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Abstract. The subject of this paper is the analysis of bivariate parameter means: general power
mean, generalized logarithmic mean, Gini mean and Stolarsky mean. Asymptotical analysis of
these means are made and series of corresponding coefficients are calculated. Using these in-
formation, a necessary conditions for the comparison of these means are derived. This approach
enables better understanding of relations between these means.

1. Introduction

We are interested in analysis of bivariate means, and theirs behaviour when the
data are translated by some large quantity x . In other words, we will analyse the asymp-
totic behaviour of the function F(x+ s,x+ t) , where F is bivariate mean and x tends
to ∞ . By a bivariate mean we understand a function M : R+×R+ → R+ which satisfy

min(s,t) � M(s,t) � max(s,t).

It follows that M(s,s) = s for all s > 0. Means considered here will be homogeneous
and symmetric.

This paper is a continuation of the previous paper [11] where similar problems
were studied for the arithmetic, quadratic, harmonic, geometric, logarithmic, identric
and some other particular means. Here, we will cover more general parameter means:
power mean, generalized logarithmic, Stolarsky mean and Gini mean. We expect to
obtain asymptotic expansions of the form

F(x+ s,x+ t) = x+
s+ t
2

+
∞

∑
n=2

cn(t,s)x−n+1.

Here, cn are polynomials of two variables of degree n , which depend, of course, also
on the parameters of the involved mean.

Such expansions have many important properties. First, they are introduction for
the similar analysis for general n -variable means. Further, they reveal many important
properties of the means under consideration, for example, the comparison of various
means. In [17], [19]–[22] similar problems were studied.
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Because of the homogeneity property of bivariate means, we have

F(x+ s,x+ t) = xF
(
1+

s
x
,1+

t
x

)
so, the asymptotic expansion is essentially equivalent to the power series expansion of
the function F(1 + s,1 + t) for small values of s and t . It will be shown that it is
sufficient to consider symmetric case F(1− t,1+ t) . In the paper [15] authors consider
expansion of the function F(1,1+ t) , but this is nonsymmetric case and results are not
so clear as in our approach.

The notation will be much simpler with s and t being replaced by variables α and
β , t = α + β and s = α −β . Then

α =
t + s
2

, β =
t − s

2
.

We shall use also

γ = st = α2 −β 2, δ =
s2 + t2

2
= α2 + β 2.

In all examples, the asymptotic expansions will be stated in terms of α and β .
Finally, let us denote

Sn = tn− sn, Tn = 1
2 (sn + tn).

These sequences can be calculated by recursive relations

Sn = 2αSn−1− γSn−2, n � 2,

where S0 = 0 and S1 = 2β , and

Tn = 2αTn−1− γTn−2, n � 2,

where T0 = 1 and T1 = α .
The following lemmas about functional transformations of asymptotic series will

be used later, see e.g. [5] and [14]:

LEMMA 1.1. Let functions f (x) and g(x) have following asymptotic expansions
(a0 �= 0,b0 �= 0 ) as x → ∞:

f (x) ∼
∞

∑
n=0

anx
−n, g(x) ∼

∞

∑
n=0

bnx
−n.

Then asymptotic expansion of their quotient f (x)/g(x) reads as

f (x)
g(x)

∼
∞

∑
n=0

cnx
−n,

where coefficients cn are defined by

cn =
1
b0

(
an−

n

∑
k=1

bkcn−k

)
.
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LEMMA 1.2. Let g(x) be a function with asymptotic expansion, a0 = 1 and

g(x) ∼
∞

∑
n=0

anx
−n.

Then for all real p we have

[g(x)]p ∼
∞

∑
n=0

Pn(p)x−n,

where
P0(p) = 1,

Pn(p) =
1
n

n

∑
k=1

[k(1+ p)−n]akPn−k(p).
(1.1)

2. Generalized logarithmic mean

Let r be a real number. The generalized logarithmic mean is defined for all s, t > 0
by

Lr(s,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
tr+1− sr+1

(r+1)(t− s)

)1/r

, r �= −1,0,

t − s
logt − logs

, r = −1,

1
e

(
tt

ss

)1/(t−s)

, r = 0.

