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CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES

MARTIN KŘEPELA

(Communicated by J. Pečarić)

Abstract. We characterize boundedness of a convolution operator with a fixed kernel between
the weighted Lorentz spaces Λp(v) and Γq(w) for 0 < p � q � ∞ , 1 � q < p < ∞ and 0 <
q � p = ∞ . We provide corresponding weighted Young-type inequalities and also study basic
properties of some new involved r.i. spaces.

1. Introduction

Methods involving convolution of a function f with a kernel function g , i.e.

( f ∗ g)(t) =
∫ ∞

−∞
f (x)g(t − x)dx, t ∈ R, (1)

have experienced a great attention and a widespread use in various important parts of
analysis. By choosing a specific kernel in this general setting, we get many well-known
operators, which themselves are of substantial importance. As examples here we can
mention Newton, Riesz or Bessel potentials, Stieltjes and Hilbert transforms, mollifying
operators, etc. One of the main questions in this field is the boundedness of the linear
operator given by a fixed g and the formula

Tg : f �→ f ∗ g

between certain function spaces. This problem is further related to convolution inequal-
ities. The classic case is the well-known Young inequality stating that for 1� p,q,r � ∞
and 1

p + 1
r = 1+ 1

q it holds

‖ f ∗ g‖q � ‖ f‖p‖g‖r, f ∈ Lp, g ∈ Lr.

Here ‖ · ‖p denotes the Lebesgue Lp -norm. The connection to the boundedness ques-
tion is obvious: If X ,Y,Z are given function spaces and the inequality

‖ f ∗ g‖Z � C‖ f‖X‖g‖Y , f ∈ X , g ∈Y, (2)

we get the boundedness Tg : X → Z for any g ∈ Y . On the other hand, if we have the
estimate ‖Tg‖X→Z � C‖g‖Y , then we retrieve (2). Notice here also that the assumption

Mathematics subject classification (2010): 44A35, 26D10, 46E30.
Keywords and phrases: Convolution, Young inequality, O’Neil inequality, Lorentz spaces, weights.

c© � � , Zagreb
Paper MIA-17-90

1201

http://dx.doi.org/10.7153/mia-17-90


1202 MARTIN KŘEPELA

p � q in the Young inequality cannot be avoided. Indeed, as shown by Hörmander in
[9], a nontrivial convolution operator is never bounded from Lp to Lq if q < p .

The Young inequality was further developed for classical Lorentz spaces Lα ,β ,
1 � α < ∞ , generated by

‖ f‖Lα,β :=
(∫ ∞

0
( f ∗(x))β x

β
α −1 dx

) 1
β

, 1 � β < ∞,

‖ f‖Lα,∞ := sup
x∈(0,∞)

f ∗(x)x
1
α ,

and L(α ,β ) generated by
‖ f‖L(α,β) := ‖ f ∗∗‖Lα,β .

Here f ∗ stands for the nonincreasing rearrangement of f and f ∗∗ for the Hardy-
Littlewood maximal function (see e.g. [1]).

O’Neil [16] proved that, for 1 < a,b,c < ∞ and 1 � q < p � ∞ such that 1+ 1
a =

1
b + 1

c and 1
r = 1

q − 1
p , the inequality

‖ f ∗ g‖La,q � C‖ f‖Lb,p‖g‖Lc,r , f ∈ Lb,p, g ∈ Lc,r, (3)

is satisfied. This result was further improved in [10, 20] up to the range 0 < a,b,c < ∞
and 1 � q < p � ∞ . Blozinski [2] showed that in a limit case of (3) with a = b and
c = 1, for an a.e. nonnegative g ,

Tg : Lp,b → Lq,b

holds if and only if g = 0 a.e. However, in a recent paper [14] Nursultanov and
Tikhonov proved that the same problem has a nontrivial solution if we replace the inter-
val of integration in (1) by (0,1) and consider the convolution for 1-periodic functions.
In that case the inequality

‖ f ∗ g‖Lb,q � C‖ f‖Lb,p‖g‖L(1,r)

was shown to be satisfied for all 1-periodic f ∈ Lb,p , g ∈ L(1,r) . Here the functionals
‖ · ‖Lα,β , ‖ · ‖L(α,β) are naturally given just on (0,1) , as well.

In this paper, we provide necessary and sufficient conditions for the boundedness
Tg : Λp(v) → Γq(w) for fixed weights v,w and various combinations of the parameters
p,q . Moreover, we obtain Young-type inequalities (2) for X = Λp(v) , Z = Γq(w) and
characterize the largest rearrangement-invariant space Y for which these inequalities
are valid.

To obtain these results we use the classical O’Neil inequality [16] and the weighted
Hardy-type inequalities which have undergone a wide development in the last two
decades. A survey of the classical cases may be found e.g. in [4], newer and more
general results are developed and summarized in [8]. (For further related results see
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e.g. [12].) Our method enables us to obtain both the results for convolutions on R and
on a finite interval.

Our paper proceeds in the following way: In Section 2 we present the definitions,
state the problems and prove some preliminary results. Section 3 includes the main
results, i.e. the weighted Young-type inequalities involving Λ and Γ spaces. In Sec-
tion 4 we present some additional results and also verify that the results of [16, 2, 14]
mentioned above follow as special cases of our theorems. Finally, Section 5 deals with
some fundamental properties of function spaces which appear in the inequalities.

2. Preliminaries

Throughout the text we use the following notation: If Ω is a measurable subset
of R , we write M (Ω) := { f : Ω → R measurable} and M+(Ω) := { f ∈ M (Ω); f �
0 a.e.} . If p ∈ (1,∞) , we define the conjugate exponent p′ by p′ := p

p−1 .
In what follows, we will consider m ∈ (0,∞] , unless specified else. We denote

Pm :=
{ { f ∈ M (R); m-periodic} if m < ∞,

M (R) if m = ∞,

and

Em :=
{

f ∈ Pm; f � 0 on R, f is even, f is nonincreasing on
(
0, m

2

)}
.

Notice that Pm,Em ⊂M
(−m

2 , m
2

)
in the sense of the restriction of f to

(−m
2 , m

2

)
. We

introduce these classes to be able to treat both the convolution on R (as in [16] etc.)
and the convolution of m-periodic functions, m < ∞ , (as in [14]) at once. In the case
m = ∞ , the description of the classes is rather simple: P∞ = M (R) and E∞ consists
of nonnegative “symmetrically decreasing” functions on R .

The usual notation F � G means that F �CG where C is a constant independent
of appropriate quantities in F and G . If C−1F � G �CF with such C , we write F 	G
and C is then called the equivalence constant. By L1

loc we denote the set of all locally
integrable functions on R . Next, a weight w is a nonnegative function on (0,m) such
that for all t ∈ (0,m) it holds 0 <W (t) < ∞ , where

W (t) :=
∫ t

0
w(s)ds, t ∈ [0,m].

For a weight w , the Lq(w)-norm of f ∈ M (0,m) is given by

‖ f‖Lq(w) :=
∫ m

0
| f (t)|qw(t)dt, q < ∞,

‖ f‖L∞(w) := esssup
t∈(0,m)

| f (t)|w(t).

