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CONCENTRATION–COMPACTNESS PRINCIPLE FOR GENERALIZED

MOSER–TRUDINGER INEQUALITIES: CHARACTERIZATION

OF THE NON–COMPACTNESS IN THE RADIAL CASE

ROBERT ČERNÝ

(Communicated by B. Opic)

Abstract. Let B(R)⊂R
n , n � 2 , be an open ball. By a result from [1], the Moser functional with

the borderline exponent from the Moser inequality fails to be sequentially weakly continuous on
the set of radial functions from the unit ball in W 1,n

0 (B(R)) only in the exceptional case of
sequences acting like a concentrating Moser sequence (in particular, these sequences are weakly
converging to zero).

We extend this result to the case of a nontrivial weak limit and the Moser functional with
the borderline exponent from the Concentration-Compactness Alternative. The same result is
obtained for the Orlicz-Sobolev space W0Ln logα L(B(R)) with α < n−1 . We also consider the
case of Orlicz-Sobolev spaces embedded into multiple exponential spaces.

1. Introduction

Throughout the paper, Ω is a bounded domain in R
n , n � 2, ωn−1 denotes the

(n−1)-dimensional Hausdorff measure of the surface of the unit sphere in R
n and the

n -dimensional Lebesgue measure is denoted by L n . By ∇u we denote the generalized
gradient of u and u# is the Schwarz symmetrization of u (the definition is given in
Section 2). The space W 1,n

0 (Ω) or W0LΦ(Ω) (where Φ is a Young function) stands
for the closure of C∞

0 (Ω) in W 1,n(Ω) or WLΦ(Ω) , respectively. We use the standard
notation n′ = n

n−1 .

For functions from W 1,n
0 (Ω) the famous Moser-Trudinger inequality [21] concern-

ing a classical embedding theorem by Trudinger [25] states that

sup
||∇u||Ln(Ω)�1

∫
Ω

exp(K|u(x)|n′)dx

⎧⎪⎨
⎪⎩

� C(n,K,L n(Ω)) when K � nω
1

n−1
n−1

= ∞ when K > nω
1

n−1
n−1 .

(1.1)
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The proof in the case of K > nω
1

n−1
n−1 easily follows from the properties of the Moser

functions m̃t ∈W 1,n
0 (B(R)) , t ∈ (0,1) , defined by

m̃t(x) =

⎧⎪⎨
⎪⎩

ω− 1
n

n−1 log
1
n′ ( 1

t ) for |x| ∈ [0,tR]

ω− 1
n

n−1 log−
1
n ( 1

t ) log( R
|x| ) for |x| ∈ [tR,R].

(1.2)

From (1.1) and the Vitali Convergence Theorem (see e.g. [16, page 187]), it fol-
lows that if p < 1, then the functional

Jp(u) =
∫

Ω
exp(nω

1
n−1
n−1 p|u(x)|n′)dx (1.3)

is sequentially weakly continuous on the unit ball in W 1,n
0 (Ω) . That is,

uk ⇀ u and ||∇uk||Ln(Ω) � 1 =⇒ Jp(uk) → Jp(u).

If p � 1, then it is well-known and easy to check that the functional Jp is generally
not sequentially weakly continuous on the unit ball in W 1,n

0 (Ω) . Indeed, if p > 1 and
Ω contains the origin, we fix R > 0 such that B(R) ⊂ Ω and we obtain Jp(m̃t) → ∞
as t → 0, while for every sequence tk ⊂ (0,1) , such that tk → 0, we have m̃tk ⇀ 0
and Jp(0) = L n(Ω) < ∞ (in the case of 0 /∈ Ω , we use translated Moser functions).
If p = 1, we fix R > 0, we set Ω = B(R) and it is easy to check that there are C0 >
L n(B(R)) = J1(0) and t0 ∈ (0,1) such that J1(m̃t) � C0 for every t ∈ (0,t0) .

In recent paper [1] the following characterization of the sequential weak continuity
of the functional Jp concerning the case of p = 1 and uk ⇀ 0, where uk are radial
functions from W 1,n

0 (B(R)) , is given.

THEOREM 1.1. Let n ∈ N , n � 2 and R > 0 . Suppose that {uk} ⊂W 1,n
0 (B(R))

are radial functions such that ||∇uk||Ln(B(R)) � 1 and uk ⇀ u in W 1,n
0 (B(R)) . If

limsup
k→∞

J1(uk) > J1(u),

then there are {ukm} ⊂ {uk} and {tm} ⊂ (0,1) , tm → 0 , such that

ukm − m̃tm
m→∞→ 0 in W 1,n

0 (B(R)).

In fact, Theorem 1.1 gives some information only in the case of u = 0 a.e. Oth-
erwise (i.e. when u is nontrivial), Theorem 1.2 below and the Vitali Convergence
Theorem imply limk→∞ J1(uk) = J1(u) .

Let us note that, in paper [1], a more difficult version of Theorem 1.1 concerning
the case of non-radial functions on an open set Ω ⊂ R

2 is given. In that case, one has
to consider a translated Moser sequence. It is an open problem whether some analogue
of the result as Theorem 1.1 for non-radial functions in the case of n � 2 holds.
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If p > 1 and uk ⇀ u (we do not mind whether u is trivial or not), then there
are many sequences distant from {m̃tk} such that Jp(uk) → ∞ while we always have
Jp(u) < ∞ by the Trudinger embedding (for example, fix any ρ ∈ [1, p) and consider

uk = ρ− n−1
n m̃tk , with tk → 0, and observe that uk ⇀ 0 in W 1,n

0 (B(R))).
A natural question to ask is what happens if the limit function u in Theorem 1.1

is nontrivial (which means in this context that u is a nonzero function). The aim of
this paper is to answer this question in the radial case. The result is the following. If
0 � ||∇u||Ln(B(R)) < 1, then there is P > 1 depending on ||∇u||Ln(B(R)) such that the
functional JP behaves in a similar way as the one in Theorem 1.1, while for every
p < P we have Jp(uk) → Jp(u) and for every p > P we generally do not have that
{Jp(uk)} is a bounded sequence. The constant P is the borderline exponent from the
Concentration-Compactness Alternative by Lions [19].

We are going to prove our result in higher generality. We replace the Sobolev
space W 1,n

0 (B(R)) by more general Orlicz-Sobolev spaces embedded into exponential
and multiple exponential Orlicz spaces.

For the convenience of the reader we first focus on the case of W 1,n
0 (B(R)) , then

we deal with the general case of W0LΦ(B(R)) .

Sobolev case

An often used improvement of the Moser-Trudinger inequality is the following
result from [5] and [19, Theorem I.6 and Remark I.18] which concerns one of the cases
in the Concentration-Compactness Alternative for the Moser-Trudinger inequality.

THEOREM 1.2. Let n ∈ N , n � 2 and let Ω ⊂ R
n be a bounded domain. Let

{uk} ⊂W 1,n
0 (Ω) be a sequence satisfying

||∇uk||Ln(Ω) � 1, uk ⇀ u in W 1,n
0 (Ω) and uk → u a.e. in Ω

for some u ∈W 1,n
0 (Ω) . Let us set

θ = ||∇u||nLn(Ω) ∈ [0,1] and P = (1−θ )−
1

n−1 (1.4)

(where we read P = ∞ if θ = 1 ). Then for every p < P we have

∫
Ω

exp(nω
1

n−1
n−1 p|uk(x)|

n
n−1 )dx � C where C is independent of k .

In the version of Theorem 1.1 with a nontrivial weak limit, it is natural to work with
the functional Jp where p = P . Indeed, if p < P , we can again use the Vitali Con-
vergence Theorem. Furthermore, it is shown in [5], that if we take a suitable func-
tion u ∈W 1,n

0 (B(3R)) and if we set

uk = u+(1−θ )
1
n m̃ 1

k
,
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then we have ||∇uk||Ln(B(3R)) = 1, uk ⇀ u and Jp(uk) → ∞ for every p > P . Hence
for p > P , we can again construct many sequences such that uk ⇀ u and Jp(uk) → ∞ ,
while Jp(u) < ∞ .

Now, let us state our results.

THEOREM 1.3. Let n ∈ N , n � 2 and R > 0 . Let {uk} ⊂ W 1,n
0 (B(R)) be ra-

dial functions such that ||∇uk||Ln(B(R)) � 1 and uk ⇀ u in W 1,n
0 (B(R)) . Let θ ∈ [0,1]

and P ∈ [1,∞] be defined by (1.4). If θ < 1 and

limsup
k→∞

JP(uk) > JP(u),

then there are {ukm} ⊂ {uk} and {tm} ⊂ (0,1) , tm → 0 , such that

ukm −u− (1−θ )
1
n m̃tm

m→∞→ 0 in W 1,n
0 (B(R)).

We are also able to prove the following result which is a bit stronger, since we do
not suppose that uk are radial. On the other hand, we obtain the assertion only for the
symmetrized functions (ukm −u)# in the place of uk−u . However, the result in terms of
(ukm −u)# instead of u#

km
−u# seems to be more suitable for possible future ambitions

to obtain a version of Theorem 1.3 without the assumption concerning the symmetry.

THEOREM 1.4. Let n ∈ N , n � 2 and let Ω ⊂R
n be a bounded domain. Let R >

0 be such that L n(Ω) = L n(B(R)) . Let {uk}⊂W 1,n
0 (Ω) be such that ||∇uk||Ln(Ω) � 1

and uk ⇀ u in W 1,n
0 (Ω) . Let θ ∈ [0,1] and P∈ [1,∞] be defined by (1.4). If θ < 1 and

limsup
k→∞

JP(uk) > JP(u),

then there are {ukm} ⊂ {uk} and {tm} ⊂ (0,1) , tm → 0 , such that

(ukm −u)#− (1−θ )
1
n m̃tm

m→∞→ 0 in W 1,n
0 (B(R)).

Both previous theorems are contained in our general result concerning the Orlicz-
Sobolev spaces embedded into exponential and multiple exponential spaces (see Theo-
rem 1.7 below).

Orlicz-Sobolev case

First, let us recall some well-known results concerning embeddings into exponen-
tial and multiple exponential spaces. If � ∈ N and α < n−1, we set

γ =
n

n−1−α
> 0, B = 1− α

n−1
=

n
(n−1)γ

> 0

and K�,n,α =

⎧⎨
⎩

B
1
B nω

γ
n
n−1 for � = 1

B
1
B ω

γ
n
n−1 for � � 2.

