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UPPER BOUNDS FOR THE COVERING NUMBER OF

CENTRALLY SYMMETRIC CONVEX BODIES IN R
n

SENLIN WU

(Communicated by H. Martini)

Abstract. The covering number c(K) of a convex body K is the least number of smaller ho-
mothetic copies of K needed to cover K . We provide new upper bounds for c(K) when K is
centrally symmetric by introducing and studying the generalized α -blocking number β α

2 (K) of
K . It is shown that when a centrally symmetric convex body K is sufficiently close to a cen-
trally symmetric convex body K′ , then c(K) is bounded by β α

2 (K′) from above, where α is a
properly chosen number. Related results in Minkowski geometry are also presented.

1. Introduction

For an integer m > 1 we denote by [m] the set {1, · · · ,m} . The interior, boundary,
and closure of a set A ⊂ R

n is denoted by intA , bdA , and clA , respectively. Let A and
B be two sets in R

n , and λ be a real number. Set

A+B := {x+ y : x ∈ A,y ∈ B} and λA := {λx : x ∈ A}.

For each positive number λ and each point x ∈ R
n , the set

λA+ x := λA+{x}

is called a homothetic copy of A . If λ ∈ (0,1) , then λA+ x is called a smaller homo-
thetic copy of A . The set A+ x is called a translate of A . Let A1, · · · ,Am be some sets
in R

n . If

A ⊆
m⋃

i=1

Ai,

then we say that A is covered by these m sets.
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A compact convex set in R
n having interior points is called a convex body. The set

of convex bodies in R
n is denoted by K n , and the set of centrally symmetric convex

bodies in K n is denoted by C n . Let x be a boundary point of a convex body K ∈K n ,
u be a vector in R

n distinct from the origin o (called a direction), and p be a point
exterior to K . We say that x is illuminated by the direction u if there exists a positive
number λ such that x+ λu ∈ intK ; x is illuminated by the point p if the ray starting
from p and passing through x intersects intK while the segment between p and x does
not. Let U = {ui : i ∈ [m]} be a set of directions, and P = {pi : i ∈ [k]} be a set of
points exterior to K . We say that bdK is illuminated by U (by P , resp.) if each point
in bdK is illuminated by one of the directions in U (one of the points in P , resp.).

For a convex body K in K n , the covering number c(K) of K is the least number
of translates of intK needed to cover K . It turns out (cf. Chapter V of [8]) that c(K)

• equals the least number of smaller homothetic copies of K required to cover K ;

• equals the least cardinality of a set of directions that can illuminate bdK ;

• equals the least cardinality of a set of points exterior to K that can illuminate
bdK .

Concerning the upper bound for c(K) , we have the following well-known conjecture
due to Hadwiger [15] and also to Gohberg and Markus [14]:

CONJECTURE 1. (Hadwiger’s covering conjecture) If K ∈ K n , then

n+1 � c(K) � 2n,

and the equality c(K) = 2n holds if and only if K is a parallelotope.

This conjecture is completely confirmed only when n = 2, and is essentially open
even when n = 3. It is also verified for several classes of convex bodies, such as convex
bodies having smooth boundary, belt bodies, and convex bodies of constant width (the
latter when n � 16). See the monographs [8], [10], and [3], and the surveys [21] and
[2] for more information about this conjecture and for further references. See also [28]
and [4] for more recent results concerning this conjecture.

In this paper we shall consider the upper bound of c(K) when K ∈ C n . An impor-
tant progress in this direction has been made by Lassak [19]. He proved that c(K) � 8
holds for each K ∈C 3 . A general upper bound for c(K) when K ∈C n was obtained by
Zong [27]. Zong proved that, for each K ∈ C n , c(K) � β (K) , where β (K) , called the
blocking number of K , is the least integer m such that there exist m non-overlapping
translates K1, · · · ,Km of K satisfying the following properties:

1. Ki touches K at bdK , i.e., /0 �= Ki ∩K ⊂ bdK , for each i ∈ [m] ;

2. K1, · · · ,Km block any other translate of K from touching K , i.e., if K′ is a trans-
late of K touching K at bdK , then there exists an i∈ [m] such that K′ ∩intKi �= /0 .

