follows: If
G2(t) = g(t), then the Cauchy (delta) integral of g is defined by [ g(s)As := G(t) —
G(a). It can be shown (see [2]) that if ¢ € C,y(T), then the Cauchy integral G(r) :=
f,; g(s)As exists, to € T, and satisfies G(t) = g(¢), t € T. Aninfinite integral is defined
as

u(t) =142V, Awy() =

/wf(t)At = Jim bf(t)At.

We will make use of the following product and quotient rules for the derivative of the
product fg and the quotient f/g (where gg°® # 0, here g® = go o) of two differen-
tiable function f and g

A A, £ A
f):fg /8 ™

(fe)* = f2g+f°¢" = f¢*+f*°, and (— -
g g8

We say that a function p : T — R is regressive provided 1+ u(t)p(t) #0, r € T. The
chain rule formula that we will use in this paper is

1
W) =y / [hx® + (1 — )"~ dha(¢), (8)
0

which is a simple consequence of Keller’s chain rule [2, Theorem 1.90]. Using the fact
that g(o(t)) = g(t) + u(t)g”(¢) , then we obtain

1
y—1
@) = [ [t )] and). ©
0
The integration by parts formula is given by

/ahu(t)vA(t)At — ()] — /abuA(t)vg(t)At. (10)

To prove the main results, we will use the following Holder Inequality [2, Theorem
6.13]. Let a, b€ T. For u,v € Cy(T, R), we have

/ab|u(t)"(t)|At < [/ah u(t)th} ; Uah v(t)|1’At] ’ ’ (1

Wherep>1and%+é:1.
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Throughout the paper, we will assume that the functions are nonnegative rd-con-
tinuous positive functions, A— differentiable, locally delta integrable and the left hand
sides of the inequalities exit if the right hand side exist. We will assume also that

s

o6 for s € [a,)T, (12)

1
K’

=

for some constant K > 0. Now, we are ready to state and prove the main results in this
paper and we begin with the case when p/q > 2.

THEOREM 2.1. Let T be atime scale with a €T and p > q >0 such that p/q>?2
and y> 1 and define

Ar) = ;/at w&v, forany t € la,oo)r. (13)
If f(1)g(t) 2 tA(t) for t € [a,o0)7 and
p (2p/q—2) K1 1

e J° > s, 14
g(y—1) m” (9

(here K is as in (12)) for some constant m > 0, then
[ a0 -Zmu (a00) | a

a tY )/—1
=1 (1050 ]’
[ w5 A’]

Proof. Using the integration by parts formula (10) on the term [ & (A°(¢))” /9 At
with

1+

pP—q

/oo wm] . (15)

25_2me7
q(y—1)

124

ub(r) = tly, and v (1) = (A°(1))"/9,

we have that

/: Mm: uv|2<)-i-/aoc (—u(r)) (Ap/q(t)>AAt’ (16)

124
u(t) :/tm (:—)})As. (17)

Using the chain rule (8), we see that

i\ A
(ﬂ—ll) N (y_l)/ol [ha(s)+1( —h)s]ydh

where

B 1 y_l Y-
), () = o
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From (12) and (18), we have that

Then

—~
h||
<| =
>
159
\
“<I
|>:
—_ =
N
1)
<| |
P
~
>
>
195
I
~<
| ‘>ﬁ
Al
—_
N
1)
5| -
~

" KV [ 1
i) o

< /(-1 K" 1

Again by applying (9), we have

Hence

A p | L1
(Ap/q :5/ A-H,LhAA ©dhAA(r). (21)
0

From (16), (20) and (21), we have (note that u(ex) =0 and A(a) = 0) that

pKV

/:tly(A“(t))p/q / - l/ [A+unad]" Tannroa. @)

From the definition of A(r) we see that

1 1 f(5)8(s) A _
At>:<; / @my:m)gm [LOEOAs  f(n)g(e) — A )

— = >0.
to(1) to(r) to(1)
(23)
Applying the inequality
d +b* <(a+b)* <22 dh +bP), if a, b0, A>1, (24)