Let f ,g ∈ Pm . We define the convolution f ∗ g by

( f ∗ g)(t) :=
∫ m

2

−m
2

f (x)g(t − x)dx, (4)
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if the right-hand side is well-defined for a.e. t ∈ (−m
2 , m

2

)
. Notice that if f ∗g is defined,

then f ∗ g ∈ Pm .
For f ∈ M

(−m
2 , m

2

)
we define the nonincreasing rearrangement of f by

f ∗(t) := inf
{
s � 0;

∣∣{τ ∈ (−m
2 , m

2

)
, | f (τ)| > s}∣∣� t

}
, t ∈ (0,m), (5)

and the maximal function f ∗∗ by

f ∗∗(t) :=
1
t

∫ t

0
f ∗(s)ds, t ∈ (0,m), (6)

see e.g. [1]. Observe that, although the m-periodic function f (for m < ∞) is defined
on R , the above defined rearrangement of f represents just the rearrangement of f ’s
restriction to the interval of periodicity. If m = ∞ , we get the “standard” rearrangement
and convolution on R . Again, this approach will allow us to cover the results for both
finite and infinite m by a single theorem. It may be also worth noticing that, if f ∈ Em ,
the properties of f yield f (t) = f ∗(2t) for all t ∈ (0, m

2

)
, a fact which will be useful

later.
The following definition includes the standard definition of an r.i. norm (see [1]),

modified for functions from the class Pm .

DEFINITION 2.1. Let ρ : Pm → [0,∞] be a mapping. We call ρ a rearrangement-
invariant (r.i.) Banach function norm or just simply an r.i. norm if for all f ,g, fn ∈Pm ,
(n ∈ N), for all constants a � 0 and all measurable subsets E of

(−m
2 , m

2

)
, the follow-

ing properties hold:

(P1) ρ( f +g) � ρ( f )+ ρ(g) ,

(P2) ρ(a f ) = aρ( f ) ,

(P3) ρ( f ) = 0 ⇔ f = 0 a.e.,

(P4) 0 � g � f a.e. ⇒ ρ(g) � ρ( f ) ,

(P5) 0 � fn ↑ f a.e. ⇒ ρ( fn) ↑ ρ( f ) ,

(P6) |E| < ∞ ⇒ ρ(χE) < ∞ ,

(P7) |E|< ∞ ⇒ ∫
E f �CEρ( f ) for some constant CE ∈ (0,∞) depending on E and

ρ but independent of f ,

(P8) f ∗ = g∗ on (0,m) ⇒ ρ( f ) = ρ(g) .

If ρ is an r.i. norm, the collection X = X(ρ) of all functions f ∈Pm such that ρ(| f |) <
∞ is called an r.i. space. For formal reasons, we will consider the set consisting only of
the zero function to be also an r.i. space.

The mapping ρ is called an r.i. quasi-norm if for all f ,g, fn ∈ Pm , (n ∈ N), all
a � 0 and all measurable E ⊂ (−m

2 , m
2

)
, the conditions

(P1*) ρ( f +g) � B(ρ( f )+ ρ(g)) for some constant B ∈ (1,∞) independent of f ,g ,
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and (P2)–(P8) are satisfied. In that case, X(ρ) is said to be a quasi-normed r.i. space.
We call X(ρ) an r.i. lattice if for all f ,g ∈ Pm , all a � 0 and all measurable E ⊂(−m

2 , m
2

)
, the conditions (P2), (P4), (P6) and (P8) are satisfied.

If X(ρ) is an r.i. lattice, for every f ∈Pm we define ‖ f‖X := ρ(| f |) . Notice that
‖ · ‖X is not necessarily a norm.

We say that an r.i. lattice X is embedded into an r.i. lattice Y and write X ↪→ Y if
there exists a constant C > 0 such that ‖ f‖Y � C‖ f‖X for all f ∈ X .

Let g ∈ Pm . We consider the operator Tg defined by

Tg : f �→ f ∗ g, (7)

acting on all functions f ∈ Pm for which f ∗g is defined. We will study the bounded-
ness

Tg : Λp(v) → Γq(w),

where v,w are weights on (0,m) and Λp(v) , Γq(w) are the weighted Lorentz spaces
defined as

Λp(v) :=

{
f ∈ Pm; ‖ f‖Λp(v) :=

(∫ m

0
( f ∗(x))pv(x)dx

) 1
p

< ∞

}
,

Γq(w) :=

{
f ∈ Pm; ‖ f‖Γq(w) :=

(∫ m

0
( f ∗∗(x))qw(x)dx

) 1
q

< ∞

}

for p,q ∈ (0,∞) , and

Λ∞(v) :=

{
f ∈ Pm; ‖ f‖Λ∞(v) := esssup

x∈(0,m)
f ∗(x)v(x) < ∞

}
,

Γ∞(w) :=

{
f ∈ Pm; ‖ f‖Γ∞(w) := esssup

x∈(0,m)
f ∗∗(x)w(x) < ∞

}
.

Of course, for m < ∞ , the Λ or Γ norm of f ∈ Pm controls just the behavior of f on
the periodical segment. Let us also point out that Λp(v) with p ∈ (0,∞] is not neces-
sarily a normed (not even quasi-normed) linear space (see e.g. [7] and the references
therein). Since

( f +g)∗∗(t) � f ∗∗(t)+g∗∗(t), t ∈ (0,m), (8)

(see e.g. [1, p. 54]), the structure Γq(w) is a normed linear space for q∈ [1,∞] but only
quasi-normed for q ∈ (0,1) . However, we will still refer to Λp(v) and Γq(w) as to
“spaces” and to ‖ · ‖Λp(v) and ‖ · ‖Γq(w) as to “norms”. Notice also that the weighted
Lorentz spaces are always at least r.i. lattices.

Our first aim is the following: Given weights v,w and exponents p,q , we want to
find sufficient conditions on the kernel g under which Tg : Λp(v) → Γq(w) is bounded,
i.e.

‖ f ∗ g‖Γq(w) = ‖Tg f‖Γq(w) � C‖ f‖Λp(v), f ∈ Λp(v), (9)
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and to obtain estimates for the optimal constant C = ‖Tg‖Λp(v)→Γq(w) in terms of g .
Recall that the operator norm of Tg is given by

‖Tg‖X→Z := sup
‖ f‖X�1

‖Tg f‖Z .

Let us formally put ‖Tg‖X→Z := ∞ if there exists a function f ∈ X such that Tg f is not
defined.

In addition to this, it will be shown that if g ∈ Em , then the sufficient conditions
are also necessary for the boundedness Tg : Λp(v) → Γq(w) .

Later on, we will see that ‖Tg‖Λp(v)→Γq(w) is estimated from above by a norm of g
in an r.i. space Y . (In case of g ∈ Em , it will even hold ‖Tg‖Λp(v)→Γq(w) 	 ‖g‖Y .) This
will allow us to write the result in the form of a Young-O’Neil inequality

‖ f ∗ g‖Γq(w) � ‖ f‖Λp(v)‖g‖Y , f ∈ Λp(v), g ∈Y. (10)

Moreover, the space Y will be optimal in the following sense:

DEFINITION 2.2. Let X ,Y,Z be r.i. lattices. We say that Y is optimal for the pair
(X ,Z) if the inequality (2) holds and the following is satisfied: If Ỹ is an r.i. lattice such
that

‖ f ∗ g‖Z � ‖ f‖X‖g‖Ỹ , f ∈ X , g ∈ Ỹ ,

holds, then Ỹ ↪→ Y .

In other words, the optimal lattice for (X ,Z) is the essentially largest one for which
(2) is satisfied.

The key result in our method is the O’Neil inequality [16, Lemma 2.5]:

LEMMA 2.3. Let m ∈ (0,∞] and f ,g ∈ Pm ∩L1
loc . Then, for every t ∈ (0,m) it

holds

( f ∗ g)∗∗(t) � t f ∗∗(t)g∗∗(t)+
∫ m

t
f ∗(s)g∗(s)ds. (11)

Observe that for convolutions both on a bounded and unbounded interval we get
the same estimate (11) which allows us to treat the two cases at once, as mentioned
before.