For each K ∈ K n , β (K) = β (K−K) and β (K) is bounded by the kissing number of
K from above (cf. [27] and [26]). In general, β (K) is not easy to compute. Several
known examples are:
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• if K is an n -dimensional parallelotope, then β (K) = 2n , cf. [12, Theorem 4];

• if K is the unit ball of R
3 , then β (K) = 6, cf. [12, Theorem 5];

• if K is the unit ball of R
4 , then β (K) = 9, cf. [12, Theorem 7];

• if K is a regular octahedron then, β (K) = 6, cf. [25, Theorem 1.1].

In [27], the following conjecture was posed.

CONJECTURE 2. For each convex body K in R
n we have

2n � β (K) � 2n,

and the equality β (K) = 2n holds if and only if K is a parallelotope.

Clearly, if Conjecture 2 is true, then the Hadwiger’s covering conjecture is also
true for centrally symmetric convex bodies.

We shall provide a new upper bound for c(K) when K ∈ C n by introducing and
studying the generalized α -blocking number β α

2 (K) of K (cf. Definition 9 in Section
3). A convex body K ∈ C n will be viewed as a ball of a Minkowski space (a real
finite dimensional Banach space) so that we can apply several tools and known and
new results from the geometry of Minkowski spaces, some of which are listed in the
next section. We show that when K ∈ C n is sufficiently close to K′ ∈ C n , then c(K) is
bounded by β α

2 (K′) , where α is a properly chosen number related to K (cf. Theorem
13 in Section 3). This fact can be used to overcome the upper semi-continuity of c(K) .
When

α =
2

2−RC(X)
−1,

where X is the Minkowski space corresponding to K (cf. Section 2 below) and RC(X)
is a number determined by X which is closely related to illuminating and covering
K (cf. Definition 7 in Section 2), we obtain a new constant β ′(K) := β α

2 (K) (cf.
Definition 15 in Section 3) satisfying

1+n � c(K) � β ′(K) � β 1
2 (K) � β (K).

Clearly, the upper bound β ′(K) of c(K) is tighter than β (K) . Estimations of RC(X)
are presented in Section 4.

2. Preliminaries

Let K be a convex body in C n centered at the origin o . Then K induces a norm
‖·‖ via its Minkowski functional

‖x‖ := inf{λ > 0 : x ∈ λK}
and is the unit ball BX of the Minkowski space X = (Rn,‖·‖) . Each Minkowski space
appearing in this paper has this form. The unit sphere SX of X , i.e., the set of unit
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vectors of X , is precisely the boundary bdK of K . A unit vector in X is also called a
direction. For two linearly independent unit vectors u and v , we set

arc(u,v) :=
{

αu+ βv
‖αu+ βv‖ : α,β � 0,α + β > 0

}
.

For two distinct points x and y in X , we denote by [x,y] the segment between x and
y , i.e.,

[x,y] = {λx+(1−λ )y : λ ∈ [0,1]}.
Since c(K) = c(T (K)) holds for each non-singular affine transformation T , we

shall use the Banach-Mazur distance

d(K1,K2) := min{γ � 1 : K1 ⊂ T (K2) ⊂ γK1 + x, x ∈ R
n, T ∈ A n}

to measure the difference between two convex bodies K1 and K2 in K n , where A n is
the set of non-degenerate affine transforms from R

n to R
n .

If X and Y are two Minkowski spaces, then d(BX ,BY ) equals to the Banach-
Mazur distance d(X ,Y ) between X and Y , which is defined by

d(X ,Y ) := min{‖T‖ ·∥∥T−1
∥∥ : T : X 	→ Y is a linear isomorphism}.

2.1. Birkhoff orthogonality, shadow boundaries

Let x and y be two vectors in X . If

‖x+ αy‖� ‖x‖

holds for each real number α , then x is said to be Birkhoff orthogonal to y (x ⊥B y),
cf. [5], [18], and [1]. Clearly, if x,y �= o , then x ⊥B y if and only if the line {x+ αy :
α ∈ R} supports ‖x‖BX (meets ‖x‖BX but not its interior). This concept is closely
related to the shadow boundary (see the definition below) of BX .

DEFINITION 1. (cf. p. 161 in [20]) Let K be a convex body in K n , u ∈ R
n be a

point distinct from the origin o . The shadow boundary SbdK(u) of K in the direction
of u is the set of points z ∈ bdK such that the line {z+ λu : λ ∈ R} supports K .