(p/a)-1

on the term [A+huA®| , we see that

1 P
L
(p/q)/[A—FhuAA]q dh<< ) 2P/ 02N G (1) 4202 (A s p/g > 2.
0

q
(25)
Substituting (23) and (25) into (22), we get

= (AT p (TR = (M) [f()8r) —1AQ)
/a T 61(7—1)/a ! [ to(1) ]At

2r/0) -2y peo (u(t))p/qfl (AA(t))P/‘f
y—1 /a -1

At,
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SO

(AC(1))?/7  2r/2pKY 1 ¢

~ r/q
L= e mem A0 ]A’

p (2P )KY = (M) [ f(0)s()
S q(y—1) /u tY {GI) ]At

(
20P/a)=2gy e (u(r))P/a! (AA(I))P/II
" y—1 /u vl

At.

This implies (note (A%(¢))”/9 > (A(t))"/? since A%(r) > 0) that

o p/a—2Kv
/ tly(A(t))p/q l1+UL At

qy—1) o)
[0 ol

/4-2KY wug_l(t)
y—1 Jo 71

(A2 (1)P 9. (26)

Applying the Holder inequality (11) on the term

/°° l(ty)(pq)/p f(t)g(t)] [(ty)f(pfq)/PA(P*LI)/‘I(t)} At,

tY o(t)

with indices p/q and p/(p — q), we see that

/oo l(t)/)(l?—q)/l’ f(t)g(t)] [(Zy)—(p—q)/PA(P—II)/‘I(t)] At

Y o(r)

==/ f)g)]"”
S {/ l 7 o) ] Al

Substituting (27) into (26), we have

Gk

_ 22 0p/aK7 [ r l(ﬂ)ww f(t)g(t)] N

q _
) pP—q

oo / N
/ AM(”A:] . @7

tY

p (21?/!1*2) Kv-1

q(y—1) A

1+

y—1 tY o(t)

262Ky o uP/a=1(r)

y=1 Jo 171 ().
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Hence from assumption (14) we have

/ 1))P/9At
m

257 2pk7 | = [ P=91P f(1)g(1) pla 7
<W/l Z cm] .

/ '

> AP/4 4

/A <z>4
a v

-1

/”q ©) (A8 () 5 v

This implies that

/oo l(A(t))l’/’iAt— 2P/ 2 e yPla1(r) (AA(t)>p/th

Y y—1 Jo 17!

4 r=q
20/a=2pmk? | = 1 ( f0e@) " N[ =A@ |7
= a | v
a(=1 [Ja 7\ o) «

and on simplification, we get the desired inequality (15). The proof is complete. [

THEOREM 2.2. Let T be a time scale with a, b € T and p > q > 0 such that
p/q=>?2and y> 1. Let A(r) be defined as in (13). If f(t)g(t) = tA(r) for t € [a,o)

and
pKY! ( A1) )5 1
N = Oa 28

im0 \ae) T 28)

for some constant m > 0, then

[ (s [0 o (Y (1080

Proof. We proceed as in the proof of Theorem 2.1 to get that

<1
[ sy < 5 [ L b (30)

Applying the chain rule ([2, Theorem 1.87])

!/

FA(g(1)) = F (3(c))g" (1), where ¢ € [r,0(1))],

on the term (AP/9 (t))A, we see that

(Ap/q(t))A _ SA%’*I(C)AA@), for ¢ € [t,6(t))]. 31)
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Using (23), we see that A°(r) > A(c), since o(r) > c. Substituting this into (30) and
using (23), we have that

oo AG 17/’1
[
pK?Y = (A°()" TFng)  AQ)
ol [ro(r) ‘cm}”
O pKT = (A0) F()g(r) pK? = (M) AG)
ol e a1l 7 o
pKY = (A0)" f0)g(t) . pKT' e (M) [ A) P
q(y—n/a 7 (1) A"qw—l)/a 7 (AO(z)) A
Hence
=(AC@)P1 ] pKT ( A@) \P p (A" F)se)
[0 it o) ]”ng—l)/a 7o)

Using assumption (28), we get that

[ (A" . _pmK? I (A7) fe()

%4 Sqly—1) Ja Y oft
_ pmKY /°°
q(y—1) Ja

Applying the Holder inequality (11) on the right hand side with indices p/q and p/(p —
q), we get that

/: (Ao(tty))ﬁ/q . (ql():lf;)p/q/:tly <%>1¢/th7

which is the desired inequality (29). The proof is complete. [J

(,7)(17*!1)/17 f()g
1Y ot

)
501 {( N=p=a/pAP=al/a()| Ar.