Furthermore, we are going to use the fact that the O’Neil inequality is sharp in the
following way:

LEMMA 2.4. Let m ∈ (0,∞] . Let f ,g ∈ Em ∩L1
loc . Then for every t ∈ (0,m) it

holds

t f ∗∗(t)g∗∗(t)+
∫ m

t
f ∗(y)g∗(y)dy � 12( f ∗ g)∗∗(t). (12)

Proof. The result was mentioned in [16] without proof. A part of the proof is
sketched e.g. in [18, Remark, p. 145]. For the convenience of the reader, we present the
whole proof here.
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Let m ∈ (0,∞] and f ,g ∈ Em ∩L1
loc . According to the symmetry, we observe that

f (t) = f ∗(2t) and g(t) = g∗(2t) for all t ∈ (0, m
2

)
. Now let t ∈ (0, m

2

)
be fixed. Then∫ t

0
f (t − x)g(x)dx � g(t)

∫ t

0
f (t − x)dx = g(t)

∫ t

0
f (x)dx

= g∗(2t)
∫ t

0
f ∗(2x)dx =

g∗(2t)
2

∫ 2t

0
f ∗(x)dx.

Next, ∫ m
2

t
f (t − x)g(x)dx =

∫ m
2

t
f (x− t)g(x)dx �

∫ m
2

t
f (x)g(x)dx

=
∫ m

2

t
f ∗(2x)g∗(2x)dx =

1
2

∫ m

2t
f ∗(x)g∗(x)dx.

Thus it holds

( f ∗ g)(t) �
∫ t

0
f (t − x)g(x)dx+

∫ m
2

t
f (t − x)g(x)dx

� 1
2

(
g∗(2t)

∫ 2t

0
f ∗(x)dx+

∫ m

2t
f ∗(x)g∗(x)dx

)
.

Hence, we get g∗(2t)
∫ 2t
0 f ∗(x)dx+

∫ m
2t f ∗(x)g∗(x)dx � 2( f ∗ g)(t) . The left-hand side

is equal to the expression
∫ m
0 f ∗(x)min{g∗(x),g∗(2t)}dx which is clearly nonincreas-

ing in t . Thus, we obtain

g∗(2t)
∫ 2t

0
f ∗(x)dx+

∫ m

2t
f ∗(x)g∗(x)dx � 2( f ∗ g)∗(t). (13)

Now, using Fubini theorem and the following part of (13):

g∗(2t)
∫ 2t

0
f ∗(x)dx � 2( f ∗ g)∗(t)

(once as it is and once with f and g having changed places), we write

2tg∗∗(2t) f ∗∗(2t) =
1
2t

∫ 2t

0
g∗(y)dy

∫ 2t

0
f ∗(x)dx

=
1
2t

∫ 2t

0
g∗(y)

∫ y

0
f ∗(x)dxdy+

1
2t

∫ 2t

0
g∗(y)

∫ 2t

y
f ∗(x)dxdy

=
1
2t

∫ 2t

0
g∗(y)

∫ y

0
f ∗(x)dxdy+

1
2t

∫ 2t

0
f ∗(x)

∫ x

0
g∗(y)dydx

� 2
t

∫ 2t

0
( f ∗ g)∗

( y
2

)
dy

=
4
t

∫ t

0
( f ∗ g)∗(y)dy

= 4( f ∗ g)∗∗(t).



1208 MARTIN KŘEPELA

Combining this and (13), we finally proceed to

2tg∗∗(2t) f ∗∗(2t)+
∫ m

2t
f ∗(x)g∗(x)dx � 4( f ∗ g)∗∗(t)+2( f ∗ g)∗(t)

� 6( f ∗ g)∗∗(t) � 12( f ∗ g)∗∗(2t).

Since t ∈ (0, m
2

)
, we have proved (12). �

REMARK 2.5. Let a,b ∈ R and f̃ , g̃ ∈ Em ∩ L1
loc . Then the inequality (12) is

actually satisfied for any f ,g ∈ L1
loc such that f (t) = f̃ (t +a) and g(t) = g̃(t +b) for

all t ∈ R . It follows from the fact that ( f ∗ g)∗ = ( f̃ ∗ g̃)∗ .

3. Main results

We start this section with the general theorem below. It treats the boundedness of
the operator Tg between an r.i. lattice X and Γq(w) .

THEOREM 3.1. Let m ∈ (0,∞] . Let X be an r.i. lattice over
(−m

2 , m
2

)
and let

g ∈ Pm . Let w be a weight and q ∈ (0,∞] . For f ∈ Pm, t ∈ (0,m) put

R1
g f (t) := t f ∗∗(t)g∗∗(t), R2

g f (t) :=
∫ m

t
f ∗(s)g∗(s)ds, Rg f (t) := R1

g f (t)+R2
g f (t).

Then

(i) If Rg : X → Lq(w) is bounded, then Tg : X → Γq(w) is bounded and

‖Tg‖X→Γq(w) � ‖Rg‖X→Lq(w) < ∞.

(ii) Let g ∈ Em . If Tg : X → Γq(w) is bounded, then Rg : X → Lq(w) is bounded and

‖Rg‖X→Lq(w) � ‖Tg‖X→Γq(w) < ∞.

(iii) If there exists an r.i. space Y over
(−m

2 , m
2

)
such that, for all g ∈ Pm , it holds

‖Rg‖X→Lq(w) 	 ‖g‖Y , then Y is optimal for (X ,Γq(w)) .

Proof. (i) It holds ‖R|g|‖X→Lq(w) = ‖Rg‖X→Lq(w) < ∞ . Thus, for any f ∈ X , it
holds R|g|| f |(t) < ∞ for t ∈ (0,m) . From (11) we get (T|g|| f |)∗∗(t) � R|g|| f |(t) < ∞
for t ∈ (0,m) , therefore T|g|| f |(t) < ∞ for a.e. t ∈ (0,m) . Thus, |Tg f (t)| � T|g|| f |(t)
for a.e. t ∈ (0,m) , so Tg is well-defined on X . Next, we get

‖Tg‖X→Γq(w) = sup
‖ f‖X�1

‖(Tg f )∗∗‖Lq(w) � sup
‖ f‖X�1

‖Rg f‖Lq(w) = ‖Rg‖X→Lq(w).

(ii) Let g ∈ Em and Tg : X → Γq(w) be bounded. By definition of the operator
norm, there exists a sequence { fn}n∈N of functions such that ‖ fn‖X � 1 for all n ∈ N

and
lim
n→∞

‖Rg fn‖Lq(w) = ‖Rg‖X→Lq(w).
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Since Rg f = Rg f̃ if f ∗ = f̃ ∗ , we may assume that fn ∈ Em , n ∈ N . Thus, by Lemma
2.4 we obtain ‖Rg fn‖Lq(w) � 12‖ fn ∗ g‖Γq(w) , hence

1
12‖Rg‖X→Lq(w) = 1

12 lim
n→∞

‖Rg fn‖Lq(w) � liminf
n→∞

‖ fn ∗ g‖Γq(w) � ‖Tg‖X→Γq(w),

so the proof of this part is finished.
(iii) If g ∈ Y , we get

‖ f ∗ g‖Γq(w) = ‖Tg f‖Γq(w) � ‖ f‖X‖Tg‖X→Γq(w) 	 ‖ f‖X‖Rg‖X→Lq(w) � ‖ f‖X‖g‖Y ,

hence (2) holds with the given Y . Now let Ỹ be an r.i. lattice such that

‖ f ∗ g‖Γq(w) � ‖ f‖X‖g‖Ỹ , f ∈ X , g ∈ Ỹ . (14)

Let g ∈ Em and ‖g‖Ỹ < ∞ . From (14) we get that ‖Tg‖Sp(v)→Γq(w) � ‖g‖Ỹ . Hence, (ii)
yields that ‖Rg‖X→Λq(w) � ‖Tg‖X→Γq(w) . Together we obtain

‖g‖Y 	 ‖Rg‖X→Λq(w) � ‖Tg‖X→Γq(w) � ‖g‖Ỹ .