(1.5)
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The Sobolev-type space W0Ln logα L(Ω) , built on the Zygmund space Ln logα L(Ω) ,
is continuously embedded into the Orlicz space with the Young function that behaves
like exp(tγ ) for large t (see [17] and [10]). Moreover it is shown in [10] (see also
[8] and [11]) that in the limiting case α = n− 1 we have the embedding into a dou-
ble exponential space, i.e. the space W0Ln logn−1 L logα logL(Ω) , α < n− 1, is con-
tinuously embedded into the Orlicz space with the Young function that behaves like
exp(exp(tγ )) for large t . Further, in the limiting case α = n− 1 we have the embed-
ding into a triple exponential space and so on. The borderline case is always α = n−1
and for α > n−1 we have the embedding into L∞(Ω) . It is well-known that the Zyg-
mund space Ln logα L(Ω) coincides with the Orlicz space LΦ(Ω) , where

lim
t→∞

Φ(t)
tn logα(t)

= 1,

the space Ln logn−1 L logα logL(Ω) coincides with LΦ(Ω) where

lim
t→∞

Φ(t)
tn logn−1(t) logα(log(t))

= 1,

and so on. For other results concerning these spaces and their precise definitions we
refer the reader to [11], [12], [13], [14], [15] and [22].

The following notation is useful when dealing with the multiple logarithmic and
multiple exponential spaces. Let us write

log[1](t) = log(t) and log[ j](t) = log(log[ j−1](t)) for j � 2, j ∈ N,

and

exp[1](t) = exp(t) and exp[ j](t) = exp(exp[ j−1](t)) for j � 2, j ∈ N.

Let � ∈ N and α < n− 1. Then we have the above mentioned embedding results for
any Young function Φ satisfying

lim
t→∞

Φ(t)

tn
(

∏�−1
j=1 logn−1

[ j] (t)
)

logα
[�](t)

= 1 (1.6)

(for � = 1 we read (1.6) as limt→∞
Φ(t)

tn logα
[1](t)

= 1). As Ω is bounded, all Young functions

satisfying (1.6) give us the same Orlicz-Sobolev space.
Now, let us recall the generalized Moser-Trudinger inequality.

THEOREM 1.5. Let K � 0 , � ∈ N , n ∈ N , n � 2 , α < n−1 and let Ω ⊂ R
n be

a bounded domain. Let Φ be a Young function satisfying (1.6).
(i) If u ∈W0LΦ(Ω) , then

∫
Ω

exp[�]
(
K|u(x)|γ)dx < ∞.
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(ii) If K < K�,n,α , then

sup
u∈W0LΦ(Ω),||Φ(∇u)||L1(Ω)�1

∫
Ω

exp[�]
(
K|u(x)|γ)dx � C(�,n,α,Φ,L n(Ω),K).

(iii) If K > K�,n,α , then

sup
u∈W0LΦ(Ω),||Φ(∇u)||L1(Ω)�1

∫
Ω

exp[�]
(
K|u(x)|γ)dx = ∞.

The first assertion follows from [10, Remarks 3.11(iv)]. The remaining two asser-
tions follow from [18, Theorem 1.1 and Theorem 1.2] (cases � = 1 and � = 2) and [7,
Theorem 1.1 and Theorem 1.2] (case � � 3). It is also shown in [18] and [7] that if
K = K�,n,α , then the finiteness of the supremum depends on the choice of Φ .

Now, let us recall the result from [4] concerning the improvement of the Moser-
Trudinger inequality in the case of a nontrivial weak limit.

THEOREM 1.6. Let �∈N , n∈N , n � 2 , α < n−1 and let Ω⊂R
n be a bounded

domain. Let Φ be a Young function satisfying (1.6). Let {uk} ⊂ W0LΦ(Ω) be a se-
quence satisfying

||Φ(|∇uk|)||L1(Ω) � 1, uk ⇀ u in W0L
Φ(Ω) and uk → u a.e. in Ω

for some u ∈W0LΦ(Ω) . Then for every

p < P :=
(
1−||Φ(|∇u|)||L1(Ω)

)− γ
n

(where we define P = ∞ if ||Φ(|∇u|)||L1(Ω) = 1 ) we have∫
Ω

exp[�](K�,n,α p|uk(x)|γ )dx � C where C is independent of k .

See [6] and [3] for the full statement of the Concentration-Compactness Principle con-
cerning the spaces W0LΦ(Ω) with Φ satisfying (1.6).

In view of Theorem 1.6 it is natural to extend the definition of the functional Jp

from (1.3) to

Jp(u) =
∫

Ω
exp[�](K�,n,α p|uk(x)|γ )dx.

Next, we define the functions plying the role of the Moser functions in the Orlicz-
Sobolev setting. First, let us fix L > 1 such that

log[�](L) is well defined and positive.

We set for every t ∈ (0, 1
L )

mt(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B
1−n
n ω− 1

n
n−1 log

1
γ
[�](

1
t ) for |x| ∈ [0,tR]

B
1−n
n ω− 1

n
n−1 log

1
γ −B

[�] ( 1
t ) logB

[�](
R
|x| ) for |x| ∈ [tR, R

L ]

( L
L−1 − L

L−1
|x|
R )B

1−n
n ω− 1

n
n−1 log

1
γ −B

[�] ( 1
t ) logB

[�](L) for |x| ∈ [R
L ,R].

(1.7)
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Now, we introduce two conditions on the Young function Φ (satisfying (1.6)) that guar-
antee the uniform convexity of the space W0LΦ(Ω) equipped with the Luxemburg norm
corresponding to Φ . These conditions are

for every ε > 0 there are kε > 1 and tε > 0 such that

Φ′((1+ ε)t)
Φ′(t)

� kε for every t � tε
(1.8)

and
Φ is strictly convex. (1.9)

By the criterion from [23, Theorem 10 in section 7.2], the uniform convexity follows
from (1.8), (1.9) and the Δ2 -condition. It can be easily checked that the Δ2 -condition
follows from (1.6). Notice that the above criterion can be also applied to the uniform
convexity of the Luxemburg norm corresponding to the Young function β Φ , with arbi-
trary β > 0.

Now, we can state our main result.

THEOREM 1.7. Let �∈N , n∈N , n � 2 , α < n−1 and let Ω⊂R
n be a bounded

domain. Let R > 0 be such that L n(Ω) = L n(B(R)) . Let Φ be a Young function
satisfying (1.6), (1.8) and (1.9). Let {uk} ⊂W0LΦ(Ω) be a sequence satisfying

∫
Ω

Φ(|∇uk(x)|)dx � 1 and uk ⇀ u in W0L
Φ(Ω)

for some u ∈W0LΦ(Ω) . Let us set

θ :=
∫

Ω
Φ(|∇u(x)|)dx ∈ [0,1], ξ :=

∫
B(R)

Φ(|∇u#(x)|)dx ∈ [0,1],

Pθ = (1−θ )−
γ
n ∈ [1,∞] and Pξ = (1− ξ )−

γ
n ∈ [1,∞].

(i) If θ < 1 and limsupk→∞ JPθ (uk) > JPθ (u) , then there are {ukm} ⊂ {uk} and {tm} ⊂
(0,1) , tm → 0 , such that

(ukm −u)#− (1−θ )
1
n mtm

m→∞→ 0 in W0L
Φ(B(R)). (1.10)

(ii) If ξ < 1 and limsupk→∞ JPξ (uk) > JPξ (u) , then there are {ukm}⊂ {uk} and {tm} ⊂
(0,1) , tm → 0 , such that

u#
km
−u#− (1− ξ )

1
n mtm

m→∞→ 0 in W0L
Φ(B(R)). (1.11)

(iii) In the special case of u = 0 a.e. (hence θ = ξ = 0 ), we have Pθ = Pξ = 1 , (1.10)
and (1.11) read

u#
km
−mtm

m→∞→ 0 in W0L
Φ(B(R))

and we do not need to assume (1.8) and (1.9).
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Notice that since u and u# are equidistributed (and similarly for uk and u#
k ), we can

read the condition JPξ (uk) → JPξ (u) also as JPξ (u#
k) → JPξ (u#) .

Theorem 1.7 implies Theorems 1.3 and 1.4. Indeed, in the case of radial functions,
we have θ = ξ . Next, for α = 0, we have B = 1. Thus, we observe that mt = m̃t

in B(R
L ) .

Furthermore, we have log−
1
n ( 1

t ) → 0 as t → 0 and thus it is easy to check that

||∇mt ||Ln(B(R)\B( R
L ))

t→0→ 0 and ||∇m̃t ||Ln(B(R)\B( R
L ))

t→0→ 0.

Hence we obtain
mtm − m̃tm

m→∞→ 0 in W 1,n
0 (B(R)) (1.12)

and thus Theorems 1.3 and 1.4 follow from Theorem 1.7.

REMARK 1.1. For every � ∈ N , n � 2, α < n−1, there exists a Young function
satisfying conditions (1.6), (1.8) and (1.9). For example, we can consider a Young
function Φ0 satisfying

Φ0 is strictly convex,

Φ0(t) =

⎧⎨
⎩

tn for t ∈ (0,t0)

tn
(

∏�−1
j=1 logn−1

[ j] (t)
)

logα
[�](t) for t ∈ (t1,∞)

(1.13)

for suitably chosen 0 < t0 < t1 . The function Φ0 obviously satisfies (1.6) and (1.9).
The proof that Φ0 satisfies (1.8) is given in Section 3.

The paper is organized as follows. In Preliminaries we recall several basic facts
concerning Orlicz-Sobolev spaces. In Section 3 we give some notes concerning the
uniform convexity of the spaces W 1,n

0 (Ω) and W0LΦ(Ω) .
For the convenience of the reader interested in the Sobolev case only, we give

simple proofs of Theorems 1.3 and 1.4 in Section 4. Let us also note that in Section 4
we do not use any results from Preliminaries.

The rest of the paper (Sections 5 and 6) is devoted to the more general Orlicz-
Sobolev case. In Section 5 we study properties of the Moser-type functions defined
in (1.7). The proof of Theorem 1.7 is given in the sixth section.

Since Theorems 1.3 and 1.4 follow from Theorem 1.7 (see (1.12)), the reader
interested in the Orlicz-Sobolev case may skip Section 4. In fact, in the Orlicz-Sobolev
case we use the same strategy as in the Sobolev case, but we have to overcome several
technical difficulties. These difficulties are due to the fact that several phenomenons and
constants are related to the Luxemburg norm, while others are related to the modular. In
the Sobolev case, the modular is just the n -th power of the norm and thus passing from
one to another is easy. In the Orlicz-Sobolev case, the relation between the Luxemburg
norm and the modular is much more complicated. However, some careful estimates
can be achieved using the observation that the Luxemburg norm is very close to 1 if
and only if the modular is very close to 1 (see (2.4)). Furthermore, if we deal with
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functions possessing very large gradients, then their modulars (with respect to a Young
function satisfying (1.6)) are very close to the n -power of the norm, as, for example,

(λ t)n logα(λ t)
tn logα(t)

≈ λ n for λ > 0 and t very large.

Sometimes it is possible to pass from the Luxemburg norm with respect to Φ to the
(equivalent) Luxemburg norm with respect to β Φ , where β > 0 is chosen so that we
can use (2.4) for the second norm. In fact, the proof of (1.10) rests upon this strategy and
thus all the preliminary computations and estimates have to be done for the Luxemburg
norm with respect to β Φ , with β > 0 being a general number.