PROPOSITION 2. (cf. Statement 1 and Lemma 1 in [17]) Let K ∈ K n , u ∈ R
n \

{o} . Then bdK is the union of three disjoint subsets of it, namely, SbdK(u) ,

K+
u := {z ∈ bdK : ∃λ > 0 s.t. z−λu∈ intK},

and
K−

u := {z ∈ bdK : ∃λ > 0 s.t. z+ λu∈ intK}.
The sets K+

u and K−
u are path-connected, (clK+

u )\K+
u and (clK−

u )\K−
u are two closed

connected (n−2)-dimensional subsets of SbdK(u) separating bdK .
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Clearly, K+
u and K−

u is the set of boundary points of K that can be illuminated by
the direction −u and u , respectively; each point from SbdK(u) cannot be illuminated
either by u or by −u .

For a direction u in X , we denote by ICX (u) the set of points from SX that can
be illuminated by the direction u . Clearly,

−u ∈ ICX(u) and u ∈ ICX (−u).

By Definition 1 and Proposition 2 we obtain the following proposition.

PROPOSITION 3. Let u be a direction in X . Then SX is the union of three disjoint
sets SbdBX (u) , ICX(u) , and ICX (−u) . Moreover,

SbdBX (u) = {z ∈ SX : z ⊥B u}.

The following corollaries follow directly from Proposition 3, the first one of which
is closely related to a problem posed by Lassak in [19]: whether the boundary of a
convex body K ∈ C n , which is not a parallelotope, can be illuminated by 2n−1 − 1
pairs of opposite directions?

COROLLARY 4. The set {±ui : i ∈ [m]} of m pairs of directions illuminate SX

if and only if
m⋂

i=1

SbdBX (ui) = /0.

COROLLARY 5. SX can be illuminated by a set {ui : i ∈ [m]} of m directions
if and only if

SX ⊆
m⋃

i=1

ICX (ui).

For a set A ⊂ SX and a point x ∈ SX , we put

r′(x,A) = sup{γ : (x+ γBX)∩SX ⊆ A}.

PROPOSITION 6. For each direction u in X , we have

1. r′(u, ICX(−u)) = inf{‖u− z‖ : z ∈ SbdBX (u)} ;

2. r′(u, ICX(−u)) � 1 , and equality holds if and only if there exists a unit vector z
such that

[z−u,z]⊂ SX ; (1)

3. r′(u, ICX(−u)) � 2 , and equality holds if and only if the unit sphere of each two-
dimensional subspace L of X containing u is a parallelogram having u as a
vertex.
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Proof. 1. Put
α := inf{‖u− z‖ : z ∈ SbdBX (u)}.

It is clear that, for each z ∈ SbdBX (u) ,

r′(u, ICX(−u)) � ‖u− z‖ .

Thus
r′(u, ICX (−u)) � α.

Let γ be an arbitrary number in (0,α) , and z be an arbitrary point in (u+ γBX)∩
SX . Then, by the monotonocity lemma (cf. [22, Proposition 31]),

arc(u,z)∩SbdBX (u) = /0.

If z �∈ ICX (−u) , then none of the sets arc(u,z)∩ ICX(−u) and arc(u,z)∩ ICX(u) is
empty. Since arc(u,z) is a curve connecting u and z , this is impossible. Therefore
z ∈ ICX (−u) . It follows that

r′(u, ICX (−u)) � α.

2. From the first part of the proof, Proposition 3, and the definition of Birkhoff
orthogonality it follows that

r′(u, ICX(−u)) � 1.

If r′(u, ICX (−u)) = 1, then there exists a point z in SbdBX (u) such that ‖z−u‖=
1. Since the line {z+ λu : λ ∈ R} is a supporting line of BX ,

[z−u,z]⊂ BX ∩{z+ λu : λ ∈ R} ⊂ SX .

Conversely, suppose that there exists a unit vector z satisfying (1). It is clear that
z ⊥B u . Therefore

1 � r′(u, ICX(−u)) � ‖u− z‖= 1.

3. We only need to characterize the case when r′(u, ICX (−u)) = 2.
First suppose that r′(u, ICX(−u)) = 2. Let L be an arbitrary two-dimensional

subspace of X containing u , and w be an arbitrary point in SbdBX (u)∩L . Then

2 = inf{‖u− z‖ : z ∈ SbdBX (u)} � min{‖w−u‖ ,‖w+u‖} � 2.