In the following, we will use the chain rule formula
1
(AP/9(1))A = 3/ (RA + (1 — R)A)5 " drA® (1), (33)
q
0

instead of the formula

and inequality (2.18).
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THEOREM 2.3. Let T be atime scale with a €T and p > q >0 such that p/q>?2

and y> 1. Let A(t) be defined as in (13). If f(t)g(t) = tA(¢) for t € [a,e°)r and

2P/ 1K1 A(r) 1
y—1 A°(t) " m

for some constant m > 0, then

S R A FD)g()\"
/a (A (z))P/‘fAt<<ﬁ> / ﬁ(W) .

Proof. Proceeding as in the proof of Theorem 2.1 to get that

KY [ (Ap/q(t))A
'Y_l a vl

“1 r/q
| @y <

From (33) and (24), we see that

1
(AP/4(t) / hA" 5‘14- 1—h)5*1A§71}dhAA(t)
13
=252 {(A")s‘l +AT1} AA(r).

From the definition of A(¢) and since A%(¢) > 0, we have that
(A19(0)* <257 (A%(1) 71 A%).
This, (23) and (36) implies that

) igr (-
[ aweorea < T 7 a0

QI

to(t)
Thus

-1, (2(1’/!1)*1)[()’*1 A()
O B e el

S

2k =)0 f)
=1 J, 17 o()

. [M} Ar.

] {(ﬂ)f(pfq)/p(AG(t))(pfq)/q} At

(34)

(35)

(36)

(37)

(38)

(39)

(40)

Applying the Holder inequality (11) on the right hand side with indices p/q and p/(p —

q), we see that

/°° l(z”)(”q)/” f(f)g(’)l [(ty)f(pfq)/P(Af’(;))(l’*‘!/‘ﬁ} At

tY o(t)

4 r=q

=T g™ V' [ = ae@ylae) 17
g[/[ 7 G(I)]At /uim :

1Y

(41)
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Substituting (41) into (40) and using (34), we have

JREUSOIEN

p_ /a ’ L

20 \mk? | = [ P-0/r f(0)g(t)]" = (A%)P/9) (1) P
<<= |/ [ e | M LT

This implies that

RS1ESY

1—-2—4

[/w L(Ao(z))p/qm] z < 25U KY /w [([Y)(P’i)/[? f(t)g(t>]p/th

17(r) 1Y(t) o(t)

Hence

"L 2T\ T 1 (g
/a A (t))”/"At<< =1 ) / ﬁ( 0 ) A,

which is the desired inequality (15). The proof is complete. [J
When T=R and T =N we establish from Theorems 2.1-2.3 some new differ-
ential and discrete inequalities. We begin with Theorem 2.1 when T = R. In this case

(note that i (z) =0 and o(r) =¢) Theorem 2.1 reduces to the following corollary after
replacing p/q by A > 2.

COROLLARY 2.1. Let a€ R, A >2 and y> 1 be real numbers and f and g
are nonnegative real valued functions on [a,o)r. If f(t)g(t) = tA(t), where

Alr) = ;/a‘ f(S)sg(S) ds,

and m> (y—1)/(y— 1412472, then

2 A
“ 1L £(s)8(s) 22m\" =1 f(0g(0)\*

REMARK. From Corollary 2.1, when f(¢) =1, the inequality (42) reduces to

2 A
°1 /1 [t 222 m >1
/a 5 (;/a g(s)ds) dt<< = ) /a 78 (t)dt, A = 2. (43)

From Theorem 2.2 when T = R, we have the following corollary after replacing
p/aby A >2.
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COROLLARY 2.2. Let a€ R, A >2 and y> 1 be real numbers and f and g
are nonnegative real valued functions on [a,o)r. If f(t)g(t) = tA(t), where