THEOREM 2.1. Generalized logarithmic mean can be expanded into asymptotic
series

Lr(x+ s,x+ t) = x
∞

∑
n=0

cnx
−n

where sequence (cn) is defined by c0 = 1 and

cn =
1
2n

n

∑
k=1

(
k
r
− n

r+1

)(
r+1
k+1

)
Sk+1

β
cn−k. (2.1)

Proof. We can write

Lr(x+ s,x+ t) =
[
(x+ t)r+1− (x+ s)r+1

(r+1)(t− s)

]1/r

= x

[ ∞

∑
k=0

(
r+1
k+1

)
Sk+1

2(r+1)β
x−k
]1/r

.

Now we can apply Lemma 1.2 for the calculation of the power of an asymptotic series.
The result is the procedure given in (2.1). �
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It might seem that the proof of previous theorem is incomplete since we did not
comment the cases r = −1 and r = 0. But there is no need to treat those cases sepa-
rately given that the value of the mean for r = −1 is a limit

L−1(s,t) = lim
r→−1

Lr(s,t)

and also
L0(s,t) = lim

r→0
Lr(s,t).

Coefficients cn from 2.1 behave well for all values of r and therefore by the following
lemma the coefficients in asymptotic expansion of the L−1(x+s,x+t) and L0(x+s,x+
t) can be calculated by taking limits r →−1 and r → 0 in (2.1).

LEMMA 2.2. Let u be a real parameter, R > 0 , and fu : C → C be analytic
functions on {|z| > R} , such that

1. fu(z) = ∑∞
n=0 an(u)z−n , for |z| > R,

2. limu→u0 an(u) = an , for each n ∈ N ,

3. limu→u0 fu(z) = f (z) , for |z| > R,

4. f (z) = ∑∞
n=0 bnz−n , for |z| > R.

Then an = bn .

Proof. Let Γ be a closed Jordan arc in annulus {|z| > R} which surround the
origin. Being analytic function, for the coefficients of the Laurent expansion of fu we
have

an(u) =
1

2π i

∫
Γ

fu(ξ )
ξ n+1 dξ → 1

2π i

∫
Γ

f (ξ )
ξ n+1 dξ = bn.

This proves the lemma. �
Asymptotic expansions for all means mentioned before are in fact expansion into

Laurent series of the corresponding analytic continuation, se we can apply the above
lemma.

The first few coefficients in asymptotic expansion of generalized logarithmic mean
are

c0 = 1,

c1 = α,

c2 = 1
6 (r−1)β 2,

c3 = − 1
6 (r−1)αβ 2,

c4 = − 1
360(r−1)β 2[(2r2 +5r−13)β 2−60α2],

c5 = 1
120(r−1)αβ 2[(2r2 +5r−13)β 2−20α2].
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Taking r = −1 and r = 0 we obtain the asymptotic expansion of logarithmic and
identric mean:

L(x+ s,x+ t) = x+ α − β 2

3x
+

αβ 2

3x2 − β 2(15α2 +4β 2)
45x3 +

αβ 2(5α2 +4β 2)
15x4 ,

I(x+ s,x+ t) = x+ α − β 2

6x
+

αβ 2

6x2 − β 2(60α2 +13β 2)
360x3 +

αβ 2(20α2 +13β 2)
120x4 .

This agrees with expansions obtained in [11].

3. Power mean

The r -th power mean is defined for all s,t > 0 by

Mr(s,t) =

⎧⎪⎨
⎪⎩
(

tr + sr

2

)1/r

, r �= 0,
√

st, r = 0.

The important particular cases of this mean are arithmetic mean A = M1 , quadratic
mean Q = M2 and harmonic mean H = M−1 . Geometric mean G = M0 is obtained as
limit of means Mr for r → 0.

THEOREM 3.1. The power mean has the asymptotic expansion of the form

Mr(x+ s,x+ t) = x
∞

∑
k=0

ckx
−k

where c0 = 1 and

cn =
1
n

n

∑
k=1

[
k

(
1+

1
r

)
−n

](
r
k

)
Tkcn−k.

Proof. We have

Mr(x+ s,x+ t) =
(

(x+ s)r +(x+ t)r

2

)1/r

= x

[ ∞

∑
n=0

(
r
n

)
Tn

xn

]1/r

.

Hence, the asymptotic expansion can be derived using algorithm of Lemma 1.2, as in
the previous theorem. �

The first few coefficients are

c0 = 1,

c1 = α,
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c2 = 1
2 (r−1)β 2,

c3 = − 1
2 (r−1)αβ 2,

c4 = 1
24 (r−1)β 2(12α2 +(3+ r−2r2)β 2),

c5 = − 1
8 (r−1)αβ 2(4α2 +(3+ r−2r2)β 2).