2. Preliminaries

By B(R) we denote an open Euclidean ball in R
n centered at the origin with the

radius R > 0. By C we denote a generic positive constant which may depend on � ,
n , α , Φ and L n(Ω) . This constant may vary from expression to expression as usual.
When integrating with respect to the n -dimensional Lebesgue measure we simply write∫

Ω Φ(|∇u|) instead of
∫

Ω Φ(|∇u(x)|)dx , etc.

Young functions and Orlicz spaces

A function Φ : [0,∞) → [0,∞) is a Young function if Φ is increasing, convex,

Φ(0) = 0 and limt→∞
Φ(t)

t = ∞ .
We denote by LΦ(Ω) the Orlicz space corresponding to a Young function Φ on a

set Ω with the Lebesgue measure. The space LΦ(Ω) is equipped with the Luxemburg
norm

||u||LΦ(Ω) = inf
{

λ > 0 :
∫

Ω
Φ

( |u|
λ

)
� 1

}
. (2.1)

Δ2 -condition

We say that a Young function Φ satisfies the Δ2 -condition, if there are tΔ � 0 and
CΔ > 1 such that

Φ(2t) � CΔΦ(t) whenever t � tΔ.

It is easy to see that if Φ satisfies the Δ2 -condition for one fixed tΔ > 0 then it satisfies
this condition with arbitrary t̃Δ > 0 with a different constant C̃Δ > 1. But we cannot
take t̃Δ = 0 provided tΔ > 0 in general. From the Δ2 -condition one easily proves that

∫
Ω

Φ
( |u|
||u||LΦ(Ω)

)
= 1 whenever ||u||LΦ(Ω) > 0, (2.2)

the convergence in the norm is equivalent to the convergence in the modular (2.3)

||uk||LΦ(Ω)
k→∞→ 1 ⇐⇒

∫
Ω

Φ(|uk|) k→∞→ 1, (2.4)
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norm is bounded away from 1 from below

⇐⇒ modular is bounded away from 1 from below,

norm is bounded away from 1 from above

⇐⇒ modular is bounded away from 1 from above,

norm is bounded from above ⇐⇒ modular is bounded from above.

It is not difficult to check the Δ2 -condition for our Young functions satisfying (1.6).

Orlicz-Sobolev spaces

Let Φ be a Young function satisfying (1.6). We define the Orlicz-Sobolev space
WLΦ(Ω) as the set

WLΦ(Ω) = {u : u, |∇u| ∈ LΦ(Ω)}
equipped with the norm

‖u‖WLΦ(Ω) = ‖u‖LΦ(Ω) +‖∇u‖LΦ(Ω),

where |∇u| is the Euclidean norm in R
n of the generalized gradient ∇u of u .

We put W0LΦ(Ω) for the closure of C∞
0 (Ω) in WLΦ(Ω) . The space W0LΦ(Ω) is

a reflexive Banach space and it is compactly embedded into LΦ(Ω) . As Ω is bounded,
on W0LΦ(Ω) we can also use the Dirichlet norm

‖u‖W0LΦ(Ω) := ‖∇u‖LΦ(Ω),

which is equivalent to the standard Sobolev-type norm given above.
We write that uk ⇀ u in W0LΦ(Ω) , if

∫
Ω

∂uk

∂xi
vdx →

∫
Ω

∂u
∂xi

vdx for every v ∈ LΨ(Ω) and i ∈ {1, . . . ,n}

where Ψ is the associated Young function to Φ .
Finally, let us recall that the norm in the space W0LΦ(Ω) is weakly lower semi-

continuous and so is the modular of the gradient.

Non-increasing radially symmetric rearrangement

The non-increasing rearrangement u∗ of a measurable function u on Ω is

u∗(y) = inf
{

s > 0 : L n({x ∈ Ω : |u(x)| > s}) � y
}
, y > 0.

We also define the non-increasing radially symmetric rearrangement u# by

u#(x) = u∗
(ωn−1

n
|x|n

)
for x ∈ B(R), L n(B(R)) = L n(Ω).
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For an introduction to these rearrangements see e.g. [24]. When dealing with a radial
function u# on B(R) , it is often convenient for us to work with its one-dimensional
representative h : [0,R] �→ [0,∞) defined by

h(|x|) := u#(x). (2.5)

REMARK 2.1. For every u ∈ W 1,1
0 (Ω) its one-dimensional representative h de-

fined in (2.5) is locally absolutely continuous on (0,R] (and thus differentiable almost
everywhere).

Proof. Fix δ ∈ (0,R) . By [20, Section 1.1.3], every function from W 1,1(Ω) satis-
fies ACL, i.e. it is absolutely continuous on almost all lines parallel to coordinate axes.
Hence the function

t �→ u(t,x2, . . . ,xn) = h(
√

t2 + x2
2 + . . .+ x2

n)

is absolutely continuous for almost every [x2, . . . ,xn] ∈ R
n−1 . In particular, we can find

[x2, . . . ,xn]∈R
n−1 such that c := x2

2 + . . .+x2
n � δ

2 and the above mentioned function is
absolutely continuous. Hence t �→ h(

√
t2 + c2) is absolutely continuous and it is easy

to see that y �→ h(y) is absolutely continuous for y �
√

c2 + c2 , while
√

c2 + c2 < 2c �
δ . �

We often use the Pólya-Szegö principle (see for example [2], [9], [24]).

THEOREM 2.1. Let Φ be a Young function and let u∈W 1,1(Rn) satisfy L n({x∈
R

n : |u(x)| > t}) < ∞ for all t > 0 . Then

∫
Rn

Φ(|∇u|) �
∫

Rn
Φ(|∇u#|).

It is obvious that in the situation from Theorem 2.1 one also has ||∇u||LΦ(Rn) �
||∇u#||LΦ(Rn) . Let us also note that in the literature, there is often assumed that u is
non-negative in Theorem 2.1. This assumption simplifies the discussion of the equality
cases, but it is irrelevant as far as the inequality is concerned, since |∇|u|| = |∇u| a.e.

Preliminary results

LEMMA 2.1. Let 0 < C1 < C2 , Ω ⊂ R
n be an open set and let Φ be a Young

function satisfying (1.6). Then for every ε > 0 there are G > 0 and δ > 0 such that
for every u ∈ W0LΦ(Ω) satisfying C1 � ||∇u||LΦ(Ω) � C2 and

∫
{|∇u|<G}Φ(|∇u|) < δ

we have

(1− ε)||∇u||nLΦ(Ω) �
∫

Ω
Φ(|∇u|) � (1+ ε)||∇u||nLΦ(Ω).
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Proof. Let us write λ = ||∇u||LΦ(Ω) to simplify our notation. We can suppose that
λ > 0, otherwise the proof trivially follows from (2.1). We are going to show that we
can make 1

λ n

∫
Ω Φ(|∇u|) as close to 1 as we wish via a suitable choice of G and δ .

Let Φ0 be a fixed Young function from (1.13). By (2.2) we have

1
λ n

∫
Ω

Φ(|∇u|)−1

=
1

λ n

∫
Ω

Φ(|∇u|)−
∫

Ω
Φ

( |∇u|
λ

)
=

1
λ n

∫
{|∇u|<G}

Φ(|∇u|)+
1

λ n

∫
{|∇u|�G}

Φ0(|∇u|)

+
1

λ n

∫
{|∇u|�G}

(
Φ(|∇u|)−Φ0(|∇u|)

)
−

∫
{|∇u|<G}

Φ
( |∇u|

λ

)

−
∫
{|∇u|�G}

Φ0

( |∇u|
λ

)
−

∫
{|∇u|�G}

(
Φ

( |∇u|
λ

)
−Φ0

( |∇u|
λ

))
= I1 + I2 + I3− I4− I5− I6.

Next, we claim that we can make I3 , I6 and I2 − I5 as small as we wish choosing G
sufficiently large. This is obvious for I3 and I6 , since we have (1.6) and Ω is bounded.
If G is sufficiently large, for I5 we have

I5 =
∫
{|∇u|�G}

( |∇u|
λ

)n(�−1

∏
j=1

logn−1
[ j]

( |∇u|
λ

))
logα

[�]

( |∇u|
λ

)
.

We can write∣∣∣∣∣ log( |∇u|
λ )

log(|∇u|) −1

∣∣∣∣∣ =

∣∣∣∣∣ log( 1
λ )

log(|∇u|)

∣∣∣∣∣ � max{| log(C1)|, | log(C2)|}
log(G)

and similarly for the remaining iterated logarithms. Hence choosing G very large, we
can make each log[ j](

|∇u|
λ ) as close to log[ j](|∇u|) as we wish and thus I5 can be made

as close to I2 as we wish.
Finally, for G fixed, we choose δ > 0 so small that I1 and I4 are as small as we

wish (let us recall that 1
λ is bounded and Φ satisfies the Δ2 -condition). Thus, we are

done. �

LEMMA 2.2. Let R > 0 and let Φ be a Young function satisfying (1.6). Then
there is G > 0 with the following property:

For every β > 0 and ε > 0 , there is y0 > 0 such that if u∈W0LΦ(B(R)) is a radial
function, then it satisfies

y ∈ (0,y0) =⇒ |h(y)| � GR+(1+ ε)β− 1
n B

1−n
n ω− 1

n
n−1 log

1
γ
[�]

(1
y

)
||∇u||LβΦ({|∇u|>G}),

(2.6)
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where ||∇u||LβΦ({|∇u|>G}) denotes the Luxemburg norm with respect to the Young func-
tion β Φ on the set {|∇u| > G} .

In particular, setting ε = 1 we have y0 > 0 such that

y ∈ (0,y0) =⇒ |h(y)| � C+C log
1
γ
[�]

(1
y

)
||∇u||LβΦ(B(R)). (2.7)

Proof. The proof for the case β = 1 and � = 1 can be found in [18] (see the proof
of Theorem 1.1), the case β = 1 and � � 2 is treated in [7]. The case β = 1 can be
obtained by a minor modifications of these proofs. We omit the details. �

3. Uniform convexity of W 1,n
0 (Ω) and W0LΦ(Ω)

A Banach space is uniformly convex if for every ε > 0 there is δ > 0 such that

||u|| = ||v|| = 1, ||u− v||> ε =⇒
∣∣∣∣∣∣u+ v

2

∣∣∣∣∣∣ < 1− δ .

We already know that the space W0LΦ(Ω) equipped with the Luxemburg norm
corresponding to a Young function Φ satisfying (1.6), (1.8) and (1.9) is uniformly
convex. This is also true for the space W 1,n

0 (Ω) which can be considered as a space
W0LΦ(Ω) with Φ(t) = tn .

It is a well-known fact that if a sequence converges weakly in a uniformly convex
Banach space, that is uk ⇀ u , and ||uk|| → ||u|| (where ‖ · ‖ is a norm in this space),
then then uk → u (strong convergence in norm). We shall need a slight modification of
this property.