Thus
‖w+u‖ = ‖w−u‖ = 2.

It is not difficult to see that the unit sphere SL of L is a parallelogram having u as a
vertex.

Conversely, suppose that the unit sphere of each two-dimensional subspace of X
containing u is a parallelogram having u as a vertex. Let z be an arbitrary point in
SbdBX (u) and L be the subspace spanned by u and z . Then, since SL is a parallelogram
having u as a vertex, z is also a vertex of SL . It follows that ‖z−u‖ = 2. Thus
r′(u, ICX(−u)) = 2. �
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DEFINITION 7. For a Minkowski space X , set

RC(X) := inf{r′(u, ICX (−u)) : u ∈ SX}.

THEOREM 8. If there exist m unit vectors u1,u2, · · · ,um such that

SX ⊂
m⋃

i=1

int(ui +RC(X) ·BX),

then c(BX) � m.

Proof. By the definition of RC(X) , we have

SX ⊆
m⋃

i=1

int(ui +RC(X) ·BX)

⊆
m⋃

i=1

int(ui + r′(ui, ICX(−ui)) ·BX)

⊆
m⋃

i=1

ICX (−ui).

Then Corollary 5 implies that c(BX) � m . �
In Section 3 we shall estimate c(BX ) with the help of RC(X) . We will provide

more properties of this constant in Section 4.

3. Generalized blocking number

We begin with introducing the generalized α -blocking number.

DEFINITION 9. Let K be a convex body in R
n satisfying o ∈ intK , and

x1,x2, · · · ,xm

be m points in X . We say that B := {xi +αK : i∈ [m]} is a generalized α -blocking
configuration of K for a positive number α if

1. each element of B touches K at its boundary,

2. B blocks any other translate of αK from touching K .

The least cardinality of a generalized α -blocking configuration of K is called the gen-
eralized α -blocking number of K and denoted by β α

2 (K) .

The name “generalized α -blocking number” comes from two observations. On
the one hand, in contrast to β (K) and β2(K) defined in [26], the homothetic copies of
K involved in Definition 9 need not to be translates of K . On the other hand, compared
with the generalized blocking number defined in [9], these homothetic copies need not
be non-overlapping.
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LEMMA 10. Let α be a positive number, and x1,x2, · · · ,xm be m points in X .
Then

B := {xi + αBX : i ∈ [m]}
is a generalized α -blocking configuration of BX if and only if

1. ‖xi‖ = 1+ α holds for each i ∈ [m] , and

2. (1+ α)SX ⊂
m⋃

i=1
int(2αBX + xi) .

Proof. Clearly, the set x+αBX touches BX if and only if ‖x‖= 1+α . Thus each
set in B touches BX if and only if ‖xi‖ = 1+α holds for each i ∈ [m] . It follows that
B blocks any other translate of αBX from touching BX if and only if, for each point
x ∈ (1+ α)SX ,

x ∈
m⋃

i=1

int(2αBX + xi).

The proof is complete. �
The following is a direct corollary.

COROLLARY 11. Let α be a positive number, and x1,x2, · · · ,xm be m points in
X . Then B := {xi +αBX : i ∈ [m]} is a generalized α -blocking configuration of BX

if and only if

SX ⊂
m⋃

i=1

int

(
2α

1+ α
BX +ui

)
,

where, for each i ∈ [m] ,

ui :=
1

1+ α
xi ∈ SX .

PROPOSITION 12. β α
2 (BX) is non-increasing with respect to α in (0,+∞) .

Proof. Let α1 and α2 be two numbers in (0,+∞) satisfying α1 < α2 . Then

2α1

1+ α1
<

2α2

1+ α2
.

Let m = β α1
2 (BX) . Then there exists a generalized α1 -blocking configuration {xi +

α1BX : i ∈ [m]} of BX . By Corollary 11,
{

1
1+ α1

xi : i ∈ [m]
}
⊂ SX

and

SX ⊂
m⋃

i=1

int

(
2α1

1+ α1
BX +

1
1+ α1

xi

)
⊂

m⋃
i=1

int

(
2α2

1+ α2
BX +

1
1+ α1

xi

)
.
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It follows that {
1+ α2

1+ α1
xi + α2BX : i ∈ [m]

}

is a generalized α2 -blocking configuration. Therefore β α2
2 (BX) � β α1

2 (BX) . �

The following Theorem is our main result. Note that 1 � RC(X) �
√

2 (cf. Theo-
rem 21).