4. Stolarsky mean

The Stolarsky means, also called the extended means, is a class of two-parameter
means introduced by Stolarsky in [23]. Their properties were studied by Leach and
Sholander in [16] and [17] and further by Páles and others.

The extended mean of order p,r is defined for all s,t > 0 by

Ep,r(s,t) =
[
r(t p− sp)
p(tr − sr)

]1/(p−r)

, p �= r, p,r �= 0. (4.1)

It is symmetric both on t and s as well on p and r . Therefore, we may suppose that
s � t and r � p . The excluded cases are obtained by limit procedure:

Er,r(s,t) =
1

e1/r

(
tt

r

ssr

)1/(tr−sr)

, r = p �= 0,

E0,r(s,t) =
[

tr − sr

r(logt − logs)

]1/r

, r �= 0,

E0,0(s,t) =
√

st.

Let us denote

an(q) =
(

q
n+1

)
tn+1− sn+1

q(t− s)
. (4.2)

Then the asymptotic expansion of Stolarsky mean can be obtained by the following
algorithm.

THEOREM 4.1. Let r �= p, r, p �= 0 . The Stolarsky mean has the asymptotic ex-
pansion of the form

Ep,r(x+ s,x+ t) = x
∞

∑
n=0

cnx
−n

where (cn) is obtained by following algorithm, c0 = 1 and

b0 = 1,

bn = an(p)−
n

∑
k=1

ak(r)bn−k, n � 1 (4.3)

cn =
1
n

n

∑
k=1

[
k

(
1+

1
p− r

)
−n

]
bkcn−k, n � 1. (4.4)



ASYMPTOTIC EXPANSIONS OF BIVARIATE PARAMETER MEANS 1231

Proof. The Stolarsky mean can be written as

Ep,r(x+ s,x+ t) = x

[
r((1+ t

x )
p− (1+ s

x )
p)

p((1+ t
x )

r − (1+ s
x )

r)

]1/(p−r)

= x

⎡
⎢⎢⎣

∞
∑

n=1
r
(p

n

)
(tn− sn)x−n

∞
∑

n=1
p
(r
n

)
(tn − sn)x−n

⎤
⎥⎥⎦

1/(p−r)

= x

⎡
⎢⎢⎣

∞
∑

n=0

( p
n+1

) tn+1− sn+1

p(t− s)
x−n

∞
∑

n=0

( r
n+1

) tn+1− sn+1

r(t − s)
x−n

⎤
⎥⎥⎦

1/(p−r)

= x

⎡
⎢⎢⎣

∞
∑

n=0
an(p)x−n

∞
∑

n=0
an(r)x−n

⎤
⎥⎥⎦

1/(p−r)

This expression can be transformed into asymptotic sequence by two steps. In the
first one, coefficients (bn) of the above ratio are calculated using the algorithm in
Lemma 1.1, the procedure is written in (4.3). In the second step, the asymptotic se-
ries of the power of obtained asymptotical expansion is calculated using Lemma 1.2.
The procedure is given in (4.4). �

Although at first sight we can be afraid that this two step procedure will give
complicated coefficients, this is not the case. The coefficients are very nice. Here is the
list of the first few terms.

c0 = 1,

c1 = α,

c2 = 1
6(−3+ p+ r)β 2,

c3 = − 1
6(−3+ p+ r)αβ 2,

c4 = 1
360β 2

[
60(p+ r−3)α2 +(−2(p+ r)(p2 + r2)

+5(p+ r)2 +10(p+ r)−45)β 2
]
,

c5 = − 1
120αβ 2

[
20(p+ r−3)α2 +(−2(p+ r)(p2 + r2)

+5(p+ r)2 +10(p+ r)−45)β 2
]
.

The explicit formula of Stolarsky mean in the special cases when r = p , r = 0
or p = 0 is too complicated to be expanded into asymptotical series, but as in the case
of generalized logarithmic mean, there is no need for any further calculations. In the
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coefficients obtained here there is no ambiguity for these values of parameters and we
can use the list above for any value of r and p .