LEMMA 3.1. In every uniformly convex Banach space the following assertion
holds. For every ε > 0 there is δ ∈ (0,1) such that

uk ⇀ u, ||u|| = 1, ||uk|| � 1+ δ for every k

=⇒ ||uk −u||< ε for every k sufficiently large.

Proof. The proof is standard. �

REMARK 3.1. The homogeneity of the norm implies, that Lemma 3.1 holds with
general ||u|| > 0 and ||uk|| � (1 + δ )||u|| . In the case of our Orlicz-Sobolev spaces,
these assumptions can be also replaced by∫

Ω
Φ(|∇u|) > 0 and

∫
Ω

Φ(|∇uk|) � (1+ δ )
∫

Ω
Φ(|∇u|).

Indeed, we can apply Lemma 3.1 with respect to the norm given by the Young function
β Φ , where the constant β is chosen so that∫

Ω
β Φ(|∇u|) = 1.
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Since β Φ satisfies the Δ2 -condition, we have that ||∇u||LβΦ(Ω) = 1 and ||∇uk||LβΦ(Ω)
are close to 1. Therefore, by Lemma 3.1, we have that uk − u are small in the norm
corresponding to β Φ and thus they are also small in the equivalent norm corresponding
to Φ .

In the rest of this section we prove Remark 1.1.

Proof of Remark 1.1. It is enough to check condition (1.8), the remaining proper-
ties are obviously satisfied. By (1.13) we have for t > t1

Φ′
0((1+ ε)t)

Φ′
0(t)

=
n(1+ ε)n−1tn−1(∏�−1

j=1 logn−1
[ j] ((1+ ε)t)) logα

[�]((1+ ε)t))ϒ((1+ ε)t)

ntn−1(∏�−1
j=1 logn−1

[ j] (t)) logα
[�](t)ϒ(t)

,

(3.1)
where

ϒ(t) = 1+
�−1

∑
j=1

n−1
n

( j

∏
i=1

log−1
[i] (t)

)
+

α
n

( �

∏
i=1

log−1
[i] (t)

)
.

Now, we have
n(1+ ε)n−1tn−1

ntn−1 = (1+ ε)n−1 � (1+ ε), (3.2)

and
∏�−1

j=1 logn−1
[ j] ((1+ ε)t)

∏�−1
j=1 logn−1

[ j] (t)
� 1. (3.3)

Furthermore, we see that taking tε sufficiently large we can make both ϒ((1+ε)t) and
ϒ(t) as close to 1 as we wish and thus

ϒ((1+ ε)t)
ϒ(t)

� (1+ ε)−
1
3 . (3.4)

Finally, we have

log((1+ ε)t)
log(t)

= 1+
log(1+ ε)

log(t)
� 1+

ε
log(t)

and thus for t large enough we obtain

logα((1+ ε)t)
logα(t)

�
( log((1+ ε)t)

log(t)

)−|α |
�

(
1+

ε
log(t)

)−|α |
� (1+ ε)−

1
3 .

For the iterated logarithm it is also easy to prove (see for example [7, Lemma 2.2]) that

logα
[�]((1+ ε)t)

logα
[�](t)

� (1+ ε)−
1
3 (3.5)

for t large enough. Thus, by (3.1), (3.2), (3.3), (3.4) and (3.5) we can set kε = (1+ε)
1
3

and we are done. �
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4. Proofs of Theorem 1.3 and Theorem 1.4

For every t ∈ (0,1) , we define the following functional acting on functions from
W 1,n

0 (B(R))

〈m̃∗
t ,u〉 :=

∫
B(R)

|∇m̃t(x)|n−2∇m̃t(x) ·∇u(x)dx.

In the sequel, we are interested in radial functions only. Suppose that h is the one-
dimensional representative of a radial function u (see (2.5)) and let gt represent m̃t .

PROPOSITION 4.1. Let R > 0 . The Moser functions and the functional defined
above have the following properties:

||∇m̃t ||Ln(B(R)) = 1 for every t ∈ (0,1), (4.1)

〈m̃∗
t ,u〉 = ω

1
n
n−1 log−

1
n′

(1
t

)
h(Rt) =

h(Rt)
gt(Rt)

for every t ∈ (0,1), (4.2)

|〈m̃∗
t ,u〉| � ||∇u||Ln(B(R)) for every t ∈ (0,1), (4.3)

〈m̃∗
t ,u〉 t→0→ 0 for every fixed radial function u ∈W 1,n

0 (B(R)) (4.4)

and

Jp(u) = ωn−1R
n
∫ 1

0
yn(1−p|〈m̃∗

y ,u〉|n
′
) dy

y
. (4.5)

Proof. Property (4.1) is well-known and easy to compute from

|∇m̃t(x)| =
( n

∑
i=1

( ∂
∂xi

m̃t(x)
)2) 1

2 = |g′t(|x|)|

and (see (1.2))

g′t(|x|) =

⎧⎨
⎩

0 for |x| ∈ [0,tR]

−ω− 1
n

n−1 log−
1
n ( 1

t )
1
|x| for |x| ∈ [tR,R].

(4.6)

Furthermore, property (4.3) is easily obtained using Hölder’s inequality.
Let us prove (4.2). By (4.6) and (1.2) we have

〈m∗
t ,u〉 =

∫ R

0
|g′t(y)|n−2g′t(y)h

′(y)ωn−1y
n−1 dy = −ω− n−1

n +1
n−1 log−

n−1
n

(1
t

)∫ R

tR
h′(y)dy

= ω
1
n
n−1 log−

1
n′

(1
t

)
h(Rt) =

h(Rt)
gt(Rt)

.

We proceed to the proof of (4.4). Fix ε > 0. From the absolute continuity of
the Lebesgue integral there is τ ∈ (0,R) such that ||∇u||Ln(B(τ)) < ε . Furthermore, for
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0 < y1 < y2 � R one has by Hölder’s inequality

|h(y1)−h(y2)| �
∫ y2

y1

|h′(y)|dy

=
∫ y2

y1

|h′(y)|ω
1
n
n−1y

n−1
n ω− 1

n
n−1y

− n−1
n dy

� ω− 1
n

n−1

(∫ y2

y1

|h′(y)|nωn−1y
n−1 dy

) 1
n
(∫ y2

y1

dy
y

) 1
n′

= ω− 1
n

n−1||∇u||Ln(B(y2)\B(y1)) log
1
n′

(y2

y1

)
.

Therefore we have from (4.2) and h(R) = 0 for t small enough

|〈m∗
t ,u〉| � ω

1
n
n−1 log−

1
n′

(1
t

)(
|h(τ)−h(R)|+ |h(Rt)−h(τ)|

)
� log−

1
n′

(1
t

)(
||∇u||Ln(B(R)) log

1
n′

(R
τ

)
+ ||∇u||Ln(B(τ)) log

1
n′

( τ
Rt

))
� log−

1
n′

(1
t

)(
C log

1
n′

(R
τ

)
+ ε log

1
n′

( τ
Rt

))
� log−

1
n′

(1
t

)(
2ε log

1
n′

(1
t

))
= 2ε

and (4.4) follows.
Now, we proceed to the proof of the last property. We have from (1.3) and (4.2)

Jp(u) =
∫ R

0
exp

(
nω

1
n−1
n−1 p|h(y)|n′

)
ωn−1y

n−1 dy

= ωn−1R
n
∫ 1

0
exp

(
nω

1
n−1
n−1 p|h(Rt)|n′

)
tn−1 dt

= ωn−1R
n
∫ 1

0
exp

(
np log

(1
t

)
|〈m̃∗

t ,u〉|n
′)

tn−1 dt

= ωn−1R
n
∫ 1

0
tn(1−p|〈m∗

t ,u〉|n
′
) dt

t
.

Thus, we are done. �
The following Lemmata 4.1 and 4.2 are Sobolev versions of more general Lem-

mata 5.1 and 5.3, respectively. Since there would be only a minor simplification of the
proofs in the Sobolev setting, instead of the proofs we just give the reference to the
proofs in the Orlicz-Sobolev setting.

LEMMA 4.1. Let {tk} ⊂ (0,1) , tk → 0 and let the sequence {uk} ⊂ W 1,n
0 (Ω)

satisfy ||∇uk||Ln(Ω) � C. Then for every ε > 0 there is δ > 0 such that the following
assertion holds:

If u ∈W 1,n
0 (Ω) satisfies ||∇u||Ln(Ω) < δ and there is k0 ∈ N such that

〈m̃∗
tk ,u

#
k〉 � 1− ε for k � k0,
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then there is k1 ∈ N such that

〈m̃∗
tk ,(uk −u)#〉 � 1−5ε for k � k1.

Proof. We can use the proof of Lemma 5.1. Since we have Φ(t) = tn , we are
interested only in the first of the two cases considered when proving (5.16). �

LEMMA 4.2. Let {tk}⊂ (0,1) , tk → 0 and let {uk}⊂W 1,n
0 (B(R)) be radial func-

tions. If ||∇uk||Ln(B(R)) � 1+o(1) and 〈m̃∗
tk ,uk〉 → 1 , then

uk − m̃tk → 0 in W 1,n
0 (B(R)).

Proof. We can use the proof of Lemma 5.3. It is enough to set β = 1 and replace
the collection of Moser-type functions {mtk} by our Moser functions {m̃tk} . We also
use the estimates from Lemma 4.1 instead of the estimates from Lemma 5.1. �

Proof of Theorem 1.4. Assume that θ ∈ (0,1) (for θ = 0, the proof follows from
Theorem 1.1) and limsupk→∞ JP(uk) > JP(u) . Passing to a subsequence we can sup-
pose that the limit exists and limk→∞ JP(uk) > JP(u) . Passing to a subsequence again
we can also suppose that uk → u in Ln(Ω) and uk → u a.e. in Ω . Since the symmetric
rearrangement preserves the convergence in Lebesgue spaces (see [24, Theorem 1.D]),
we can also suppose that u#

k → u# in Ln(B(R)) and u#
k → u# a.e. in B(R) .

Step 1. We find a sequence {tk} ⊂ (0,1) , tk → 0, such that

liminf
k→∞

〈m̃∗
tk ,u

#
k〉 � (1−θ )

1
n (4.7)

and
liminf
k→∞

〈m̃∗
tk ,(uk −u)#〉 � (1−θ )

1
n (4.8)

(passing to a subsequence of {uk} if necessary). To prove (4.7) assume that there are
δ > 0, ε > 0 and k0 ∈ N such that

〈m̃∗
t ,u

#
k〉 � (1− ε)(1−θ )

1
n for every t ∈ (0,δ ) and every k � k0.

Hence using (4.5), P = (1−θ )−
1

n−1 and (4.3) we obtain for k � k0

JP(uk) = ωn−1R
n
∫ 1

0
yn(1−P|〈m̃∗

y,uk〉|n
′
) dy

y

� ωn−1R
n
∫ δ

0
yn−n(1−ε)n

′−1 dy+ ωn−1R
n
∫ 1

δ
yn−nP−1dy < ∞.