Since Y, Y are r.i., it holds
‖g‖Y � ‖g‖Ỹ , g ∈ Ỹ ,

hence Ỹ ↪→Y . Therefore, we have proved that Y is optimal for the pair (X ,Γq(w)) . �
Now we are ready to bring the desired results about the convolution operator be-

tween Λp(v) and Γq(w) . We are going to characterize the norm ‖ · ‖Y of the r.i. space
Y := {h ∈ Pm; ‖h‖Y < ∞} which is optimal for (Λp(v),Γq(w)) in (10). The form of
the results varies depending on the mutual relation of p and q . We need to find es-
timates on ‖R1

g‖Λp(v)→Lq(w) , ‖R2
g‖Λp(v)→Lq(w) . The norm ‖R1

g‖Λp(v)→Lq(w) equals the
best constant C1 such that(∫ m

0
( f ∗∗(t))qtq(g∗∗(t))qw(t)dt

) 1
q

� C1

(∫ m

0
( f ∗(t))pv(t)dt

) 1
p

, f ∈ M
(−m

2 , m
2

)
,

(15)
holds, while ‖R2

g‖Λp(v)→Lq(w) equals the best C2 in(∫ m

0

(∫ m

t
f ∗(s)g∗(s)ds

)q

w(t)dt

) 1
q

�C2

(∫ m

0
( f ∗(t))pv(t)dt

) 1
p

, f ∈M
(−m

2 , m
2

)
.

(16)
Both (15) and (16) are Hardy-type inequalities for monotone functions and the optimal
constants C1 , C2 have been fully characterized. The inequality (15) represents the
embedding Λ ↪→ Γ (see e.g. [4, 3]). A similar survey of (16) may be found e.g. in [8].
Direct references are given in the proof of Theorem 3.2 below.

In what follows, we will use the fact that for any m ∈ (0,∞] and any ϕ ,ψ ∈
M+(R) it holds

sup
x∈(0,m)

ϕ(x)+ sup
x∈(0,m)

ψ(x) 	 sup
x∈(0,m)

[ϕ(x)+ ψ(x)] .

We also apply the convention “ ∞
∞ := 0”.
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THEOREM 3.2. Let m ∈ (0,∞] and let v,w be weights. For g ∈ Pm let ‖g‖Y be
given by the following:

(i) If 0 < p � 1, p � q < ∞ , let

‖g‖Y := sup
x∈(0,m)

xV− 1
p (x)

[
(g∗∗(x))qW (x)+

∫ m

x
(g∗∗(t))qw(t)dt

] 1
q

.

(ii) If 1 < p � q < ∞ , let

‖g‖Y := sup
x∈(0,m)

(∫ m

x
(g∗∗(t))p′t p′V−p′(t)v(t)dt

) 1
p′

W
1
q (x)

+g∗∗(x)xW
1
q (x)V− 1

p (x)

+
(∫ x

0
t p′V−p′(t)v(t)dt

) 1
p′
(∫ m

x
(g∗∗(t))qw(t)dt

) 1
q

.

(iii) If 1 < q < p < ∞ , let

‖g‖Y :=

[∫ m

0

(∫ m

x
(g∗∗(t))qw(t)dt

) r
q
(∫ x

0
t p′V−p′(t)v(t)dt

) r
q′

xp′V−p′(x)v(x)

+ (g∗∗(x))rxrW
r
q (x)V− r

q (x)v(x)

+ W
r
p (x)w(x)

(∫ m

x
(g∗∗(t))p′t p′V−p′(t)v(t)dt

) r
p′

dx

] 1
r

+
(∫ m

0
xq(g∗∗(x))qw(x)dx

) 1
q

V− 1
p (m).

(iv) If 1 = q < p < ∞ , let

‖g‖Y :=

[∫ m

0

(
g∗∗(x)W (x)+

∫ m

x
g∗∗(t)w(t)dt

)p′

xp′V−p′(x)v(x)dx

] 1
p′

+
∫ m

0
xg∗∗(x)w(x)dx V− 1

p (m).

Then, for each choice of p,q from the previous list, the inequality (10) is satisfied. If
g ∈ Em , then ‖Tg‖Λp(v)→Γq(w) 	 ‖g‖Y . The space (Y,‖ · ‖Y ) is optimal for the pair
(Λp(v),Γq(w)) .

Proof. As for checking that Y generated by ‖·‖Y in each of the cases is a (quasi-)
normed r.i. space, we refer to Proposition 5.6.
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Now let us focus on the main part of the proof. At first, clearly it is ‖Rg‖Λp(v)→Lq(w)

	 ‖R1
g‖Λp(v)→Lq(w) + ‖R2

g‖Λp(v)→Lq(w) . In each case (i)–(iv), we will use the known
equivalent estimates of ‖R1

g‖Λp(v)→Lq(w) , ‖R2
g‖Λp(v)→Lq(w) . They have a form of certain

functionals of g and we will show that, when added together, they actually form a norm
of g in Y , i.e. ‖g‖Y 	 ‖R1

g‖Λp(v)→Lq(w) +‖R2
g‖Λp(v)→Lq(w) for every g ∈ Pm .

Then the results will follow from Theorem 3.1: By its (i) part, if g ∈ Y , then
Tg : Λp(v) → Γq(w) is bounded and ‖Tg‖Λp(v)→Γq(w) � ‖g‖Y , hence (10) is satisfied.
By Theorem 3.1 (ii), if g ∈ Em , then we get even ‖Tg‖Λp(v)→Γq(w) 	 ‖g‖Y . Theorem
3.1 (iii) then implies the optimality of Y .

So, in each case we just need to check that ‖R1
g‖Λp(v)→Lq(w) + ‖R2

g‖Λp(v)→Lq(w) ,
obtained from the appropriate Hardy-type inequalities, are equivalent to ‖g‖Y for any
g ∈ Pm .

(i) By [19, Theorem 3(b)] and [13, Theorem 2.1(a)] we get

‖R1
g‖Λp(v)→Lq(w) 	 sup

x∈(0,m)
V− 1

p (x)

[
x

(∫ m

x
(g∗∗(t))qw(t)dt

) 1
q

+
(∫ x

0
tq(g∗∗(t))qw(t)dt

) 1
q
]

,

‖R2
g‖Λp(v)→Lq(w) 	 sup

x∈(0,m)
V− 1

p (x)
(∫ x

0

(∫ x

t
g∗(s)ds

)q

w(t)dt

) 1
q

.

Obviously, ‖R1
g‖Λp(v)→Lq(w) +‖R2

g‖Λp(v)→Lq(w) 	 ‖g‖Y .
(ii) From [17, Theorem 2] and the dual version of [15, Theorem 1.1] it follows:

‖R1
g‖Λp(v)→Lq(w) 	 sup

x∈(0,m)

(∫ m

x
(g∗∗(t))qw(t)dt

) 1
q
(∫ x

0
t p′V−p′(t)v(t)dt

) 1
p′

+ sup
x∈(0,m)

(∫ x

0
tq(g∗∗(t))qw(t)dt

) 1
q

V− 1
p (x)

=: A1 +A2,

‖R2
g‖Λp(v)→Lq(w) 	 sup

x∈(0,m)

(∫ m

x

(∫ t

x
g∗(s)ds

)p′

V−p′(t)v(t)dt

) 1
p′

W
1
q (x)

+ sup
x∈(0,m)

(∫ x

0

(∫ x

t
g∗(s)ds

)q

w(t)dt

) 1
q

V− 1
p (x)

=: A3 +A4.