For example, if r = 0 and p = 1 Stolarsky mean reduces to logarithmic mean
L(s,t) and for r = p = 0 we obtain expansion of geometric mean

G(x+ s,x+ t) =
√

(x+ s)(x+ t)

= x+ α − β 2

2x
+

αβ 2

2
x2 − β 2(4α2 + β 2)

8x3 +
αβ 2(4α2 +3β 2)

8x4 .

5. Gini means

The Gini means are defined for all s,t > 0 by

Gp,r(s,t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
t p + sp

tr + sr

) 1
p−r

, p �= r,

exp

(
sp logs+ t p logt

sp + t p

)
, p = r �= 0,

√
st, p = r = 0.

(5.1)

for parameters p and r . These means were first introduced by C. Gini in 1938. For
some references on Gini means see [2].

Some of the special cases of the Gini means are power mean G0,r = Mr and
Lehmer mean Gr+1,r .

Let us derive an algorithm for asymptotic expansion of the Gini mean. Let

ak(q) =
(

q
k

)
tk + sk

2
.

THEOREM 5.1. Let r �= p and r, p �= 0 . The Gini mean has asymptotic expansion

Gp,r(x+ t,x+ s) = x
∞

∑
n=0

cnx
−n,

where coefficients cn are obtained by the following algorithm:

c0 = 1;

cn =
1
n

n

∑
k=1

[
k

(
1+

1
p− r

)
−n

]
bkcn−k, (5.2)

and

bn = an(p)−
n

∑
k=1

ak(r)bn−k.
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Proof.

Gp,r(x+ t,x+ s) = x

(
(1+ t

x )
p +(1+ s

x )
p

(1+ t
x )

r +(1+ s
x )

r

) 1
p−r

= x

(
∑∞

n=0

(p
n

)
(tn + sn)x−n

∑∞
n=0

(r
n

)
(tn + sn)x−n

) 1
p−r

= x

(
∑∞

n=0 an(p)x−n

∑∞
n=0 an(r)x−n

) 1
p−r

The rest of the proof is same as in Theorem 4.1. �

Using this theorem we get

c0 = 1,

c1 = α,

c2 = 1
2 (p+ r−1)β 2,

c3 = − 1
2(p+ r−1)αβ 2,

c4 = 1
24β 2[12(p+ r−1)α2

+(−3−2p3 + p2(3−2r)+2r+3r2−2r3 + p(2+6r−2r2))β 2],

c5 = 1
8 αβ 2[−4(−1+ p+ r)α2

+(3+2p3−2r−3r2 +2r3 + p2(−3+2r)+2p(−1−3r+ r2))β 2],
...

COROLLARY 5.2. (Lehmer mean) The asymptotic expansion of Lehmer mean

Gr+1,r(s,t) =
tr+1 + sr+1

tr + sr

reads as folows:

Gr+1,r(x+ s,x+ t) = x
∞

∑
n=0

anx
−n

where

c0 = 1,

cn =
1
n

n

∑
k=1

(2k−n)bkcn−k,

bn = an(r+1)−
n

∑
k=1

ak(r)bn−k.
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The first few coefficients are

c0 = 1,

c1 = α,

c2 = rβ 2,

c3 = −rαβ 2,

c4 = 1
3 rβ 2[3α2− (r2−1)β 2],

c5 = rαβ 2[−α2 +(r2−1)β 2],

c6 =
1
15

rβ 2[15α4−30(r2−1)α2β 2 +(2r4−5r2 +3)β 4],

...

6. Comparison of means

In this section, we will establish asymptotic inequalities, including order of in-
equality, between observed means analysing coefficients in their asymptotic expansion.
There are relevant information about asymptotic series and order symbol O in [13]. As
a consequence, we will get a method for obtaining necessary conditions for inequalities
between means.

In the sequel, we shall use the following definition

DEFINITION 6.1. Let F1 and F2 be any two means, and

F1(x+ s,x+ t)−F2(x+ s,x+ t) = ck(t,s)x−k+1 +O(x−k). (6.1)

If ck(s, t) > 0 for all s and t , then we say that mean F1 is asymptotically greater than
mean F2 , and write

F1 � F2.

Of course, this is equivalent to
F2 ≺ F1.