By the Lebesgue Dominated Convergence Theorem JP(uk) → JP(u) which is a contra-
diction. Thus we can select {tk} ⊂ (0,1) , tk → 0, and a suitable subsequence of {uk}
such that (4.7) holds.
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We proceed to the proof of (4.8). First, let us introduce the following notation.
Given L > 0, we define

uL(x) = min{|u(x)|,L}sgn(u(x)) and uL(x) = u(x)−uL(x).

Similarly we define uL
k and (uk)L , k ∈ N . It can be easily seen that∫

Ω
|∇uk|n =

∫
Ω
|∇uL

k |n +
∫

Ω
|∇(uk)L|n, uL

k → uL a.e. in Ω and (uk)L → uL a.e. in Ω.

Moreover uL
k form a bounded sequence in W 1,n

0 (Ω) and thus there is a weakly con-
vergent subsequence. Since uL

k converge almost everywhere to uL , it is easy to see
that

uL
k ⇀ uL in W 1,n

0 (Ω) and (uk)L ⇀ uL in W 1,n
0 (Ω).

The proof of (4.8) is obtained establishing the following chain of inequalities

(1−θ )
1
n � liminf

k→∞
〈m̃∗

tk ,u
#
k〉 � liminf

k→∞
〈m̃∗

tk ,(u
L
k )

#〉
� liminf

k→∞
〈m̃∗

tk
,(uL

k −uL)#〉+ ε � liminf
k→∞

〈m̃∗
tk
,(uk −u)#〉+ ε,

(4.9)

with ε > 0 being an arbitrarily small number and L depending on ε is specified below.
The first inequality in (4.9) is just (4.7). The second inequality easily follows from

gtk(Rtk) → ∞ (see (1.2)), (4.2) and

u#
k −L � (uL

k )
# � u#

k.

The third inequality follows from Lemma 4.1 (up to a normalization), since we can
make

∫
Ω |∇uL|n as small as we wish via a choice of a sufficiently large L . The last

inequality follows from (4.2), since gtk(Rtk) → ∞ and

|uL
k −uL| = |uk −u+(uL− (uk)L)| � |uk −u|+ |uL|+ |(uk)L| � |uk −u|+2L.

This completes the proof of (4.8).

Step 2. In this step we prove

limsup
k→∞

||∇(uk −u)#||Ln(B(R)) � (1−θ )
1
n . (4.10)

Fix ε > 0. First we fix L > 0 so large that∫
Ω
|∇uL|n = τ, (4.11)

where τ ∈ (0, 1
2 min{θ ,1−θ}) is a small number specified below.

By the Pólya-Szegö inequality (Theorem 2.1) we have

||∇(uk −u)#||Ln(B(R)) � ||∇(uk −u)||Ln(Ω)

� ||∇((uk)L −uL)||Ln(Ω) + ||∇uL
k ||Ln(Ω) + ||∇uL||Ln(Ω)

= I1 + I2 + I3.

(4.12)
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If τ is small enough, then (4.11) implies that I3 < ε .
Next, since (uk)L ⇀ uL , by the weak lower semicontinuity of the norm we have

for k large enough∫
Ω
|∇(uk)L|n �

∫
Ω
|∇uL|n− τ =

∫
Ω
|∇u|n−

∫
Ω
|∇uL|n − τ = θ −2τ

and thus ∫
Ω
|∇uL

k |n =
∫

Ω
|∇uk|n −

∫
Ω
|∇(uk)L|n � 1−θ +2τ.

Hence, if τ is small enough, we obtain I2 < (1−θ )
1
n + ε .

Let us proceed to the proof that I1 < ε . We obtain from (4.9) for k large enough

〈m̃∗
tk ,(u

L
k )

#〉 � (1−θ − τ)
1
n

and thus, by (4.3) we have for k large enough

||∇(uL
k )

#||Ln(B(R)) � (1−θ − τ)
1
n .

This implies by the Pólya-Szegö inequality (Theorem 2.1)

||∇uL
k ||Ln(Ω) � (1−θ − τ)

1
n

and thus we obtain

||∇(uk)L||Ln(Ω) =
(
||∇uk||nLn(Ω)−||∇uL

k ||nLn(Ω)

) 1
n � (θ + τ)

1
n . (4.13)

Furthermore, we have by (4.11)

||∇uL||Ln(Ω) =
(
||∇u||nLn(Ω) −||∇uL||nLn(Ω)

) 1
n = (θ − τ)

1
n . (4.14)

Now, if τ > 0 is sufficiently small, we can use Lemma 3.1 (recall that we have (4.13),
(4.14) and (uk)L ⇀ uL ) and the homogeneity of the norm to obtain

I1 < ε for k large enough.

Hence we have I1 + I2 + I3 � ε +(1−θ )−
1
n +ε +ε . This concludes the proof of (4.10).

Step 3. Our aim is to prove

(1−θ )−
1
n (uk −u)#− m̃tk

k→∞→ 0 in W 1,n
0 (B(R)). (4.15)

Combining (4.8) and (4.10) with (4.3) we obtain

〈m̃∗
tk ,(1−θ )−

1
n (uk −u)#〉 k→∞→ 1 and ||(1−θ )−

1
n ∇(uk −u)#||Ln(B(R))

k→∞→ 1.

Now, we complete the proof of (4.15) using Lemma 4.2. Thus, we are done. �
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Proof of Theorem 1.3. Let us suppose that θ ∈ (0,1) (for θ = 0, the proof follows
from Theorem 1.1) and limsupk→∞ JP(uk) > JP(u) . We can suppose that limk→∞ JP(uk)
exists, it satisfies limk→∞ JP(uk) > JP(u) , uk → u in Ln(Ω) , uk → u a.e. in Ω . Recall
that we suppose that uk and u are radial functions and Ω = B(R) now.

Step 1. The aim of this step is to show that passing to a subsequence we can find
{tk} ⊂ (0,1) , tk → 0, such that

liminf
k→∞

〈m̃∗
tk ,uk〉 � (1−θ )

1
n (4.16)

and
liminf
k→∞

〈m̃∗
tk ,uk −u〉� (1−θ )

1
n (4.17)

Inequality (4.16) is proved in the same way as (4.7). Next, (4.17) easily follows
from (4.4) and (4.16).

Step 2. In this step we prove

limsup
k→∞

||∇(uk −u)||Ln(B(R)) � (1−θ )
1
n . (4.18)

The proof of (4.10) is still valid for our radial functions. From (4.12) we can see that
the quantity ||∇(uk −u)||Ln(B(R)) is again estimated by I1 + I2 + I3 .

Step 3. Our aim is to prove

(1−θ )−
1
n (uk −u)− m̃tk

k→∞→ 0 in W 1,n
0 (B(R)). (4.19)

Combining (4.17) and (4.18) with (4.3) we obtain

〈m̃∗
tk ,(1−θ )−

1
n (uk −u)〉 k→∞→ 1 and ||(1−θ )−

1
n ∇(uk −u)||Ln(B(R))

k→∞→ 1.

Now, we complete the proof of (4.19) using Lemma 4.2. �

5. Properties of the Moser-type functions

In this section we study properties of the functions mt , t ∈ (0, 1
L ) , defined in (1.7).

For every t ∈ (0, 1
L ) , we define the following functional acting on functions from

W0LΦ(B(R))

〈m∗
t ,u〉 :=

∫
B(R)

Φ0(|∇mt(x)|)
|∇mt(x)|2 ∇mt(x) ·∇u(x)dx,

with the convention that the integrand reads zero in the points where |∇mt(x)|= 0. The
function Φ0 is a fixed Young function coming from (1.13).

In the sequel, we are interested in radial functions only. Suppose that h is the one-
dimensional representative of a radial function u (see (2.5)) and let gt represent mt .
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PROPOSITION 5.1. Let R > 0 , β > 0 and let Φ be a Young function satisfying
condition (1.6). The Moser-type functions and the functional defined above have the
following properties:

||∇mt ||LβΦ(B(R)) = (1+o(1))β
1
n as t → 0, (5.1)

∣∣∣〈m∗
t ,u〉−

h(Rt)
gt(Rt)

∣∣∣ � ψ(t)||∇u||LβΦ(B(R)) where ψ(t) t→0→ 0, (5.2)

|〈m∗
t ,u〉| � (1+ ψ̃(t))β− 1

n ||∇u||LβΦ(B(R)) where ψ̃(t) t→0→ 0 (5.3)

and
〈m∗

t ,u〉 t→0→ 0 for every fixed radial function u ∈W0L
Φ(B(R)). (5.4)

Proof of property (5.1) from Proposition 5.1. The proof can be done by an easy
modification of the proof of Theorem 1.2 of [18] (see also [7, proof of Theorem 1.2]).
The details are left to the reader. �

Proof of property (5.2) from Proposition 5.1. Since we have the equivalence of the
norms || · ||LΦ(B(R)) and || · ||LβΦ(B(R)) and the homogeneity of both sides of (5.2), it is
enough to consider the case of β = 1 and ||∇u||LΦ(B(R)) = 1.

From (1.7) we obtain

−g′t(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for y ∈ (0, tR)

B
1
n ω− 1

n
n−1 log

1
γ −B

[�] ( 1
t ) logB−1

[�] (R
y )(∏�−1

j=1 log−1
[ j] (

R
y )) 1

y for y ∈ (tR, R
L )

L
L−1

1
RB

1−n
n ω− 1

n
n−1 log

1
γ −B

[�] ( 1
t ) logB

[�](L) for y ∈ (R
L ,R).

(5.5)

Let y0 < R
L be the constant from (2.7). If t is so small that tR < y0 , we can write

〈m∗
t ,u〉 =

∫
B(R)

Φ0(|∇mt |)
|∇mt |2 ∇mt ·∇u =

∫ R

0

Φ0(−g′t(y))
−g′t(y)

(−h′(y))ωn−1y
n−1 dy

=
∫ tR

0
+

∫ y0

tR
+

∫ R

y0

= I1 + I2 + I3.

From (5.5) we obtain I1 = 0. Furthermore, by (1.5) we have 1
γ − B < 0. Hence

log
1
γ −B

[�] ( 1
t ) → 0 as t → 0 and thus (1.13) and (5.5) yield for t small enough

sup
y∈(y0,R)

Φ0(−g′t(y))
−g′t(y)

� C log
(n−1)( 1

γ −B)
[�]

(1
t

)
.