THEOREM 13. Let X and Y be two isomorphic Minkowski spaces. If

δ := d(X ,Y ) <
1+

√
1+2RC(X)

2
,

then c(BX) � β α
2 (BY ) , where

α = α(X ,δ ) :=
2δ 2

4δ 2−2δ −RC(X)
−1.

Proof. Without loss of generality, we may assume that X = (Rn,‖·‖X ) and Y =
(Rn,‖·‖Y ) , and that

BY ⊆ BX ⊆ δBY .

It follows that
1
δ
‖x‖Y � ‖x‖X � ‖x‖Y

holds for each vector x ∈ R
n .

Let m = β α
2 (BY ) . By Corollary 11, there exist vectors u1,u2, · · · ,um in SY such

that

SY ⊂
m⋃

i=1

int

(
2α

1+ α
BY +ui

)
.

For each vector x ∈ R
n \ {o} , set

T (x) =
x

‖x‖X
.

Let i be an arbitrary integer in [m] and vi = T (ui) . For an arbitrary point

w ∈ int

(
2α

1+ α
BY +ui

)
∩SY ,
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set z = T (w) . It follows that

‖vi− z‖X

=
∥∥∥∥ ui

‖ui‖X
− w

‖w‖X

∥∥∥∥
X

=
1

‖ui‖X · ‖w‖X
‖‖w‖X ui−‖ui‖X w‖X

=
1

‖ui‖X · ‖w‖X
‖‖w‖X ui−‖ui‖X ui +‖ui‖X ui−‖ui‖X w‖X

� δ 2 (|‖w‖X −‖ui‖X | ‖ui‖X +‖ui‖X ‖ui −w‖X)
� δ 2 (|‖w‖X −‖w‖Y +‖w‖Y −‖ui‖Y +‖ui‖Y −‖ui‖X |+‖ui −w‖Y )

� δ 2
(

2− 2
δ

+‖ui−w‖Y

)

< δ 2
(

2− 2
δ

+
2α

1+ α

)

= RC(X).

This implies that the image of the set

int

(
2α

1+ α
BY +ui

)

under T is contained in
int(RC(X) ·BX + vi).

Thus

SX ⊂
m⋃

i=1

int(RC(X) ·BX + vi).

From Theorem 8 it follows that c(BX ) � m = β α
2 (BY ) . �

REMARK 14. Recall that the Hausdorff metric between two convex bodies K and
K′ in R

n is given by

δH(K,K′) = max{max
x∈K

min
y∈K′ ‖x− y‖ ,max

y∈K′ min
x∈K

‖x− y‖}

= inf{δ � 0 : K ⊆ K′ + δBn,K′ ⊆ K + δBn},

where Bn is the unit ball of R
n . It is clear that when δH(K,K′) is small, then d(K,K′)

will be close to 1, but the converse is not true.
Solving Hadwiger’s covering conjecture is difficult also because the functional

c(K) is upper semi-continuous with respect to the Hausdorff metric. More precisely,
for any convex body K′ sufficiently close to K in the Hausdorff metric, the inequality
c(K′) � c(K) holds (cf. [8, Theorem 34.9]). Thus confirming Hadwiger’s covering
conjecture for a set dense in K n (see, e.g., [6] and [7], where Hadwiger’s covering
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conjecture is confirmed for belt bodies, a class of convex bodies which is dense in
K n ) does not imply that this conjecture is true in general.

In contrast, Theorem 13 shows that, when Y is sufficiently close to X , then c(BX)
can be controlled by β α

2 (Y ) .

If RC(X) > 1, then

1+
√

1+3RC(X)
3

> 1.

Thus, when

1 � δ := d(X ,Y ) <
1+

√
1+3RC(X)

3
,

we have
α = α(X ,δ ) > 1.

When X is linearly isometric to Y , then δ = d(X ,Y ) = 1 and β α
2 (BY ) = β α

2 (BX ) .

DEFINITION 15. Put
β ′(BX) = β α

2 (BX ),

where

α =
2

2−RC(X)
−1 � 1.

We have the following corollary.

COROLLARY 16.

1+n � c(BX) � β ′(BX) � β 1
2 (BX ) � β (BX).