Suppose

F1(x−β ,x+ β )−F2(x−β ,x+ β ) = ck(0,β )x−k+1 +O(x−k)

where ck(0,β ) > for all β > 0. Then

F1(x+ α −β ,x+ α + β )−F2(x+ α −β ,x+ α + β ) = ck(0,β )(x+ α)−k+1 +O(x−k)

= ck(0,β )x−k+1 +O(x−k).

Hence, it is sufficient to observe the case α = 0.
Asymptotical inequalities are necessary condition for the usual inequalities be-

tween means: if F1 � F2 , then F1 � F2 . Namely, for x large enough, the sign of the
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difference F1(x+ s,x+ t)−F2(x+ s,x+ t) is the same as the sign of the first term in its
asymptotic expansion. See [8] for detailed analysis of relation between asymptotic and
true inequalities between means.

In the case α = 0 we have derived:

Lr(x−β ,x+ β ) = x+
(r−1)β 2

6x
− (r−1)(2r2 +5r−13)β 4

360x3 + · · · (6.2)

Mr(x−β ,x+ β ) = x+
(r−1)β 2

2x
− (r−1)(r+1)(2r−3)β 4

24x3 + · · · (6.3)

Ep,r(x−β ,x+ β ) = x+
(p+ r−3)β 2

6x
+

((p+ r−3)(7+11p−2p2− r−2r2)−12(p−1)(p−2))β 4

360x3 + · · ·
(6.4)

Gp,r(x−β ,x+ β ) = x+
(p+ r−1)β 2

2x
+

((p+ r−1)(3+5p−2p2+ r−2r2)−4p(p−1))β 4

2x3 + · · · (6.5)

As explained in [8], other necessary conditions will be derived observing Laurent
series of difference F1(s, 1

s )−F2(s, 1
s ) near s = 0. It is easy to derive the following

expansions:

Gp,r
(
s, 1

s

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s−1
(
1+ 1

p−r s
2p− 1

p−r s
2r + · · ·

)
, 0 < p < r,

s
p+r
p−r

(
1+ 1

p−r s
−2p− 1

p−r s
2r + · · ·

)
, p < 0 < r,

s
(
1− 1

p−r s
−2r + 1

p−r s
−2p + · · ·

)
, p < r < 0.

(6.6)

Ep,r
(
s, 1

s

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
r
p

) 1
p−r

s−1
(
1− 1

p−r s
2p + 1

p−r s
2r + · · ·

)
, 0 < p < r,(

r
−p

) 1
p−r

s
p+r
p−r

(
1− 1

p−r s
−2p + 1

p−r s
2r + · · ·

)
, p < 0 < r,(

r
p

) 1
p−r

s
(
1+ 1

p−r s
−2r − 1

p−r s
−2p + · · ·

)
, p < r < 0.

(6.7)

Lq
(
s, 1

s

)
=

⎧⎪⎨
⎪⎩
(

1
q+1

) 1
q
s−1
(
1− 1

q s2(q+1) + · · ·
)(

1+ 1
q s2 + · · ·

)
, 0 < q+1,(

− 1
q+1

) 1
q
s

q+2
q

(
1− 1

qs−2(q+1) + · · ·
)(

1+ 1
q s2 + · · ·

)
, q+1 < 0.

(6.8)
First, we compare two Gini means.
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6.1. Gini means

We have

Gp,r(x−β ,x+ β )−Gu,v(x−β ,x+ β ) =
(p+ r−u− v)β 2

2
x−1 +O(x−3)

Thus, we have asymptotic inequality of order O(x−1)

Gp,r � Gu,v, for p+ r > u+ v. (6.9)

Let p+ r = u+ v . Then

Gp,r(x−β ,x+ β )−Gp+r−v,v(x−β ,x+ β ) =
(p+ r)(p− v)(r− v)β 4

6x3 +O(x−5),

and we conclude

Gp,r � Gp+r−v,v, for (p+ r)(p− v)(r− v) > 0.

and the approximation is of order O(x−3) .
We could go further by choosing parameters such that coefficient by x−3 vanishes,

but in this case that leads to identities

G−r,r −G−v,v = 0,

Gv,r −Gr,v = 0,

Gp,v −Gp,v = 0.