Hence we can use h(R) = 0 (as u ∈W0LΦ(B(R))) and |h(y0)| � C (by (2.7)) to obtain

I3 �
∫ R

y0

C log
(n−1)( 1

γ −B)
[�]

(1
t

)
(−h′(y))dy = C log

(n−1)( 1
γ −B)

[�]

(1
t

)
h(y0)

� C log
(n−1)( 1

γ −B)
[�]

(1
t

)
t→0→ 0.
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It remains to prove that

∣∣∣I2− h(Rt)
gt(Rt)

∣∣∣ � ψ1(t) where ψ1(t)
t→0→ 0. (5.6)

Fix ε > 0. We observe that for θ ,β ∈ R and s > 0 large enough we have

log(θ sβ ) ≈ β log(s) and log[ j](θ sβ ) ≈ log[ j](s) for j � 2. (5.7)

Hence we can find M > 1 so large that for every t > 0 small enough we have by the
second line of (5.5)

y ∈
(
tR, log

M( 1
γ −B)

[�]

(1
t

))
=⇒ |g′t(y)| ∈

( 1
y1−ε ,

1
y1+ε

)
(5.8)

From (1.13), (5.7) and (5.8) we obtain for every t > 0 small enough

y ∈
(
tR, log

M( 1
γ −B)

[�]

(1
t

))

=⇒
Φ0(−g′t(y))
−g′t(y)

(−g′t(y))n−1(∏�−1
j=1 logn−1

[ j] (R
y )) logα

[�](
R
y )

∈ (1−Cε,1+Cε).
(5.9)

Furthermore, we have from (5.5), (n− 1)( 1
γ − B) = − 1

γ and (n− 1)(B− 1) = −α
(see (1.5))

J :=
∫ log

M( 1
γ −B)

[�] ( 1
t )

tR
(−g′t(y))

n−1
(�−1

∏
j=1

logn−1
[ j]

(R
y

))
logα

[�]

(R
y

)
(−h′(y))ωn−1y

n−1 dy

=
∫ log

M( 1
γ −B)

[�] ( 1
t )

tR
B

n−1
n ω− n−1

n
n−1 log

(n−1)( 1
γ −B)

[�]

(1
t

)
log(n−1)(B−1)

[�]

(R
y

)

×
(�−1

∏
j=1

log1−n
[ j]

(R
y

)) 1
yn−1

(�−1

∏
j=1

logn−1
[ j]

(R
y

))
logα

[�]

(R
y

)
(−h′(y))ωn−1y

n−1 dy

=ω
1
n
n−1B

n−1
n log

− 1
γ

[�]

(1
t

)∫ log
M( 1

γ −B)

[�] ( 1
t )

tR
(−h′(y))dy

=ω
1
n
n−1B

n−1
n log

− 1
γ

[�]

(1
t

)(
h(Rt)−h

(
log

M( 1
γ −B)

[�]

(1
t

)))
.

(5.10)
Therefore we have from (1.7) and (2.7)

∣∣∣ h(Rt)
gt(Rt)

− J
∣∣∣ = ω

1
n
n−1B

n−1
n log

− 1
γ

[�]

(1
t

)∣∣∣h(
log

M( 1
γ −B)

[�]

(1
t

))∣∣∣
� C log

− 1
γ

[�]

(1
t

)(
C+C log

1
γ
[�]

(
log

−M( 1
γ −B)

[�]

(1
t

)))
t→0→ 0.

(5.11)
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Notice that (2.7) also yields for t small enough

log
− 1

γ
[�]

(1
t

)
h(Rt) � log

− 1
γ

[�]

(1
t

)(
C+C log

1
γ
[�]

( 1
Rt

))
� C. (5.12)

Next, we decompose I2 into three integrals defined by

I2 =
∫ y0

tR

Φ0(−g′t(y))
−g′t(y)

(−h′(y))ωn−1y
n−1 dy

=
∫ log

M( 1
γ −B)

[�] ( 1
t )

tR
+

∫
(log

M( 1
γ −B)

[�] ( 1
t ),y0)∩{−g′t>t1}

+
∫

(log
M( 1

γ −B)

[�] ( 1
t ),y0)∩{−g′t�t1}

= J1 + J2 + J3,

where t1 > 0 comes from (1.13). From (5.9), (5.10), (5.11) and (5.12) we can see that
for t sufficiently small, we can make J1 as close to h(Rt)

gt(Rt) as we wish. It remains to
estimate J2 and J3 (by an expression approaching zero).

For t small enough and y ∈ (log
M( 1

γ −B)
[�] ( 1

t ),y0)∩{−g′t > t1} we use (1.13), (5.5)
and (5.7) to obtain

Φ0(−g′t(y))
−g′t(y)

= (−g′t(y))
n−1

(�−1

∏
j=1

logn−1
[ j] (−g′t(y))

)
logα

[�](−g′t(y))

� C(−g′t(y))
n−1

(�−1

∏
j=1

logn−1
[ j]

(
log[�]

(1
t

)))
log|α |

[�]

(
log[�]

(1
t

))

� C log
(n−1)( 1

γ −B)
[�]

(1
t

)
log(n−1)|B−1|

[�]

(
log[�]

(1
t

))(�−1

∏
j=1

logn−1
[ j]

(
log[�]

(1
t

))) 1
yn−1

×
(�−1

∏
j=1

logn−1
[ j]

(
log[�]

(1
t

)))
log|α |

[�]

(
log[�]

(1
t

))

� C log
n−1
2 ( 1

γ −B)
[�]

(1
t

) 1
yn−1 .

This estimate, (2.7) and (n−1)( 1
γ −B) = − 1

γ imply for t small enough

J2 �
∫ y0

log
M( 1

γ −B)

[�] ( 1
t )

C log
n−1
2 ( 1

γ −B)
[�]

(1
t

)
(−h′(y))dy

= C log
− 1

2γ
[�]

(1
t

)(
h
(
log

M( 1
γ −B)

[�]

(1
t

))
−h(y0)

)
� C log

− 1
2γ

[�]

(1
t

)(
C+C log

1
γ
[�]

(
log

−M( 1
γ −B)

[�]

(1
t

)))
t→0→ 0.

(5.13)
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It remains to estimate J3 . By (1.13) we have Φ0(t) � Ctn on (0,t1) and thus for t

small enough and y ∈ (log
M( 1

γ −B)
[�] ( 1

t ),y0)∩{−g′t � t1} we obtain

Φ0(−g′t(y))
−g′t(y)

� C(−g′t(y))
n−1

� C log
(n−1)( 1

γ −B)
[�]

(1
t

)
log(n−1)|B−1|

[�]

(
log[�]

(1
t

))(�−1

∏
j=1

logn−1
[ j]

(
log[�]

(1
t

))) 1
yn−1

� C log
n−1
2 ( 1

γ −B)
[�]

(1
t

) 1
yn−1 .

Now, we can estimate J3 in the same way as we have estimated J2 in (5.13). This
concludes the proof of (5.6) and we are done. �

Proof of property (5.3) from Proposition 5.1. According to the homogeneity of
both sides of the inequality, it is enough to consider the case of ||∇u||LβΦ(B(R)) = 1.
By (1.7) and (2.6), for every ε > 0 we can find t1 > 0 so small that for every t ∈ (0,t1)
we have

|h(Rt)| � (1+2ε)β− 1
n B

1−n
n ω− 1

n
n−1 log

1
γ
[�]

( 1
Rt

)
� (1+3ε)β− 1

n B
1−n
n ω− 1

n
n−1 log

1
γ
[�]

(1
t

)
= (1+3ε)β− 1

n gt(Rt).

From this estimate and from (5.2) we infer

|〈m∗
t ,u〉| �

|h(Rt)|
gt(Rt)

+ ψ(t) � (1+3ε)β− 1
n + ψ(t)

and thus (5.3) follows. �

Proof of property (5.4) from Proposition 5.1. Fix a radial function u∈W0LΦ(B(R))
and ε > 0. First, by the absolute continuity of the Lebesgue integral we observe that
choosing ρ > 0 sufficiently small we can make the integral

∫
B(ρ) Φ(|∇u|) as small

as we wish. This observation together with the fact that Φ satisfies the Δ2 -condition
imply that ρ can be chosen so small that

||∇u||LβΦ(B(ρ)) < ε.

Now, let us write u as a sum of two functions u = u1 +u2 , i.e. h = h1 +h2 , defined by

h1(t) =

⎧⎨
⎩

h(t) for t ∈ [ρ ,R]

h(ρ) for t ∈ [0,ρ ]
and h2(t) =

⎧⎨
⎩

0 for t ∈ [ρ ,R]

h(t)−h(ρ) for t ∈ [0,ρ ].
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We plainly have

u1,u2 ∈W0L
Φ(B(R)), ||∇u1||LβΦ(B(R)) � C and ||∇u2||LβΦ(B(R)) < ε.

Therefore, (1.7) and (2.7) applied to h1 and h2 separately yield for every sufficiently
small t ∈ (0, ρ

R )

|h(Rt)| = |h1(Rt)+h2(Rt)| � |h1(Rt)|+ |h2(Rt)| = |h1(ρ)|+ |h2(Rt)|

� C+C log
1
γ
[�]

( 1
ρ

)
+C+C log

1
γ
[�]

( 1
Rt

)
ε � C log

1
γ
[�]

( 1
Rt

)
ε = Cεgt(Rt).

Finally, from the last estimate and from (5.2) we infer for t sufficiently small

|〈m∗
t ,u〉| �

∣∣∣ h(Rt)
gt(Rt)

∣∣∣+ ψ(t)||∇u||LβΦ(B(R)) � Cε + ψ(t)||∇u||LβΦ(B(R)) � Cε

and (5.4) follows. �

LEMMA 5.1. Let Φ be a Young function satisfying (1.6), {tk} ⊂ (0,1) , tk → 0
and let {uk} ⊂W0LΦ(Ω) satisfy

∫
Ω Φ(|∇uk|) �C. Then for every ε > 0 there is δ > 0

such that the following assertion holds:
If u ∈W0LΦ(Ω) satisfies

∫
Ω Φ(|∇u|) < δ and there is k0 ∈ N such that

〈m∗
tk
,u#

k〉 � 1− ε for k � k0,

then there is k1 ∈ N such that

〈m∗
tk ,(uk −u)#〉 � 1−5ε for k � k1.

Proof. Let h be such that u#(x) = h(|x|) and let hk be such that u#
k(x) = hk(|x|) ,

k ∈ N . The proof is based on a comparison of the measure of the level sets of functions
h and hk .

First, in view (2.3) we can choose δ > 0 so small that (5.2) and (5.3) ensure for k
large enough

h(Rtk) < εgtk (Rtk). (5.14)

Next, let us show that for k large enough we have

hk(2Rtk) � (1−3ε)gtk(Rtk). (5.15)

For k � k0 sufficiently large, we obtain from (5.2) and 〈m∗
tk
,u#

k〉 � 1− ε

hk(Rtk) � (1−2ε)gtk(Rtk).

Since
hk(2Rtk) = hk(Rtk)− (hk(Rtk)−hk(2Rtk)),
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it remains to show that for k large enough we have

hk(Rtk)−hk(2Rtk) � εgtk (Rtk). (5.16)

Let us prove (5.16). From
∫

Ω Φ(|∇uk|) � C and the Pólya-Szegö inequality (Theo-
rem 2.1) we have

C �
∫

Ω
Φ(|∇uk|) �

∫
B(R)

Φ(|∇u#
k |) =

∫ R

0
Φ(−h′k(y))ωn−1y

n−1dy

�
∫ 2Rtk

Rtk
Φ(−h′k(y))ωn−1y

n−1 dy � ωn−1(Rtk)n−1
∫ 2Rtk

Rtk
Φ(−h′k(y))dy.