The generalized kissing number Nα(K) of K ∈ K n is the maximal number of
non-overlapping translates of αK which can touch K at its boundary. Clearly, we have
the following inequality:

β α
2 (BX ) � Nα (BX).

By Theorem 1 in [9] we obtain

COROLLARY 17.

β ′(BX) � Nα(BX ) � (1+2α)n−1
αn ,

where

α =
2

2−RC(X)
−1.

There exist spaces such that β ′(BX ) = n+1. See the following example.
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EXAMPLE 1. If X is Euclidean, then RC(X) =
√

2. Thus β ′(BX) = β α
2 (BX ) ,

where

α =
2

2−√
2
−1.

In this case, for each unit vector u ,

SX ∩ int

(
2α

1+ α
BX +u

)

is precisely the portion of SX that is illuminated by the direction −u . Since c(K) =
n+1 holds for each convex body K ∈ K n having smooth boundary (cf., for example,
Theorem 35.2 in [8]), we have

β ′(BX) = c(BX) = n+1.

EXAMPLE 2. Let X = ln∞ . Then RC(X) = 1. In this case, for each unit vector
u , the set int(BX +u) cannot contain two vertices of BX . Thus β ′(BX) � 2n . Since
β (BX) = 2n , it follows that β ′(BX) = 2n .

Thus, if Conjecture 2 is true, then the following conjecture is also true.

CONJECTURE 3. For each space X = (Rn,‖·‖) ,
n+1 � β ′(BX) � 2n,

and β ′(BX ) = 2n if and only if X is isometric to ln∞ .

Clearly, the value of β ′(BX ) is closely related to the value of RC(X) . In the next
section, we will study this constant in more detail.

4. The constant RC(X)

In the first subsection we present some old and new results that will be used to
estimate RC(X) .

4.1. Radial projections of bisectors and related constants

The bisector B(p,q) of the line segment having endpoints p �= q in X is given by

B(p,q) := {z ∈ X : ‖z− p‖ = ‖z−q‖}.
The radial projection P(x) of the bisector B(−x,x) is defined by

P(x) :=
{

z
‖z‖ : z ∈ B(−x,x)\ {o}

}
.

We have the following simple proposition concerning the relation between P(x)
and SbdBX (x) .
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PROPOSITION 18. For each x ∈ SX ,

SbdBX (x) ⊆ clP(x). (2)

Proof. By Theorem 2.6 in [23], for any y in SX , y ∈ clP(x) whenever y ⊥B x ,
from which (2) follows. �

PROPOSITION 19. For each unit vector x ∈ X , SX is the union of three disjoint
sets, namely, P(x) ,

N(x) := {z ∈ SX : ‖αz− x‖ < ‖αz+ x‖ ,∀α > 0},
and

N(−x) := {z ∈ SX : ‖αz− x‖ > ‖αz+ x‖ ,∀α > 0}.
Moreover, N(x) and N(−x) are two path-connected sets contained in cl(ICX (−x))
and cl(ICX(x)) , respectively.

Proof. It is clear that P(x) , N(x) , and N(−x) are disjoint. Now suppose that u is
a point in SX \P(x) . Then ‖u− x‖ �= ‖u+ x‖ . Suppose that ‖u− x‖< ‖u+ x‖ . If there
exists a positive number α such that ‖αu− x‖ > ‖αu+ x‖ , then, since the function

f (α) = ‖αu− x‖−‖αu+ x‖
is continuous, there exists an α0 > 0 such that ‖α0u− x‖ = ‖α0u+ x‖ . This implies
that u ∈ P(x) , a contradiction. Thus u ∈ N(x) . Similarly, if ‖u− x‖ > ‖u+ x‖ then
u ∈ N(−x) .

Next we show that N(x) and N(−x) are path-connected. Since z ∈ N(x) if and
only if −z∈N(−x) , it suffices to consider the case of N(x) . Let y be an arbitrary point
in N(x)\ {x} . For each λ ∈ (0,1) , let

z := z(λ ) =
λx+(1−λ )y
‖λx+(1−λ )y‖ . (3)

For each number α > 0, by the monotonicity lemma (cf. [22, Proposition 31]) we have

‖αz− x‖ � ‖αy− x‖ < ‖αy+ x‖ � ‖αz+ x‖ .

Thus z ∈ N(x) . It follows that arc(x,y) , which is a curve connecting y and x , is
contained in N(x) . This implies that N(x) is path-connected.