Suppose Gp,r � Gu,v . Without loss of generality we may assume that p < r and
u < v . If p,r,u,v > 0 then

s−1
(

1+
1

p− r
s2p + · · ·

)
� s−1

(
1+

1
u− v

s2u + · · ·
)

and since s is close to 0 it follows p � u . Similarly, if p,r,u,v < 0 we obtain r � v .
Otherwise, it is necessary that leading power in Taylor expansion of Gp,r be greater
than leading power in Taylor expansion of Gu,v . Furthermore, in each of three cases that

power equals −|x|−|y|
x−y where x,y stands for either p,r or u,v . Hence, |p|−|r|

p−r � |u|−|v|
u−v .

We have just proved the necessity of conditions given in the following theorem
from [22].

THEOREM A. Let p,r,u,v be arbitrary real numbers with p �= r and u �= v. Then
inequality

Gp,r(s,t) � Gu,v(s,t)

holds for all positive s and t if an only if

p+ r � u+ v (6.10)
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and
m(p,r) � m(u,v), (6.11)

where

m(x,y) =

⎧⎨
⎩

min(x,y) if 0 � min(p,r,u,v),
|x|−|y|
x−y if min(p,r,u,v) < 0 < max(p,r,u,v),

max(x,y) if max(p,r,u,v) � 0.

6.2. Gini mean and power mean.

Although power mean is one of Gini means, we will compare those two means
separately.

Gp,r(x−β ,x+ β )−Mq(x−β ,x+ β ) =
(−q+ p+ r)β 2

2x
+O(x−3).

Thus
Gp,r � Mq, for p+ r > q. (6.12)

If q = p+ r , we have

Gp,r(x−β ,x+ β )−Mp+r(x−β ,x+ β ) =
pr(p+ r)β 4

6x3 +O(x−5).

And if pr(p+ r) = 0 then Gp,r −Mp+r = 0.
Similarly as in the case of two Gini means, we can compare Laurent series (6.6)

with Laurent series of power mean Mq . We give the necessary conditions in the fol-
lowing theorem.

THEOREM 6.2. Let p,q,r be real parameters, with p �= r . If the inequality

Mq(s,t) � Gp,r(s,t)

holds for all s, t > 0 , then the following conditions must be satisfied:

1. q � p+ r ,

2. 0 < p < r or q < 0 , p < 0 < r .

Notice that these conditions are also the sufficient ones which we see using Theo-
rem A with Mq = G0,q .

6.3. Gini mean and logarithmic mean.

Gp,r(x−β ,x+ β )−Lq(x−β ,x+ β ) =
(3p+3r−q−2)β 2

6x
+O(x−3)
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We have
Gp,r � Lq, for p+ r > 1

3 (q+2). (6.13)

If p+ r = 1
3 (q+2) , then

G(q+2−3r)/3,r(x−β ,x+ β )−Lq(x−β ,x+ β ) =

=
(q+2)

(−1−q+2q2+15(2+q)r−45r2
)

β 4

810x3 +O(x−5).

Therefore, in order to Gp,r � Lq be true, we must have the following

(q+2)
(−1−q+2q2+15(2+q)r−45r2)� 0.

Let
(q+2)

(−1−q+2q2+15(2+q)r−45r2)= 0.

In that case either q = −2 which gives

G−r,r −L−2 = 0,

or

r =
1
30

(
10+5q±

√
5
√

16+16q+13q2
)

wherefrom it follows

G(q+2−3r)/3,r(x−β ,x+ β )−Lq(x−β ,x+ β ) =

= −4(q−1)(q+2)(2q+1)(17q2+59q+59)β 6

1913625x5 +O(x−7).

Thus,
G(q+2−3r)/3,r ≺ Lq, for (q−1)(q+2)(2q+1)> 0.

If also
(q−1)(q+2)(2q+1)= 0,

then
G(q+2−3r)/3,r−Lq = 0.

Now we present the main necessary conditions for comparison of Gini and gener-
alized logarithmic mean.

THEOREM 6.3. Let p,r,q be real parameters, p �= r , q �= −1,0 . If

Gp,r(s,t) � Lq(s,t) (6.14)

holds for all s, t > 0 then following conditions must be satisfied:

1. p+ r � 1
3(q+2) ,

2. 0 < p < r or p < 0 < r , q+1 < 0 , p+r
p−r � q+2

q .
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If p+ r = 1
3 (q+2) , then

Proof. First condition follows from asymptotic inequality (6.13). Second neces-
sary condition follows from expansions (6.6) and (6.8). Namely, if 0 < p < r and
q+1 > 0 then leading term in series expansion of Gp,r

(
s, 1

s

)
is s−1 and leading term of

Lq
(
s, 1

s

)
is
(

1
q+1

)1/q
so it must be 1 �

(
1

q+1

)1/q
which is always true for q+1 > 0.