Hence

Ct−n
k � 1

Rtk

∫ 2Rtk

Rtk
Φ(−h′k(y))dy

and Jensen’s inequality yields

Ct−n
k � Φ

( 1
Rtk

∫ 2Rtk

Rtk
−h′k(y)dy

)
. (5.17)

Now, if Φ(t) �Ctn for large arguments (i.e. we have � � 2 or α � 0), then for k large
enough we infer from (1.7) and (5.17)

hk(Rtk)−hk(2Rtk) =
∫ 2Rtk

Rtk
−h′k(y)dy � C � εgtk (Rtk).

Thus, (5.16) is proved in this case.
On the other hand, if � = 1 and α < 0, then it can be easily seen that for large

arguments we have Φ−1(t) � 2t
1
n log−

α
n (t) . Hence we obtain from (5.17)

hk(Rtk)−hk(2Rtk) =
∫ 2Rtk

Rtk
−h′k(y)dy � CtkΦ−1(Ct−n

k ) � CtkCt−1
k log−

α
n

( 1
tk

)
.

Next, as gtk(Rtk) = C log
1
γ ( 1

tk
) and 1

γ = n−1−α
n > −α

n , we obtain (5.16) again. Having
proved (5.16) in both cases, we also have (5.15).

Now, from (5.14) and (5.15) we can see that (recall that the functions h and hk are
non-increasing)

{u#
k � (1−3ε)gtk(Rtk)} ⊃ B(2Rtk) while {u# � εgtk (Rtk)} ⊂ B(Rtk).

Hence

L n({(uk −u)# � (1−4ε)gtk(Rtk)}) � L n(B(2Rtk))−L n(B(Rtk)) > L n(B(Rtk)).

This implies that on the sphere {|x| = Rtk} , the value of (uk − u)# is estimated from
below by (1−4ε)gtk(Rtk) . Finally, (5.2) completes the proof. �
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LEMMA 5.2. Let {tk} ⊂ (0,1) , tk → 0 , β > 0 , G > 0 , δ > 0 and let Φ be
a Young function satisfying (1.6). Then there is σ > 0 with the following property. If
{uk}⊂W0LΦ(Ω) are radial functions such that

∫
Ω Φ(|∇uk|)� (1+σ)β and 〈m∗

tk ,uk〉�
((1−σ)β )

1
n , then

∫
{|∇uk|�G}

Φ(|∇uk|) < δ for k large enough.

Proof. We can plainly find σ0 > 0 and C1 = C1(n) > 0 such that for every σ ∈
(0,σ0) we have

(1−σ)
((1−σ)

1
n −2σ

1+2σ

)n
� (1−C1σ). (5.18)

Let us fix σ ∈ (0,σ0) so small that

(C1 +1)σβ � δ . (5.19)

Fix G̃ � G . Using (1.7), (2.6) and (5.2) we obtain for k large enough

(β −σβ )
1
n � 〈m∗

tk ,uk〉 � hk(Rtk)
gtk (Rtk)

+ σβ
1
n

� 1
gtk(Rtk)

(
G̃R+(1+ σ)||∇uk||LΦ({|∇uk|>G̃})B

1−n
n ω− 1

n
n−1 log

1
γ
[�]

( 1
Rtk

))
+ σβ

1
n

� 1
gtk(Rtk)

(
G̃R+(1+2σ)||∇uk||LΦ({|∇uk|>G̃})B

1−n
n ω− 1

n
n−1 log

1
γ
[�]

( 1
tk

))
+ σβ

1
n

=
1

gtk(Rtk)

(
G̃R+(1+2σ)||∇uk||LΦ({|∇uk|>G̃})gt(Rtk)

)
+ σβ

1
n

� (1+2σ)||∇uk||LΦ({|∇uk|>G̃}) +2σβ
1
n .

Thus, if G̃ is large enough, acting in the same way as in the proof of Lemma 2.1 and
using (5.18) we obtain

∫
{|∇uk|>G̃}

Φ(|∇uk|) � (1−σ)||∇uk||nLΦ({|∇uk|>G̃})

� (1−σ)
((β −σβ )

1
n −2σβ

1
n

1+2σ

)n
� (1−C1σ)β .

Hence (5.19) gives∫
{|∇uk|�G}

Φ(|∇uk|) �
∫
{|∇uk|�G̃}

Φ(|∇uk|) =
∫

Ω
Φ(|∇uk|)−

∫
{|∇uk|>G̃}

Φ(|∇uk|)

� (1+ σ)β − (1−C1σ)β = (C1 +1)σβ � δ

and we are done. �
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LEMMA 5.3. Let β > 0 , {tk} ⊂ (0,1) , tk → 0 and let {uk} ⊂ W0LΦ(B(R)) be

radial functions satisfying ||∇uk||LβΦ(B(R)) � (1+o(1))β
1
n . If 〈m∗

tk ,uk〉 → 1 , then

uk −mtk → 0 in W0L
Φ(B(R)).

Proof. The proof is easily obtained applying the uniform convexity of the norm
|| · ||LβΦ(B(R)) to the gradients of the functions uk and mtk . Let us give the details.

First, we infer from (5.3)

||∇uk||LβΦ(B(R)) → β
1
n .

Now, since we have 〈m∗
tk
,mtk 〉 =

∫
B(R) Φ0(|∇mtk |) → 1 and ||∇mtk ||LβΦ(B(R)) → β

1
n

(see (5.1)), we obtain from 〈m∗
tk ,uk〉 → 1 and ||∇uk||LβΦ(B(R)) → β

1
n

〈
m∗

tk
,

mtk
||∇mtk ||LβΦ(B(R))

+ uk
||∇uk||LβΦ(B(R))

2

〉

=
1
2

(〈
m∗

tk ,
mtk

||∇mtk ||LβΦ(B(R))

〉
+

〈
m∗

tk ,
uk

||∇uk||LβΦ(B(R))

〉)
→ β− 1

n .

Combining this result with (5.3) we obtain

∣∣∣∣∣
∣∣∣∣∣

∇mtk
||∇mtk ||LβΦ(B(R))

+ ∇uk
||∇uk||LβΦ(B(R))

2

∣∣∣∣∣
∣∣∣∣∣
LβΦ(B(R))

→ 1.

Therefore the uniform convexity of the the norm || · ||LβΦ(B(R)) implies

∣∣∣∣∣∣ ∇mtk

||∇mtk ||LβΦ(B(R))
− ∇uk

||∇uk||LβΦ(B(R))

∣∣∣∣∣∣
LβΦ(B(R))

→ 0.

Finally, since ||∇mtk ||LβΦ(B(R)) → β 1
n and ||∇uk||LβΦ(B(R)) → β 1

n , we have

β− 1
n ||∇mtk −∇uk||LβΦ(B(R))

�
∣∣∣∣∣∣∇mtk

β 1
n

− ∇mtk

||∇mtk ||LβΦ(B(R))

∣∣∣∣∣∣
LβΦ(B(R))

+
∣∣∣∣∣∣ ∇mtk

||∇mtk ||LβΦ(B(R))
− ∇uk

||∇uk||LβΦ(B(R))

∣∣∣∣∣∣
LβΦ(B(R))

+
∣∣∣∣∣∣ ∇uk

||∇uk||LβΦ(B(R))
− ∇uk

β
1
n

∣∣∣∣∣∣
LβΦ(B(R))

→ 0.

Thus, we are done. �
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6. Proof of Theorem 1.7

Proof of Theorem 1.7(i). Assume that θ ∈ (0,1) (the case θ = 0 is studied in
the proof of Theorem 1.7(iii)) and limsupk→∞ JPθ (uk) > JPθ (u) . Passing to a subse-
quence we can suppose that the limit exists and limk→∞ JPθ (uk) > JPθ (u) . Passing to
a subsequence again we can also suppose that uk → u in LΦ(Ω) and uk → u a.e. in
Ω . Since the symmetric rearrangement preserves the convergence in Orlicz spaces (see
[24, Theorem 1.D]), we can also suppose that u#

k → u# in LΦ(B(R)) and u#
k → u# a.e.

in B(R) .

Step 1. In this step we show that passing to a subsequence we can find {tk} ⊂
(0,1) , tk → 0, such that

liminf
k→∞

〈m∗
tk
,u#

k〉 � (1−θ )
1
n (6.1)

and
liminf
k→∞

〈m∗
tk ,(uk −u)#〉 � (1−θ )

1
n . (6.2)

Let us prove (6.1). First, let us consider the case that there are δ > 0, ε > 0 and k0 ∈ N

such that

〈m∗
t ,u

#
k〉 � (1− ε)(1−θ )

1
n for every t ∈ (0,δ ) and every k � k0. (6.3)

Therefore by (5.2) with β = 1, (1.5), (1.7) and Pθ = (1− θ )−
γ
n , we have for every

t ∈ (0,δ ) small enough and k � k0

exp[�]

(
K�,n,αPθ |hk(Rt)|γ

)
� exp[�]

(
K�,n,αPθ |gt(Rt)|γ(|〈m∗

t ,u
#
k〉|+ ψ(t)

)γ
)

� exp[�]

(
K�,n,α |gt(Rt)|γ

(
1− ε

2

)γ)

=

⎧⎨
⎩

exp(n(1− ε
2 ) log( 1

t )) for � = 1

exp[�]((1− ε
2 ) log[�](

1
t )) for � � 2.

(6.4)

Since hk(Rt) is bounded for t bounded away from zero (see (2.7)), from (6.4) we easily
obtain that the integrals

∫
B(R)

exp[�]

(
K�,n,αPθ |uk|γ

)
= ωn−1R

n
∫ 1

0
tn−1 exp[�]

(
K�,n,αPθ |hk(Rt)|γ

)
dt

have a common integrable majorant and thus the Lebesgue Dominated Convergence
Theorem ensures that JPθ (uk) → JPθ (u) , a contradiction. Hence there cannot be δ >
0, ε > 0 and k0 ∈ N such that (6.3) holds and thus we can pass to a subsequence
satisfying (6.1).

We proceed to the proof of (6.2). First, let us introduce the following notation.
Given L > 0, we define

uL(x) = min{|u(x)|,L}sgn(u(x)) and uL(x) = u(x)−uL(x).
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Similarly we define uL
k and (uk)L , k ∈ N . It can be easily seen that∫

Ω
Φ(|∇uk|) =

∫
Ω

Φ(|∇uL
k |)+

∫
Ω

Φ(|∇(uk)L|), uL
k → uL a.e. in Ω

and (uk)L → uL a.e. in Ω.