In the rest of the proof we show that N(x) ⊆ cl(ICX(−x)) and the inclusion
N(−x) ⊆ cl(ICX(x)) can be proved in a similar way.

Let y be an arbitrary point in N(x)\{x} . For each number λ ∈ (0,1) , let z(λ ) be
defined as in (3). Since y ∈ N(x) ,

‖λx+(1−λ )y‖ = λ
∥∥∥∥x+

1−λ
λ

y

∥∥∥∥
>

λ
2

(∥∥∥∥x+
1−λ

λ
y

∥∥∥∥+
∥∥∥∥−x+

1−λ
λ

y

∥∥∥∥
)

� 1−λ .
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Thus ∥∥∥∥z(λ )− λx
‖λx+(1−λ )y‖

∥∥∥∥ =
∥∥∥∥ (1−λ )y
‖λx+(1−λ )y‖

∥∥∥∥ < 1,

which shows that z(λ ) ∈ ICX(−x) . Hence

y = lim
λ→0

z(λ ) ∈ cl(ICX(−x)).

Therefore, N(x) ⊆ cl(ICX (−x)) . �
For a unit vector x , we denote by relint(N(x)) the relative interior of N(x) with

respect to SX . From the proof of the Proposition 19, we can deduce the following
corollary.

COROLLARY 20. For each unit vector x and each point y ∈ relint(N(x)) , y ∈
ICX(−x) .

The so called critical number c(X) of X (cf. [23]) is defined as

c(X) := inf{d(x,P(x)) : x ∈ SX}.

The James non-square constant J(X) and the Schäffer non-square constant S(X)
of X are defined by

J(X) := sup{min{‖x+ y‖ ,‖x− y‖} : x,y ∈ SX}

and
S(X) := inf{max{‖x+ y‖ ,‖x− y‖} : x,y ∈ SX},

respectively. The following facts are well known in the geometry of Banach spaces (cf.
[13] and [16]):

1 � S(X) �
√

2 � J(X) � 2 and S(X) · J(X) = 2.

For ε ∈ [0,2] , the Gurarii modulus of convexity βX(ε) (cf. [24]) is defined by

βX(ε) := inf

{
1− inf

λ∈[0,1]
‖λx+(1−λ )y‖ : x,y ∈ SX ,‖x− y‖= ε

}
.

We remark that the M-curvature defined in Definition 1 in [12] is equal to βX(1) .

4.2. Lower and upper bounds on RC(X)

THEOREM 21. For each Minkowski space X ,

1 � c(X) � RC(X) � S(X) �
√

2.

Moreover, RC(X) = 1 if and only if SX contains a segment whose length is at least 1 ;
RC(X) =

√
2 if and only if X is Euclidean.
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Proof. Theorem 3.1 in [23] shows the inequality

1 � c(X) � S(X) �
√

2.

Therefore we only need to prove that

c(X) � RC(X) � S(X).

Let x be an arbitrary unit vector. Then, for each number ε ∈ (0,d(x,P(x)) , we have

((d(x,P(x))− ε)BX + x)∩SX ⊆ relint(N(x)) ⊆ ICX (−x),

which implies that
d(x,P(x)) � r′(x, ICX (−x)).

Therefore c(X) � RC(X) .
Let x and y be an arbitrary pair of unit vectors in X . If x and y are linearly

dependent, then
max{‖x+ y‖ ,‖x− y‖} = 2 � RC(X).

Now suppose that x and y are linearly independent. Let z be a unit vector in the two-
dimensional subspace L spanned by x and y such that z ⊥B x and that the two points y
and z lie in the same open half-plane of L bounded by {λx : λ ∈ R} . If y = z , then

max{‖x+ y‖ ,‖x− y‖} � min{‖x+ z‖ ,‖x− z‖}
� min{r′(x, ICX(−x)),r′(−x, ICX(x))} � RC(X).

Otherwise we may assume that, without loss of generality,

z ∈ {−αx+ βy : α,β > 0}.
Then, by the monotonicity lemma (again, cf. [22, Proposition 31]),

max{‖x+ y‖ ,‖x− y‖} � ‖x+ y‖
� ‖z+ x‖
� min{‖x+ z‖ ,‖x− z‖}
� min{r′(x, ICX(−x)),r′(−x, ICX(x))} � RC(X).