If 0 < p < r and q+1< 0 then Gini mean is greater than generalized logarithmic mean
only if leading power of the first one is smaller than leading power of second one, that
is −1 � (q+ 2)/q which is also always true for q+ 1 < 0. In the same way we con-
clude that in case of p < 0 < r it must be q+1 < 0 and (p+ r)/(p− r) � (q+2)/q .
Similarly, we see that the p < r < 0 is not possible. �

6.4. Power mean and logarithmic mean.

Mr(x−β ,x+ β )−Lq(x−β ,x+ β ) =
(3r−q−2)β 2

6x
+O(x−3).

We have
Mr � Lq, for 3r > q+2.

Let 3r = q+2. Then

Mr(x−β ,x+ β )−L3r−2(x−β ,x+ β ) =
r(r−1)(2r−1)β 4

30x3 +O(x−5)

and we have
Mr � L3r−2, for r(r−1)(2r−1) > 0.

Let
r(r−1)(2r−1) = 0.

It can easily be seen that

M0(x−β ,x+ β )−L−2(x−β ,x+ β ) =
√

x2 −β 2−
√

x2 −β 2 = 0,

M1(x−β ,x+ β )−L1(x−β ,x+ β ) = x− x = 0

and

M1/2(x−β ,x+β )−L−1/2(x−β ,x+β ) =
1
2

(
x+
√

x2 −β 2
)
− β 2

2x−2
√

x2−β 2
= 0.

Stolarsky in [24] proved the following theorem:

THEOREM B. If −1 < a < 1
2 or 2 < a then

La−1 � M(a+1)/3.

If a < −1 or 1
2 < a < 2 , then reversed inequality holds.

This coincides with our observation. Indeed, for q = a−1 and r = a+1
3 we have

3r = q+2, and the condition −1< a < 1
2 or 2 < a is equivalent to r(r−1)(2r−1)> 0.
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6.5. Stolarsky mean.

Ep,r(x−β ,x+ β )−Eu,v(x−β ,x+ β ) =
(p+ r−u− v)β 2

6x
+O(x−3)

The following asymptotic inequalities of order O(x−1) and O(x−3) are valid

Ep,r � Eu,v for p+ r > u+ v, (6.15)

and

Ep,r � Eu,v for (p+ r)(p− v)(r− v) > 0,

since

Ep,r(x−β ,x+ β )−Ep+r−v,v(x−β ,x+ β ) =
(p+ r)(p− v)(r− v)β 4

90x3 +O(x−5).

In [21] Páles proved the following theorem.

THEOREM C. Let p,r,u,v be arbitrary with p �= r and u �= w. Then

Ep,r(s,t) � Eu,v(s,t)

is satisfied for all s, t > 0 if and only if

r+ s � u+ v (6.16)

and

e(r,s) � e(u,v), (6.17)

where

e(x,y) =
{ x−y

log(x/y) , xy < 0,x �= y,

0, xy = 0,

if 0 � min(p,r,u,v) or max(p,r,u,v) � 0 , and

e(x,y) =
|x|− |y|
x− y

for x �= y

if min(p,r,u,v) < 0 < max(p,r,u,v) .

Note that (6.16) is a consequence of asymptotic inequality (6.15) and (6.17) fol-
lows from (6.7) as in the case of comparison of two Gini means.
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6.6. Gini mean and Stolarsky mean.

Gp,r(x−β ,x+ β )−Eu,v(x−β ,x+ β ) =
(3p+3r−u− v)β 2

6x
+O(x−3)

We have
Gp,r � Eu,v, for 3p+3r > u+ v.

Let 3p+3r = u+ v . Then we have

Gp,r(x−β ,x+ β )−E3p+3r−v,v(x−β ,x+ β ) =

=
(p+ r)(2p2 +9pr+2r2−3pv−3rv+ v2)β 4

30x3 +O(x−5).

The following asymptotic inequality of order O(x−3) holds

Gp,r � E3p+3r−v,v, for (p+ r)(2p2 +9pr+2r2−3pv−3rv+ v2) > 0.

Let
(p+ r)(2p2 +9pr+2r2−3pv−3rv+ v2).

