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CONCENTRATION–COMPACTNESS PRINCIPLE FOR GENERALIZED

MOSER–TRUDINGER INEQUALITIES: CHARACTERIZATION

OF THE NON–COMPACTNESS IN THE RADIAL CASE

ROBERT ČERNÝ

Abstract. Let B(R)⊂R
n , n � 2 , be an open ball. By a result from [1], the Moser functional with

the borderline exponent from the Moser inequality fails to be sequentially weakly continuous on
the set of radial functions from the unit ball in W 1,n

0 (B(R)) only in the exceptional case of
sequences acting like a concentrating Moser sequence (in particular, these sequences are weakly
converging to zero).

We extend this result to the case of a nontrivial weak limit and the Moser functional with
the borderline exponent from the Concentration-Compactness Alternative. The same result is
obtained for the Orlicz-Sobolev space W0Ln logα L(B(R)) with α < n−1 . We also consider the
case of Orlicz-Sobolev spaces embedded into multiple exponential spaces.
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