A) = %/a’ f(S)sg(S) ds,

and m>= (y—1)/(y—1+A), then

[5G e (32 [ (159)

From Corollary 2.2 if we put f(t) =7 and m = (y—1)/(y— 14 A), then (44)
reduces to a Hardy type inequality (1) of the form

/amtly (;/atg(s)ds)ldtg (ﬁ)l/aw%(g(t))ldt. 45)

From Theorem 2.3 when T =R, we have the following corollary after replacing p/q
by A > 2.

COROLLARY 2.3. Let a € RY, A >2 and v > 1 be real numbers and f and g
are nonnegative real valued functions on [a,o)r. If f(t)g(t) = tA(t), where

Alr) = ;/a‘ f(S)sg(S) ds,

and m> (y—1)/(y—1+2*"Y), then

[ ] e () [ () 0 22

When T = N, we have from Theorem 2.1 the following discrete inequality.

COROLLARY 2.4. Let a€ N and A > 2 and y> 1. Let f(n) and g(n) be
nonnegative sequences and define

n—1
Ay =15 Flsle(s), (46)
n s=qa
If f(n)g(n) = nA(n) and
A=2
1+2 QLKV*1 > ! >0,
y—1 m

for some constants m >0, K > 1, then

M8

nv

1 1—L
e -2, 2 A-2,, g e\ ] * Aln X
2y W -2 anm)] < e | 5 0 (fae)'] " £ ]

When T = N, we have the following discrete inequality as a special case of The-
orem 2.2.
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COROLLARY 2.5. Let a € N and A > 2 and y> 1. Let f(n) and g(n) be
nonnegative sequences and A(n) be defined as in (46). If f(n)g(n) > nA(n) and

+/IKV‘1 Aln) \* Lo,
y—1 \A(n+1) “m T
for some constants m and K > 1, then

A
N amk?\* § 1 (e \*
)y m( (D) S < 71 ) Z <m>

n=a

When T = N, we have the following result as a special case of Theorem 2.3.

COROLLARY 2.6. Let a € N, A >2 and y> 1 and f(n) and g(n) be nonnega-
tive sequences. If f(n)g(n) > nA(n) and

2A-1KY=1 A(n) 1

1 > —
+ y—1 An+1) " m

>0,

for some constants m and K > 1, then
s 1 1L < f5)s(s) g < (2 'mkY A2 (e
néa nv (n+1) .\'gu s = y—1 néa nv (n+1)
In the following, we consider the case when p/q < 2 and prove new inequalities
of Hardy type on time scales. To prove these results, we need the inequality
2@ +b") < (a+b)" < (" +b"), where a,b>0 and 0<r<1. 47)

Applying this inequality when r = p/g — 1 < 1, instead of the inequality (24) that has
been used in the proof of Theorem 2.1, we see that

~1
] P b < (pfg) AP+ (AN plg <.

1
(p/a) [ [A+hur®
0

Proceeding as in the proof of Theorem 2.1, we can prove the following result.

THEOREM 2.4. Let T be a time scale with a € T and p, q > 0 suchthat p/q <2
and y> 1. Let A(t) be defined as in (13). If f(t)g(t) = tA(¢) for t € [a,o)r and
pK71 1

> >0, 48
q(y—1) m @9

I+

for some constant m > 0, then
= A1 o T
, H =
- pmKY /°° 1 [/ f(t)g(r) I/th ! /°° AP/fi(t)At g
Taly=1) [Ja 17\ o) a 17 '

As in the proof of Theorem 2.2 one can also prove the following theorem.
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THEOREM 2.5. Let T be a time scale with a € T and p, q > 0 suchthat p/q <2
and y> 1. Let A(t) be defined as in (13). If f(t)g(t) = tA(¢) for t € [a,e°)1 and

2K71 A(r) 1

1+ >— >0,
(y=1) A°(t)

3

for some constant m > 0, then

/:tlY(AU(Z))p/thé (i/mf’(;)g/m% <%)mm

In the following, we prove a new class of inequalities on time scales when y < 1
by using the new operator

Q) := ;/tm WAS forany t € [a,o)T, (49)

instead of the function A(z) that has been used in the proofs of the above theorems.