Since for every x ∈ (0,m) it holds

V− 1
p (x) �

(
V 1−p′(x)−V 1−p′(m)

) 1
p′ (17)

=
(∫ m

x

(
−V 1−p′

)′
(t)dt

) 1
p′ 	

(∫ m

x
V−p′(t)v(t)dt

) 1
p′

,
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we get

(∫ x

0

(∫ x

0
g∗(s)ds

)q

w(t)dt

) 1
q
(∫ m

x
V−p′v

) 1
p′
�
(∫ x

0

(∫ x

0
g∗(s)ds

)q

w(t)dt

) 1
q

V− 1
p (x)

and so

A5 := sup
x∈(0,m)

(∫ m

x
(g∗∗(t))p′t p′V−p′(t)v(t)dt

) 1
p′

W
1
q (x) � A2 +A3 +A4.

Observe also that A3 � A5 . Hence

‖R1
g‖Λp(v)→Lq(w)+‖R2

g‖Λp(v)→Lq(w) � A1 +A2 +A3 +A4 � A1 +A2 +A3 +A4 +A5

� A1 +A2 +A4 +A5

� A1 +A2 +A3 +A4

� ‖R1
g‖Λp(v)→Lq(w)+‖R2

g‖Λp(v)→Lq(w).

Since A1 +A2 +A4 +A5 	 ‖g‖Y , we have obtained ‖R1
g‖Λp(v)→Lq(w) +‖R2

g‖Λp(v)→Lq(w)
	 ‖g‖Y .

(iii) In this case [17, Theorem 2] and the dual version of [15, Theorem 1.2] (cf.
also [4, Theorem 4.1] and [8, Theorem 5.1]) yield

‖R1
g‖Λp(v)→Lq(w)

	
(∫ m

0

(∫ ∞

t
(g∗∗(x))qw(x)dx

) r
q
(∫ t

0
xp′V−p′(x)v(x)dx

) r
q′

t p′V−p′(t)v(t)dt

) 1
r

+

(∫ m

0

(∫ x

0
tq(g∗∗(t))qw(t)dt

) r
q

V− r
q (x)v(x)dx

) 1
r

+
(∫ m

0
xq(g∗∗(x))qw(x)dx

) 1
q

V− 1
p (m)

=: A1 +A2 +A3,

‖R2
g‖Λp(v)→Lq(w)

	
(∫ m

0

(∫ x

0

(∫ x

t
g∗(s)ds

)q

w(t)dt

) r
q

V− r
q (x)v(x)dx

) 1
r

+

⎛⎝∫ ∞

0

(∫ m

x

(∫ t

x
g∗(s)ds

)p′

V−p′(t)v(t)dt

) r
p′

W
r
p (x)w(x)dx

⎞⎠
1
r

=: A4 +A5.
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Clearly it holds

A2 +A4 	
(∫ m

0

(∫ x

0
g∗(s)ds

)r

W
r
q (x)V− r

q (x)v(x)dx

) 1
r

=: A6.

Integration by parts and (17) provides that for all t ∈ (0,m) we have

∫ m

t
W

r
p (x)

(∫ m

x
V−p′v

) r
p′

w(x)dx �
∫ m

t
W

r
q (x)V− r

q (x)v(x)dx.

The function x �→ (
∫ x
0 g∗(s)ds)r is nondecreasing, so by Hardy’s lemma (an analogue

of [1, Proposition 3.6, p. 56]) we obtain

A7 :=

(∫ m

0

(∫ x

0
g∗(s)ds

)r

W
r
p (x)

(∫ m

x
V−p′v

) r
p′

w(x)dx

) 1
r

� A6,

thus also A5 +A7 � A2 +A4 +A5 . Next, we can write

A5 +A7 	
(∫ m

0
W

r
p (x)w(x)

(∫ m

x
(g∗∗(t))p′t p′V−p′(t)v(t)dt

) r
p′

dx

) 1
r

=: A8,

hence putting all the estimates together yields

A2 +A4 +A5 � A6 +A8 � A2 +A4 +A5

and so finally ‖R1
g‖Λp(v)→Lq(w) +‖R2

g‖Λp(v)→Lq(w) 	 A1 +A3 +A6 +A8 	 ‖g‖Y .
(iv) By [4, Theorem 4.1(iv)] and [8, Theorem 5.1(v)] we have

‖R1
g‖Λp(v)→Lq(w) 	

(∫ m

0

(∫ x

0
tg∗∗(t)w(t)dt

)p′

V−p′(x)v(x)dx

) 1
p′

+

(∫ m

0

(∫ ∞

x
g∗∗(t)w(t)dt

)p′

xp′V−p′(x)v(x)dx

) 1
p′

+
∫ m

0
xg∗∗(x)w(x)dx V− 1

p (∞)

=: A1 +A2 +A3,

‖R2
g‖Λp(v)→Lq(w) 	

(∫ m

0

(∫ x

0

∫ x

t
g∗(y)dy w(t)dt

)p′

V−p′(x)v(x)dx

) 1
p′

.

Clearly,

A1 +‖R2
g‖Λp(v)→Lq(w) 	

(∫ m

0
(g∗∗(x))p′xp′W p′(x)V−p′(x)v(x)dx

) 1
p′

=: A4,
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hence ‖R1
g‖Λp(v)→Lq(w) +‖R2

g‖Λp(v)→Lq(w) 	 A2 +A3 +A4 	 ‖g‖Y . �
For a given combination of weights v,w and exponents p,q in Theorems 3.2-3.6

we got the optimal space (Y,‖ · ‖Y ) . However, this space may consist only of a.e. zero
functions. In such case we have the following observation:

COROLLARY 3.3. Let m ∈ (0,∞] , p,q ∈ (0,∞] , let v,w be weights. Let the opti-
mal space Y for (Λp(v),Γq(w)) in (10) satisfy Y = {0} . Let g ∈ Pm be nonnegative
a.e. and such that Tg : Λp(v) → Γq(w) is bounded. Then g = 0 a.e.

Proof. Let g∈Pm be nonnegative and g �≡ 0 in measure. Then there exist ε > 0,
a,b ∈ (−m

2 , m
2

)
and h = εχ(a,b) such that h � g a.e. Since h �≡ 0, it holds ‖h‖Y = ∞

and therefore, by Theorem 3.1 (ii) and Remark 2.5, Th is not bounded between Λp(v)
and Γq(w) . Since 0 � h � g , for every nonnegative f ∈ Λp(v) we get 0 � Th f � Tg f .
Thus also (Th f )∗ � (Tg f )∗ and it follows that Tg is not bounded between Λp(v) and
Γq(w) . �

REMARK 3.4. In general, functions from Λp(v) do not have to be locally inte-
grable. In particular, for p ∈ (0,∞) , we know that Λp(v) ⊂ L1

loc if and only if one of
the following conditions is satisfied (cf. [4, 17, 19]):

(a) p ∈ (0,1] and limsupt→0+ tV− 1
p (t) < ∞,

(b) p ∈ (1,∞) and there exists ε > 0 such that
∫ ε
0 t p′−1V 1−p′(t)dt < ∞.

Let Λp(v) �⊂ L1
loc . Then Tg is well-defined on Λp(v) if and only if g = 0 a.e. One may

directly check that Y = {0} in all cases of Theorem 3.2 (i)–(iv). Hence, this theorem
(trivially) holds even for Λp(v) �⊂ L1

loc , thus we do not assume (a) or (b) in its statement.

Now we state the results for the weak-type spaces. The way of proving them is
the same as in Theorem 3.2. Analogues of Corollary 3.3 and Remark 3.4 hold for these
cases as well.

THEOREM 3.5. Let m ∈ (0,∞] . Let v,w be weights. For g ∈ Pm let ‖g‖Y be
given by what follows:

(i) If 0 < p � 1 , then

‖g‖Y := esssup
0<x<y<m

[
g∗∗(y)w(y)xV− 1

p (x)+g∗∗(y)w(x)yV− 1
p (y)

]
.

(ii) If 1 < p < ∞ , then

‖g‖Y := esssup
0<x<m

w(x)

[(∫ m

x
(g∗∗(t))p′t p′V−p′(t)v(t)dt

) 1
p′

+g∗∗(x)
(∫ x

0
t p′−1V 1−p′(t)dt

) 1
p′
]

.



CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES 1215

Then, for p ∈ (0,∞) , it holds

‖ f ∗ g‖Γ∞(w) � ‖ f‖Λp(v)‖g‖Y , f ∈ Λp(v), g ∈ Y. (18)

Moreover, if g ∈ Em , then ‖Tg‖Λp(v)→Γ∞(w) 	 ‖g‖Y . The space (Y,‖ ·‖Y ) is optimal for
the pair (Λp(v),Γ∞(w)) .

Proof. We will again show that ‖g‖Y 	 ‖R1
g‖Λp(v)→L∞(w) + ‖R2

g‖Λp(v)→L∞(w) and
apply Theorem 3.1. (For more details see the proof of Theorem 3.2.)

(i) It holds (cf. [4, Theorem 2.6(i)])

‖R1
g‖Λp(v)→L∞(w) 	 esssup

0<x<y<m
g∗∗(y)w(y)xV− 1

p (x),

‖R2
g‖Λp(v)→L∞(w) 	 esssup

0<x<y<m

∫ y

x
g∗(s)ds w(x)V− 1

p (y).

In the definition of ‖g‖Y we observe that ‖g‖Y 	‖R1
g‖Λp(v)→L∞(w) +‖R2

g‖Λp(v)→L∞(w) +
B , where

B := esssup
x∈(0,m)

xg∗∗(x)w(x)V− 1
p (x).

However, it is easy to see that B � ‖R1
g‖Λp(v)→L∞(w) , therefore ‖g‖Y 	‖R1

g‖Λp(v)→L∞(w)+
‖R2

g‖Λp(v)→L∞(w) .
(ii) We get (cf. [4, Theorem 2.6(i)] again)

‖R1
g‖Λp(v)→L∞(w) 	 esssup

x∈(0,m)
g∗∗(x)w(x)

(∫ x

0
t p′−1V 1−p′(t)dt

) 1
p′

,

‖R2
g‖Λp(v)→L∞(w) 	 esssup

x∈(0,m)
w(x)

(∫ m

x

(∫ t

x
g∗(s)ds

)p′

V−p′(t)v(t)dt

) 1
p′

.

Since (∫ m

x
V−p′(t)v(t)dt

) 1
p′

� V− 1
p (x) =

V− 1
p (x)
x

(∫ x

0
t p′−1 dt

) 1
p′

� 1
x

(∫ x

0
V 1−p′(t)t p′−1 dt

) 1
p′

,

we get

B := esssup
x>0

xg∗∗(x)w(x)
(∫ ∞

x
V−p′(t)v(t)dt

) 1
p′

� ‖R1
g‖Λp(v)→L∞(w).

Thus,

‖g‖Y 	 ‖R1
g‖Λp(v)→L∞(w)+‖R2

g‖Λp(v)→L∞(w)+B 	 ‖R1
g‖Λp(v)→L∞(w)+‖R2

g‖Λp(v)→L∞(w)

and the proof is finished. �
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THEOREM 3.6. Let m ∈ (0,∞] . Let v,w be weights. For g ∈ Pm let ‖g‖Y be
given by what follows:

(i) If 0 < q < ∞ , then

‖g‖Y :=

(∫ m

0

(
g∗∗(x)

∫ x

0

dt
esssups∈(0,t) v(s)

+
∫ m

x

g∗(t)dt
esssups∈(0,t) v(s)

)q

w(x)dx

) 1
q

.

(ii) If q = ∞ , then

‖g‖Y := esssup
x∈(0,m)

(
g∗∗(x)

∫ x

0

dt
esssups∈(0,t) v(s)

+
∫ m

x

g∗(t)dt
esssups∈(0,t) v(s)

)
w(x).

Then, for q ∈ (0,∞] , it holds

‖ f ∗ g‖Γq(w) � ‖ f‖Λ∞(v)‖g‖Y , f ∈ Λ∞(v), g ∈ Y. (19)

Moreover, if g ∈ Em , then ‖Tg‖Λ∞(v)→Γq(w) 	 ‖g‖Y . The space (Y,‖ ·‖Y ) is optimal for
the pair (Λ∞(v),Γq(w)) .

Proof. Once again, let us show ‖g‖Y 	 ‖R1
g‖Λ∞(v)→Lq(w) + ‖R2

g‖Λ∞(v)→Lq(w) and
apply Theorem 3.1. (See details in the analogous proof of Theorem 3.2.)

(i) From [8, Theorem 5.5] it follows

‖R1
g‖Λ∞(v)→Lq(w) =

(∫ m

0

(
g∗∗(x)

∫ x

0

dt
esssups∈(0,t) v(s)

)q

w(x)dx

) 1
q

,

‖R2
g‖Λ∞(v)→Lq(w) =

(∫ m

0

(∫ m

x

g∗(t)dt
esssups∈(0,t) v(s)

)q

w(x)dx

) 1
q

.

One clearly sees that ‖g‖Y 	 ‖R1
g‖Λ∞(v)→Lq(w) +‖R2

g‖Λ∞(v)→Lq(w) .
(ii) Here, by [8, Theorem 5.5] as well, we get

‖R1
g‖Λ∞(v)→L∞(w) = esssup

x∈(0,m)
g∗∗(x)

∫ x

0

dt
esssups∈(0,t) v(s)

w(x),

‖R2
g‖Λ∞(v)→L∞(w) = esssup

x∈(0,m)

∫ m

x

g∗(t)dt
esssups∈(0,t) v(s)

w(x),

and thus obviously ‖g‖Y 	 ‖R1
g‖Λ∞(v)→L∞(w) +‖R2

g‖Λ∞(v)→L∞(w) . �
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4. Further results and applications

At first, here we present two additional results of independent interest. The propo-
sition below provides an alternative expression for the right-hand side of O’Neil in-
equality (11):

PROPOSITION 4.1. Let m ∈ (0,∞] and let f ,g ∈ Pm ∩L1
loc . Then for every t ∈

(0,m) it holds:

t f ∗∗(t)g∗∗(t)+
∫ m

t
f ∗g∗ = limsup

s→m−
s f ∗∗(s)g∗∗(s)+

∫ m

t
( f ∗∗ − f ∗)(g∗∗ −g∗).

Proof. We may assume that f ∗∗,g∗∗ < ∞ on (0,∞) , otherwise the identity holds

trivially. Recall that (g∗∗)′ (t) = g∗(t)−g∗∗(t)
t for all t > 0. Assume first m < ∞ and take

a fixed t ∈ (0,m) . Then integration by parts yields∫ m

t
f ∗∗(g∗∗ −g∗) =

[− s f ∗∗(s)g∗∗(s)
]m
s=t +

∫ m

t
f ∗g∗∗.