If p+ r = 0, then

G−r,r(x−β ,x+ β )−E−v,v(x−β ,x+ β ) = 0.

If
2p2 +9pr+2r2−3pv−3rv+ v2 = 0,

or equivalent

v =
1
2

(
3(p+ r)±

√
p2 −18pr+ r2

)
,

then

Gp,r(x−β ,x+ β )−E3p+3r−v,v(x−β ,x+ β ) =

=
4pr(p+ r)

(
3p2 +5pr+3r2

)
β 6

315x5 +O(x−7).

Now we want to obtain even better approximation by putting

pr(p+ r)
(
3p2 +5pr+3r2)= 0.

We have the following possibilities

p = 0,v = r; p = 0,v = 2r; r = 0,v = p; r = 0,v = 2p; p+ r = 0

which all give Gp,r(x−β ,x+ β )−E3p+3r−v,v(x−β ,x+ β ) = 0.
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In [19] was shown that Ep,r(s,t) < Gp,r(s,t) for all s,t > 0, t �= s , if and only if
p+ r > 0. In that paper were also given sufficient conditions for inequality

Eu,v � Gp,r

which are

min(u,v) � min(p,r), max(u,v) � max(p,r) and p+ r � 0.

In [7] authors gave the necessary conditions for comparison of Gini and Stolarsky mean
with different parameters as follows.

THEOREM D. Suppose that the inequality

Gp,r(s,t) � Eu,v(s,t).

holds for any positive s,t . Then

1. 3(p+ r) � u+ v

2. min(p,r) � 0 and if min(p,r) = 0 < max(p,r) then max(p,r) < log2 · l(u,v) ,

3. μ(p,r) � μ(u,v) ,

where

l(u,v) =

⎧⎪⎨
⎪⎩

u−v
log(u/v) , 0 < uv,u �= v,

u, 0 < uv,u = v,

0, otherwise,

and

μ(u,v) =

{ |u|−|v|
u−v , u �= v,

sgn(u), u = v.

These conditions can be obtained analogously as in the subsections 6.1 and 6.5.

6.7. Power mean and Stolarsky mean.

The necessary condition for comparison of these two means is as follows:

THEOREM 6.4. Let p,r,q be real parameters. If

Mq(s,t) � Ep,r(s,t) (6.18)

holds for all s, t > 0 then it is necessarily 3q� p+r and one of the following conditions
must be satisfied:

1. if 0 < q, 0 < p < r or q < 0 , p < r < 0 then q � log2 r−p
log r

p
,

2. q > 0 , 0 < p < r or q < 0 , p < 0 < r .

The proof follows from the known asymptotic expansions and Laurent series of
considered means. By observing Theorem C we notice that these conditions are also
sufficient for (6.18) to hold, since Mq = Eq,2q .
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6.8. Stolarsky mean and logarithmic mean.

Ep,r(x−β ,x+ β )−Lq(x−β ,x+ β ) =
(p+ r−q−2)β 2

6x
+O(x−3).

We have
Ep,r � Lq, for p+ r > q+2.

Let p+ r = q+2.

Ep,r(x−β ,x+ β )−Lp+r−2(x−β ,x+ β ) =
(p−1)(r−1)(p+ r)β 4

90x3 +O(x−5).

Then
Ep,r � Lq, for (p−1)(r−1)(p+ r) > 0.

THEOREM 6.5. Let p,r,q be real parameters, p �= r , p,r �= 0 , q �= −1,0 . If the
inequality

Ep,r(s,t) � Lq(s,t) (6.19)

holds for all s, t > 0 then
p+ r > q+2 (6.20)

and one of the following conditions must be satisfied

1. 0 < p < r , q+1 > 0 ,
(

r
p

) 1
p−r �

(
1

q+1

) 1
q
,

2. 0 < p < r , q+1 < 0 ,

3. p < 0 < r , q+1 < 0 , p+r
p−r � q+2

q .

Proof of this theorem is the same as the proof of Theorem 6.3.

REMARK 6.6. Asymptotic expansions are also convenient for finding an inter-
section of different classes of parameter means. For example, equating coefficients in
asymptotic expansion of Gini and Stolarsky mean we obtained parameters for which
those means can be identical. That problem was also studied in [15] for Stolarsky and
Lehmer mean and in [1] for Stolarsky and Gini means.
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