THEOREM 2.6. Let T be a time scale with a €T and p > q >0 suchthat p/q>?2
and y < 1. Let Q(t) be defined as in (49). Then

=@ )" [ (/K [ Q) \"
/a4ﬂ [l (-7 ((9%))) G@]N

wla) [ =1 (fwe@ " 17 [ meraw 7
<Tyl/ ﬁ(W) At / Al (50)
Proof. As in the proof of Theorem 2.2, we see that
1
1 oo/ (P/4) [* 5/ oA INER
/a L@yl < —1_yL VO (1) (—Q (t))o/{Q—i-u(t)hQ )| anar, 1)

where v(t) = [7 (1/s") As. Using the chain rule (8) and using the fact that o'(s) > s and
(12), we have
1 1

o 1 _
() = (=) [ o)+ (=] Tan = (1) [ s

1 1 1y
> -9 || o a=mewT "~ o7
(I-ps" (A=-y) 1
o¥(s)s? ~ sV KV

ol(r) Y o) A

/ Las< K_/ YA

a ST 1—vJa s7-1

K'1 K'Y 1 K7 .

— - < -, 52
(—y(o)r T Toyar1 ST 52

This implies that

v (1)
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From (12) and (52), we have

_ K 1

IR

Combining (51), (53) and using the facts that Q(e0) = 0 and v(a) =0, we get that

(53)

/: I(Qo)p/q( 1AL < (p/9)K /: (—ﬂ_ /1 Q+Ii )hQA)} s
0

124 11—y
Now
" f(5)g(s) F(0)g(r) + ;7 LA
_ 0 / - = >0, (54)
Since Q4(1) <0, we see that
1 o )
/[(H—,u(t)hQA)] T an< Qi (). (55)
0

Substituting (54) and (55) into (51), we have

/OQ 1 (QO’( ))p/th

(p/9)K 1 ey [f()g(1) +1Q()
< B [ o [ LGS

_ (p/q)K/“’tiy(Q(t))gflf(t)g(t)At+(p/q)K/“’ L@ —— .

iy o) M=y Je OO 50
This implies that
[ e wya— P [ L @)t s
<UD 72 (@i L8
_ (ffq; [ l(ﬂﬂ;w/ﬂ f(;)ggt) (i(ff&:ﬁ:q] A 56)

Applying the Holder inequality (11) on the right hand side with indices p/q and p/(p —
q), we see that

/w l(ﬂ)ww F()g(t)

tY o(t)

=[ e/ poew ™
S [/a [ Y o(r) ] Al

(Q(,))(pqvq] N

> P=q

- Op/ 5
/ ! q(t)m] 7 57)

1Y
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Substituting (57) into (56), we get that

[ 5@y - DR L ey |

Y (1—y) 71 o(r)
ok [ =1 (F0g@N"* 17 [ v 17
S / ﬁ(T(:) ) At] / s At] :

which is the desired inequality (50). The proof is complete. [J

Again, applying the inequality (47) on the term [2Q° + (1 —h)Q)ﬁ*l, when
p/q <2 we see that

Q|

1 1
/[h90+(1—h)9)]5‘1dh < ’é/ (A5 (@) ¥ 4 (1— )i ] an
0 0

P

_ [(96)5—1+Qr1] <2047 (). (58)

Proceeding as in the proof of Theorem 2.6, we can prove the following theorem.

THEOREM 2.7. Let T be atime scale with a €T and p > q >0 such that p/q <2
and y < 1. Let Q(t) be defined as in (49). Then

=@ [ 2k [ am \"
[ ll i (@) o(r)]”

/:;y(%)wqm » /aw%m]ppq

One can use Theorems 2.6 and 2.7 to derive some differential and discrete inequal-
ities T =R and when T = N. The details are left to the interested reader.

2K

1=y
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