Subtracting
∫ m
t f ∗(g∗∗−g∗) from both sides, we get∫ m

t
( f ∗∗ − f ∗)(g∗∗ −g∗) =

[− s f ∗∗(s)g∗∗(s)
]m
s=t +

∫ m

t
f ∗g∗,

hence

t f ∗∗(t)g∗∗(t)+
∫ m

t
f ∗g∗ = mf ∗∗(m)g∗∗(m)+

∫ m

t
( f ∗∗ − f ∗)(g∗∗ −g∗). (20)

Notice that since all integrals involved in the procedure exist and are finite, all per-
formed steps were correct. Now, consider f ,g ∈ M and suppose that f ∗, f ∗∗,g∗,g∗∗
are rearrangements on R (given by (5) and (6) with m = ∞). By the previous part, (20)
holds for any parameter m ∈ (0,∞) , thus passing m → ∞ on both sides and using the
monotone convergence theorem gives the result for m = ∞ . �

We now get the following corollary:

COROLLARY 4.2. Let m ∈ (0,∞) , f ,g ∈ Pm ∩L1
loc and let w be a weight. De-

note ‖ · ‖1 := ‖ · ‖L1(0,m) . Then∫ m

0
( f ∗ g)∗∗w � ‖ f‖1‖g‖1‖w‖1

m
+
∫ m

0
( f ∗∗(t)− f ∗(t))(g∗∗(t)−g∗(t))W (t)dt. (21)

Proof. Following Lemma 2.3 and Proposition 4.1 we get∫ m

0
( f ∗ g)∗∗(t)w(t)dt

�
∫ m

0

[
t f ∗∗(t)g∗∗(t)+

∫ m

t
f ∗(s)g∗(s))ds

]
w(t)dt
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�
∫ m

0

[
mf ∗∗(m)g∗∗(m)+

∫ m

t
( f ∗∗(s)− f ∗(s))(g∗∗(s)−g∗(s))ds

]
w(t)dt

� ‖ f‖1‖g‖1‖w‖1

m
+
∫ m

0

∫ m

t
( f ∗∗(s)− f ∗(s))(g∗∗(s)−g∗(s))w(t)dsdt

=
‖ f‖1‖g‖1‖w‖1

m
+
∫ m

0
( f ∗∗(t)− f ∗(t))(g∗∗(t)−g∗(t))W (t)dt. �

This improves the result of [14, Lemma 2.1], in which a weaker version of it is
proved, namely with g∗∗ instead of g∗∗ −g∗ in the integrand on the right-hand side of
(21).

Next, let us show that our theorems cover the classical convolution-related results
which we thus can obtain by applying the inequalities from Section 2 to special choices
of weights.

REMARK 4.3. O’Neil’s result [16, Theorem 2.6] says that for 1 < a,b,c < ∞ and
1 � q < p < ∞ such that 1+ 1

a = 1
b + 1

c and 1
r = 1

q − 1
p the inequality (3) holds for

all f ,g ∈ Pm , where m may be both finite or infinite and the functionals ‖ · ‖Lα,β are
defined on a corresponding interval (0,m) . Let us show that this result now follows as
a special case of Theorem 3.2 (iii)/(iv):

Consider q > 1. Recall that since a,b,c > 1, it holds ‖ · ‖La,q 	 ‖ · ‖L(a,q) and
analogously for Lc,r (see e.g. [1, p. 219]). Hence, it suffices to confirm the inequality

‖ f ∗ g‖Γq(w) � ‖ f‖Λp(v)‖g‖Γr(u) (22)

with v(x) := x
p
b −1 , w(x) := x

q
a−1 and u(x) := x

r
c−1 . By application of Theorem 3.2

(iii) and a direct calculation involving the given weights, we obtain that ‖ f ∗ g‖Γq(w) �
‖ f‖Λp(v)‖g‖Y holds with

‖g‖Y 	 ‖g‖Γr(u) +V− 1
p (m)

(∫ m

0
(g∗∗(t))qtqw(t)dt

) 1
q

+

(∫ m

0

(∫ m

x
(g∗∗(t))qt

q
a−1 dt

) r
q

x
r(b−1)

b −1 dx

) 1
r

+

(∫ m

0

(∫ m

x
(g∗∗(t))p′t

b−p
b(p−1) dt

) r
p′

x
r
a−1 dx

) 1
r

.

Since g∗∗ is nonincreasing, the Hardy-type inequality [8, Theorem 5.1(iii)] implies(∫ m

0

(∫ m

x
(g∗∗(t))qt

q
a−1 dt

) r
q

x
r(b−1)

b −1 dx

) 1
r

� ‖g‖Γr(u),

(∫ m

0

(∫ m

x
(g∗∗(t))p′t

b−p
b(p−1) dt

) r
p′

x
r
a−1 dx

) 1
r

� ‖g‖Γr(u).
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If m = ∞ , we obtain that V− 1
p (m)(

∫ m
0 (g∗∗(t))qtqw(t)dt)

1
q = 0 since V (∞) = ∞ (by the

convention “ ∞
∞ = 0”). For m < ∞ , from [17, Remark (i), p. 148] it follows

V− 1
p (m)

(∫ m

0
(g∗∗(t))qtqw(t)dt

) 1
q

� ‖g‖Γr(u).

Verifying the requirements of all the used theorems is yet again done by a direct calcu-
lation of the weights. We got ‖ · ‖Y 	 ‖ · ‖Γr(u) and it shows that (22) holds.

The case q = 1 follows analogously using Theorem 3.2 (iv) and the same sources.
Therefore, we checked that from Theorem 3.2 it follows that the inequality (3) holds
and Lc,r is the optimal space for the pair (Lb,p ,La,q) .

REMARK 4.4. Furthermore, we can investigate the limit case of (3) with a = b
and c = 1. Using exactly the same method as above, we reach the inequality

‖ f ∗ g‖Lb,q � ‖ f‖Lb,p‖g‖L(1,r) , f ∈ Lb,p, g ∈ L(1,r).

For m < ∞ we obtain the result of [14, Theorem 2.1(a)] so. Unlike the case of a finite
m , for m = ∞ the space L(1,r) , which we obtained as the optimal one, consists only of
the a.e. zero function. Thus, Corollary 3.3 yields: If g ∈Pm is nonnegative, then Tg is
bounded from Lb,p to Lb,q if and only if g = 0 a.e. Hence, we recovered the result of
[2, Theorem 2] for convolution operators.

5. Properties of related function spaces

In this part we introduce a new type of function spaces based on the optimal space
Y we got in the previous and list some basic properties of these structures. We define
them as systems of functions over the domain

(−m
2 , m

2

)
, where m is, without loss of

generality, taken from [1,∞] .

DEFINITION 5.1. Let m ∈ [1,∞] , p,q ∈ (0,∞) and let u,v be weights. For g ∈
Pm we define

‖g‖Kp,q(u,v) :=

(∫ m

0

(∫ m

x
(g∗∗(t))pu(t)dt

) q
p

v(x)dx

) 1
q

,

‖g‖Kp,∞(u,v) := esssup
x∈(0,m)

(∫ m

x
(g∗∗(t))pu(t)dt

) 1
p

v(x),

‖g‖K∞,q(u,v) :=

(∫ m

0
esssup
t∈(x,m)

(
g∗∗(t)u(t)

)q
v(x)dx

) 1
q

.

Then we put Kp,q(u,v) :=
{

f ∈ Pm; ‖ f‖Kp,q(u,v) < ∞
}

, analogouslywe define Kp,∞(u,v)
and K∞,q(u,v) .
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We could also consider the norm

‖g‖K∞,∞(u,v) := esssup
t>x>0

g∗∗(t)u(t)v(x).

However, this would bring no innovation since ‖ · ‖K∞,∞(u,v) then coincides with
‖ · ‖Γ∞(ω) for ω(t) := u(t)esssupx∈(0,t) v(x) .

Function spaces which actually are special cases of these have already been spo-
radically mentioned before. For example, in [6], the space K1,∞(u,v) with a spe-
cial choice of u,v appears as the optimal space for a certain Sobolev embedding into
a Morrey-type space.

We start with showing the conditions under which a K space is nontrivial.

PROPOSITION 5.2. Let m ∈ [1,∞] and let u,v be weights. Then:

(i) If 0 < p,q < ∞ , then Kp,q(u,v) �= {0} if and only if∫ m

0

(∫ m

x

u(t)
(t +1)p dt

) q
p

v(x)dx < ∞. (23)

(ii) If 0 < p < ∞ , then Kp,∞(u,v) �= {0} if and only if

esssup
x∈(0,m)

(∫ m

x

u(t)
(t +1)p dt

) 1
p

v(x) < ∞.

(iii) If 0 < q < ∞ , then K∞,q(u,v) �= {0} if and only if∫ m

0
esssup
t∈(x,m)

uq(t)
(t +1)q v(x)dx < ∞.