It follows that
RC(X) � S(X).

If RC(X) = 1, then c(X) = 1. From Theorem 3.1 in [23] it follows that SX con-
tains a segment whose length is not less than 1. Conversely, suppose that SX contains
a segment [u,v] ⊂ SX , where u and v are two unit vectors satisfying ‖u− v‖ � 1.
Let z = u−v

‖u−v‖ . Then u ⊥B z and [u,u− z] ⊆ [u,v] ⊂ SX . Proposition 6 shows that

r′(z, ICX(−z)) = 1. Therefore RC(X) = 1.
If X is Euclidean, then c(X) = S(X) =

√
2, from which it follows that RC(X) =√

2.
Conversely, suppose that RC(X) =

√
2. Then, by Proposition 6, ‖x− y‖ �

√
2

holds for each pair of unit vectors x and y satisfying x ⊥B y . By Theorem 2 in [11], X
is Euclidean. �
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LEMMA 22. Let p, q , s , and t be the vertices of a planar convex quadrilateral
pqst . If ‖p− t‖= ‖q− s‖ and there exists a number γ > 1 such that s− t = γ(q− p) ,
then, for each relative interior point z of [p,q] , we have

min{‖z− s‖ ,‖z− t‖} � ‖q− s‖ . (4)

Proof. There exists a number λ ∈ (0,1) such that z = λ p+(1−λ )q . Let

x = s+ λ (p−q) and y = t +(1−λ )(q− p).

Then
‖z− x‖ = ‖z− y‖= ‖p− t‖= ‖q− s‖ and [x,y] ⊂ [s, t].

Since the function
f (α) = ‖z− (αx+(1−α)y)‖

is convex and f (1) = f (0) , inequality (4) follows. �

THEOREM 23.

RC(X) � 1
1−βX(1)

.

Proof. The case when βX(1) = 0 is trivial. In the following we assume that
βX(1) > 0. In this case, SX does not contain a segment whose length is at least 1 .

Let x be an arbitrary unit vector. We show that

r′(x, ICX(−x)) � 1
1−βX(1)

.

We only need to show that, for each unit vector y satisfying y ⊥B x , we have

‖x− y‖� 1
1−βX(1)

. (5)

For each α ∈ [0,1] , denote by l(α) the length of the intersection of BX and the line
αy+ 〈−x,x〉 . Note that l(1) might be 0. Then l(α) is continuous and non-increasing,
which is also due to the monotonicity lemma (cf. [22, Proposition 31] once more).
Since SX does not contain a segment whose length is at least 1 , l(1) < 1. Then there
exists an α0 ∈ (0,1) such that l(1−α0) = 1. Let u and v be the endpoints of the
segment

(1−α0)y+ 〈−x,x〉∩BX .

We may assume that u− v = x . Then

‖v+ x‖ = ‖u− v‖= ‖x−u‖= 1

and
α0 = 1− inf

α∈[0,1]
‖αu+(1−α)v‖� βX(1).
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Set z = u+v . Then, for each point w∈ ([z,u]∪ [z,v])\{u,v} , ‖w‖> 1 (otherwise,
by Lemma 5 in [22], SX would contain a segment whose length is 1). It follows that y
lies in the relative interior of the convex hull of {z,u,v} . Thus there exist two points p
and q such that p ∈ [z,x] , q ∈ [z,−x] , y ∈ [p,q] , and that

p−q
‖p−q‖ = x.

From Lemma 22 it follows that

‖y− x‖� ‖p− x‖=
‖y‖

‖(1−α0)y‖ =
1

1−α0
� 1

1−βX(1)
.

The proof is complete. �

EXAMPLE 3. It is known that (cf. [24, Corollary 3.1] and [16, Example 9]), when
p � 2,

βlnp(1) = 1−
(

1−
(

1
2

)p) 1
p

and S(lnp) = 2
1
p .

Therefore, (
1−

(
1
2

)p)− 1
p

� RC(lnp) � 2
1
p .

Moreover,

lim
p→∞

2
1
p

(
1− (

1
2

)p
)− 1

p

= lim
p→∞

2
1
p ·

(
1−

(
1
2

)p) 1
p

= lim
p→∞

(
2−21−p) 1

p = 1.

Therefore, for spaces sufficiently close to ln∞ , the estimation in Theorem 23 is sharp.
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