Moreover uL
k form a bounded sequence in W0LΦ(Ω) and thus there is a weakly con-

vergent subsequence. Since uL
k converge almost everywhere to uL it is easy to see

that
uL

k ⇀ uL in W0L
Φ(Ω) and (uk)L ⇀ uL in W0L

Φ(Ω).

The proof of (6.2) is obtained establishing the following chain of inequalities

(1−θ )
1
n � liminf

k→∞
〈m∗

tk
,u#

k〉 � liminf
k→∞

〈m∗
tk
,(uL

k )
#〉

� liminf
k→∞

〈m∗
tk
,(uL

k −uL)#〉+ ε � liminf
k→∞

〈m∗
tk
,(uk −u)#〉+ ε,

(6.5)

with ε > 0 being an arbitrarily small number and L depending on ε is specified below.
The first inequality in (6.5) is just (6.1). The second inequality easily follows from

gtk(Rtk) → ∞ (see (1.7)), (5.2) and

u#
k −L � (uL

k )
# � u#

k. (6.6)

The third inequality follows from Lemma 5.1, since we can make
∫

Ω Φ(∇uL|) as small
as we wish via a choice of sufficiently large L . The last inequality follows from (5.2),
since gtk (Rtk) → ∞ and

|uL
k −uL| = |uk −u+(uL− (uk)L)| � |uk −u|+ |uL|+ |(uk)L| � |uk −u|+2L.

This completes the proof of (6.2).

Step 2. In this step we prove

limsup
k→∞

||∇(uk −u)#||
L

1
1−θ Φ(B(R))

� 1. (6.7)

Fix ε > 0. Next, we fix L > 0 so large that∫
Ω

Φ(|∇uL|) = τ, (6.8)

where τ ∈ (0, 1
2 min{θ ,1−θ}) is a small number specified below.

By the Pólya-Szegö inequality (Theorem 2.1) we have

||∇(uk −u)#||
L

1
1−θ Φ(B(R))

� ||∇(uk −u)||
L

1
1−θ Φ(Ω)

� ||∇((uk)L −uL)||
L

1
1−θ Φ(Ω)

+ ||∇uL
k ||

L
1

1−θ Φ(Ω)
+ ||∇uL||

L
1

1−θ Φ(Ω)

= I1 + I2 + I3.

(6.9)
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If τ is small enough, then (2.3) implies that I3 < ε .
Next, since (uk)L ⇀ uL , by the weak lower semicontinuity of the modular we have

for k large enough∫
Ω

Φ(|∇(uk)L|) �
∫

Ω
Φ(|∇uL|)− τ =

∫
Ω

Φ(|∇u|)−
∫

Ω
Φ(|∇uL|)− τ = θ −2τ

and thus ∫
Ω

Φ(|∇uL
k |) =

∫
Ω

Φ(|∇uk|)−
∫

Ω
Φ(|∇(uk)L|) � 1−θ +2τ. (6.10)

Hence, if τ is small enough, using (2.4) we obtain I2 < 1+ ε .
It remains to prove that I1 < ε . In the proof, we employ both norms || · ||

L
1

1−θ Φ(Ω)
and || · ||LΦ(Ω) . From (6.1) we obtain for k large enough

〈m∗
tk ,u

#
k〉 � (1−θ − τ)

1
n (6.11)

and thus, by (5.2), (5.3) and (6.6) we have for k large enough

||∇(uL
k )

#||LΦ(B(R)) � (1−θ −2τ)
1
n . (6.12)

Now, by Remark 3.1, there is η ∈ (0, 1
2 min{θ ,1−θ}) such that

∫
Ω

Φ(|∇(uk)L|) � θ +2η and θ −η �
∫

Ω
Φ(|∇uL|)

=⇒ ||∇((uk)L −uL)||
L

1
1−θ Φ(Ω)

< ε.
(6.13)

If τ < η , then from (6.8) and
∫

Ω Φ(|∇u|) = θ we see that the second inequality
in (6.13) is satisfied and it remains to prove∫

Ω
Φ(|∇(uk)L|) � θ +2η . (6.14)

To prove (6.14), let us start with the proof of∫
Ω

Φ(|∇(uL
k )

#|) � 1−θ −2η . (6.15)

By Lemma 2.1, there are G > 0 and δ > 0 such that∫
{|∇(uL

k )#|<G}
Φ(|∇(uL

k )
#|) < δ and ||∇(uL

k )
#||LΦ(B(R)) � (1−θ −η)

1
n

=⇒
∫

Ω
Φ(|∇(uL

k )
#|) � 1−θ −2η

(6.16)

(the assumptions of Lemma 2.1 concerning C1 and C2 are satisfied since

||∇(uL
k )

#||LΦ(B(R)) � ||∇u#
k||LΦ(B(R)) � ||∇uk||LΦ(Ω) � 1
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and (6.12) gives us the lower bound). Next, the estimate of the integral on the left
hand side of (6.16) follows from Lemma 5.2 providing τ is small enough (the assump-
tions are satisfied by (6.10) and (6.11)) and the estimate of the norm ||∇(uL

k )
#||LΦ(B(R))

follows from (6.12). Thus, we have proved (6.15).
Now, (6.15) and the Pólya-Szegö inequality (Theorem2.1) yield for k large enough∫
Ω

Φ(|∇(uk)L|) =
∫

Ω
Φ(|∇uk|)−

∫
Ω

Φ(|∇uL
k |) � 1−

∫
Ω

Φ(|∇(uL
k )

#|) � θ +2η

and (6.14) is proved. Therefore both inequalities on the left hand side of (6.13) are
satisfied and thus we have proved that I1 < ε . This concludes the proof of (6.7).

Step 3. Our aim is to prove

(1−θ )−
1
n (uk −u)#−mtk

k→∞→ 0 in W0L
Φ(B(R)). (6.17)

Combining (6.2) and (6.7) with (5.3) we obtain

〈m∗
tk ,(1−θ )−

1
n (uk −u)#〉 k→∞→ 1

and
||(1−θ )−

1
n ∇(uk −u)#||

L
1

1−θ Φ(B(R))

k→∞→ (1−θ )−
1
n .

Now, we complete the proof of (6.17) using Lemma 5.3. Thus, we are done. �

Proof of Theorem 1.7(ii). Let us suppose that ξ ∈ (0,1) (the case ξ = 0 is studied
in the proof of Theorem 1.7(iii)) and limsupk→∞ JPξ (uk) > JPξ (u) . Again, we can

suppose that limk→∞ JPξ (uk) exists, limk→∞ JPξ (uk) > JPξ (u) , uk → u in LΦ(Ω) , uk →
u a.e. in Ω , u#

k → u# in LΦ(B(R)) , u#
k → u# a.e. in B(R) .

Step 1. The aim of this step is to show that passing to a subsequence we can find
{tk} ⊂ (0,1) , tk → 0, such that

liminf
k→∞

〈m∗
tk
,u#

k〉 � (1− ξ )
1
n (6.18)

and
liminf
k→∞

〈m∗
tk
,u#

k −u#〉 � (1− ξ )
1
n . (6.19)

Inequality (6.18) is proved in the same way as (6.1). Next, (6.19) easily follows
from (5.4) and (6.18).

Step 2. In this step we prove

limsup
k→∞

||∇(u#
k −u#)||

L
1

1−ξ Φ
(B(R))

� 1. (6.20)

The proof of (6.7) is still valid for radial functions u#
k and u# (we replace θ by ξ and

we also use (6.18) instead of (6.1)). From (6.9) we can see that the quantity ||∇(u#
k −

u#)||
L

1
1−ξ Φ

(B(R))
is still estimated by I1 + I2 + I3 .
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Step 3. Our aim is to prove

(1− ξ )−
1
n (u#

k −u#)−mtk
k→∞→ 0 in W0L

Φ(B(R)). (6.21)

Combining (6.19) and (6.20) with (5.3) we obtain

〈m∗
tk ,(1− ξ )−

1
n (u#

k −u#)〉 k→∞→ 1

and
||(1− ξ )−

1
n ∇(u#

k −u#)||
L

1
1−ξ Φ

(B(R))

k→∞→ (1− ξ )−
1
n .

Now, we complete the proof of (6.21) using Lemma 5.3. �

Proof of Theorem 1.7(iii). In the proof of Theorem 1.7(i), we were using the as-
sumptions (1.8) and (1.9) only when employing the uniform convexity of the space
W0LΦ(Ω) in Step 2 and Step 3. Thus we still have condition (6.1) which reads in our
case (recall that θ = 0)

liminf
k→∞

〈m∗
tk ,u

#
k〉 � 1. (6.22)

Now, we claim that it is enough to prove

limsup
k→∞

||∇u#
k||LΦ0 (B(R)) � 1. (6.23)

Indeed, Φ0 satisfies (1.8) and (1.9) and thus (6.23) and Lemma 5.3 (see also (5.3))
imply u#

k −mtk → 0 in the Dirichlet norm corresponding to Φ0 . Nevertheless, the Lux-
emburg norms corresponding to Φ0 and Φ , respectively, give us the same convergence.

Thus, let us complete the proof establishing (6.23). Fix ε > 0. By (1.6), there is
t0 > 0 such that Φ0(t) � (1+ ε)Φ(t) for every t > t0 and thus for every k we have

∫
{|∇u#

k |>t0}
Φ0(|∇u#

k|) � (1+ ε)
∫
{|∇u#

k |>t0}
Φ(|∇u#

k |) � (1+ ε)
∫

B(R)
Φ(|∇u#

k |) � 1+ ε.

(6.24)
Next we claim that for every ε > 0 there is δ > 0 such that

∫
{|∇u#

k |�t0}
Φ(|∇u#

k |) � δ =⇒
∫
{|∇u#

k |�t0}
Φ0(|∇u#

k |) � ε. (6.25)

To prove this, pick σ > 0 so small that Φ0(σ)L n(B(R)) < ε
2 . Since Φ(σ) > 0, there

is plainly L > 0 such that Φ0(t) � LΦ(t) on [σ ,t0] . Hence we can set δ = ε
2L to obtain

∫
{|∇u#

k |�t0}
Φ0(|∇u#

k |) =
∫
{|∇u#

k |�σ}
Φ0(|∇u#

k |)+
∫
{σ<|∇u#

k |�t0}
Φ0(|∇u#

k|)

�
∫

B(R)
Φ0(σ)+L

∫
{σ<|∇u#

k |�t0}
Φ(|∇u#

k |) � ε
2

+L
ε
2L

= ε.



1278 ROBERT ČERNÝ

Finally, since we have
∫
B(R) Φ(|∇uk|) � 1 and (6.22), we can use Lemma 5.2 to

ensure that for k large enough the left hand side of (6.25) is satisfied. Hence (6.24)
and (6.25) yield∫

B(R)
Φ0(|∇u#

k|) =
∫
{|∇u#

k |>t0}
Φ0(|∇u#

k |)+
∫
{|∇u#

k |�t0}
Φ0(|∇u#

k |) � 1+2ε.

Now, (2.4) implies (6.23) and we are done. �
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