Proof. (i) At first, one sees that for all t > 0 it holds

1
2(t +1)p � χ[0,1)(t)+

χ[1,m)(t)
t p � 2p

(t +1)p . (24)

Assume that there exists 0 �= f ∈M
(−m

2 , m
2

)
such that ‖ f‖Kp,q(u,v) < ∞ . Then it holds

0 < f ∗∗(1) < ∞ and by (24) we get

∞ > ‖ f‖q
Kp,q(u,v) � ‖ f ∗∗(1)χ[0,1]‖q

Kp,q(u,v) � ( f ∗∗(1))q

2q

∫ m

0

(∫ m

x

u(t)
(t +1)p dt

) q
p

v(x).

Now assume that (23) holds. Then by the other part of (24) we obtain that χ[0,1] ∈
Kp,q(u,v) . Cases (ii) and (iii) are proved analogously. �

Recall (see e.g. [1, p. 73]) the spaces L1∩L∞ and L1 +L∞ generated by the norms

‖ f‖L1+L∞ := inf
f= f1+ f2

{‖ f1‖1 +‖ f2‖∞} , ‖ f‖L1∩L∞ := max{‖ f‖1,‖ f‖∞} ,

where L1 = L1(0,m) and L∞ = L∞(0,m) .
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PROPOSITION 5.3. Let m ∈ [1,∞] . Let 0 < p,q � ∞ and let u,v be weights such
that Kp,q(u,v) �= {0} . Then

L1∩L∞ ↪→ Kp,q(u,v) ↪→ L1 +L∞.

Proof. This is proved directly by exactly the same method as in [11, Proposition
1.4(2)] where an analogous result for Γ spaces is shown. �

From Proposition 5.3 we see that if ‖ · ‖Kp,q(u,v) � ‖ · ‖L1+L∞ , then Kp,q(u,v) =
L1 +L∞ in the sense of equivalence of norms. This is considered to be another type of
triviality. We characterize it by what follows:

PROPOSITION 5.4. Let m ∈ [1,∞] and let u,v be weights. Then:

(i) If 0 < p,q < ∞ , then Kp,q(u,v) = L1 +L∞ if and only if

C :=
∫ m

0

(∫ m

x

(
1
t

+1

)p

u(t)dt
) q

p

v(x)dx < ∞.

(ii) If 0 < p < ∞ , then Kp,∞(u,v) = L1 +L∞ if and only if

esssup
x∈(0,m)

(∫ m

x

(
1
t

+1

)p

u(t)dt

) 1
p

v(x) < ∞.

(iii) If 0 < q < ∞ , then K∞,q(u,v) = L1 +L∞ if and only if∫ m

0
esssup
t∈(x,m)

(
1
t

+1

)q

uq(t)v(x)dx < ∞.

Proof. (i) First let us suppose that C = ∞ . For each n ∈ N we define the function
fn := nχ[0, 1

n ] +1. Then ‖ fn‖L1+L∞ � 1 for all n ∈ N but by the monotone convergence

theorem it holds ‖ fn‖q
Kp,q(u,v) ↑C = ∞ . Thus, L1 +L∞ �↪→ Kp,q(u,v) .

Now assume that C < ∞ . Let f ∈ L1 +L∞ be arbitrary. Let f1 ∈ L1 and f2 ∈ L∞

be functions such that f = f1 + f2 and ‖ f‖L1+L∞ � 1
2 (‖ f1‖1 +‖ f2‖∞) . Then f ∗∗(t) �

‖ f1‖1
t +‖ f2‖∞ , t ∈ (0,m) , and thus it holds

‖ f‖q
Kp,q(u,v) = ‖ f1 + f2‖q

Kp,q(u,v) �
∫ m

0

(∫ m

x

(‖ f1‖1

t
+‖ f2‖∞

)p

u(t)dt

) q
p

v(x)dx

� 2qC‖ f‖q
L1+L∞ ,

hence L1 + L∞ ↪→ Kp,q(u,v) . Thus, L1 + L∞ = Kp,q(u,v) by Proposition 5.3. The
proofs of (ii) and (iii) are analogous. �
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REMARK 5.5. Notice that if m < ∞ , the conditions may be slightly simplified: In
Proposition 5.2 (i), the factor u(t)

(t+1)p in (23) may be replaced just by u(t) and analo-

gously in Proposition 5.2 (ii), (iii). In Proposition 5.4 (i) we may replace
(
1+ 1

t

)p
by

1
t p and similarly in (ii) and (iii).

Finally, let us justify our use of the word “space” in connection with these struc-
tures.

PROPOSITION 5.6. Let m ∈ [1,∞] . Let p,q ∈ (0,∞] and let u,v be weights such
that Kp,q(u,v) �= {0} . Then ‖ · ‖Kp,q(u,v) is an r.i. quasi-norm. If p,q � 1 , then ‖ ·
‖Kp,q(u,v) is an r.i. norm.

Proof. We will check that the functional ‖·‖Kp,q(u,v) satisfies the P-properties from
Definition 2.1. The (P1*) property follows from (8). In the case p,q � 1, Minkowski
inequality is used to get (P1). Conditions (P2)–(P4) are easy to check using the proper-
ties of rearrangement (see [1, p. 41]). Property (P6) follows by the nontriviality condi-
tions of Proposition 5.2. Next, let E ⊂ (−m

2 , m
2

)
be measurable and |E| < ∞ . It holds

(see [1, p. 74]) that
∫ |E|
0 f ∗ = inf f= f1+ f2 (‖ f1‖1 + |E|‖ f2‖∞) and, by Proposition 5.3,

there exists a constant C > 0 such that ‖ f‖L1+L∞ �C‖ f‖Kp,q(u,v) for all f ∈ Kp,q(u,v) .
Hence, for all f ∈ Kp,q(u,v) we get∫

E
f �

∫ |E|

0
f ∗ = inf

f= f1+ f2
(‖ f1‖1 + |E|‖ f2‖∞) � (1+ |E|)‖ f‖L1+L∞

� C(1+ |E|)‖ f‖Kp,q(u,v).

Thus, (P7) holds. The last condition (P8) is obvious. �
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[11] A. KAMIŃSKA, L. MALIGRANDA, On Lorentz spaces Γp,w , Israel J. Math., (140), 285–318, 2004.
[12] A. KUFNER, L.-E. PERSSON, Weighted inequalities of Hardy type, World Scientific Publishing Co.,

River Edge, 2003.
[13] E. A. MYASNIKOV, L.-E. PERSSON, V. D. STEPANOV, On the best constants in certain integral

inequalities for monotone functions, Acta Sci. Math. (Szeged), (59), 613–624, 1994.
[14] E. NURSULTANOV, S. TIKHONOV,Convolution inequalities in Lorentz spaces, J. Fourier Anal. Appl.,

(17), 486–505, 2011.
[15] R. OINAROV, Two-sided estimates of the norm of some classes of integral operators, Proc. Steklov

Inst. Math., (204), 205–214, 1994.
[16] R. O’NEIL, Convolution operators and L(p,q) spaces, Duke Math. J., (30), 129–142, 1963.
[17] E. SAWYER, Boundedness of classical operators on classical Lorentz spaces, Studia Math., (96),

145–158, 1990.
[18] R. SHARPLEY, Counterexamples for classical operators on Lorentz-Zygmund spaces, Studia Math.,

(68), 141–158, 1980.
[19] V. D. STEPANOV, The weighted Hardy’s inequality for nonincreasing functions, Trans. Amer. Math.

Soc., (338), 173–186, 1993.
[20] L. Y. H. YAP, Some remarks on convolution operators and L(p,q) spaces, Duke Math. J., (36),

647–658, 1969.

(Received April 5, 2013) Martin Křepela
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