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WEIGHTED ESTIMATES FOR VECTOR-VALUED
COMMUTATORS OF GENERALIZED FRACTIONAL INTEGRALS

JIECHENG CHEN AND XIAO YU

(Communicated by L. Pick)

Abstract. In this paper, the authors study the vector-valued commutator of generalized fractional
integral operator Ig by where the kernel K, satisfies some conditions associated with the Young

functions. The authors prove the two-weight norm inequalities for I{;A’h‘ 4 where the weight ®
is only a local integrable function. As an application of the main theorems in this paper, the
weighted boundedness for vector-valued commutators of fractional integral with a rough kernel
is also given.

1. Introduction

In the 1950s, Calderén and Zygmund [6] introduced the classical C-Z theory which
plays an important role in harmonic analysis. The classical singular integral T (f)(x) is
defined by

T(HE) = po. [ Kx=)/()dy

where the kernel K(x) satisfies some size and regular conditions. Later, Muckenhoupt
[19] introduced the weighted theory for singular integral and fractional integral. In
1972, Coifman [7] established a famous weighted estimate for 7". Coifman proved that
if K € H.. (see the definition for H.. in the next section), then for every Muckenhoupt
weight @ € A., and every p € (0,00), we have

LIriherewds<c [ Mo M)

By the classical duality theory and the Coifman’s type estimate in (1), Pérez [21]
obtained the following two-weight norm inequalities,

L@ Putdr<c [ 17@Pmr s, @
Rn Rn

where 1 < p < e and p is only a local integrable function. For a function b €
BMO(R"), we define the commutator of singular integral T, (f)(x) = b(x)T(f)(x) —
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T(bf)(x). In 1976, Coifman, Rochberg and Weiss [8] proved that 7;' is bounded on
LP(R") (1 < p <o) space if and only if b € BMO(R"). When p = 1, Pérez [22] gave
a counterexample that Tb1 is not of weak type (1,1) and he proved that Tb1 satisfies a
weak LlogL estimate. In 1997, Pérez [25] obtained the following inequality,

LB @Owlrama<c [ 10rm uar, G

where the weight p is only a local integrable function. Later by using (3) and the
classical C-Z decomposition, Pérez and Pradolini [26] proved the following weighted
endpoint estimate for 7} .

B e R0 > A1) <o bllvo) [ 01 (L5 gy suias,

where ¢;(r) =(1+log"t) and the definition of M,
Section 2.

The Coifman’s type estimate has also been studied by many other mathematicians,
see [14] or [30] for details. In these papers, the authors proved that if K € H, (see the
definition for H, in the next section), then (1) also holds if we replace M f(x) by another
maximal function M, (f)(x) = M(|f|”)"/" (x) for some 1 < r < oo. In general, we
can conclude that if we strengthen the roughness of the kernel, then the corresponding
maximal function will become bigger.

However, in 2005, Martell, Pérez and Trujillo-Gonzélez [ 18] gave a counterexam-
ple that (1) no longer holds in general with M,.(f)(x) for T(f)(x) with any r € [1,e0)
if the kernel K satisfies the classical Hormander type condition H;. So it is intetest-
ing to seek for new maximal functions so that (1) can still hold if we add some new
Hormander type conditions on the kernel K. In 2005, Lorente, Riveros and Torre [17]
gave a new class of Hormander type conditions in the scale of the Orlicz spaces that lies
between the intersection of H; and H... They gave the analogous results of Coifman’s
type estimates for 7'(f)(x). They proved the following theorem.

logL)1+5 W (x) will be introduced in

THEOREM A. [17] Assume that T is a singular integral operator, bounded on
some LP spaces, 1 < p < oo, whose kernel satisfies the L (o is a Young function
which will appear in Section 2) — Hormander type condition. If there are numbers

2 2"R)" (K (x =) = K(= ) X2mr<py<2mt 1R (] o7 po.2n18) < Car- 5)
Then, for any 0 < p < eo and ® € A, there exists a constant C such that
[T WIre@dx<c [ My(n)@)rotds ©

where the definition of M _, will be given in the next section.

In 2008, Lorente, Martell, Riveros and Torre [16] studied the commutator of sin-
gular integral operator Tb1 with the kernel satisfying some conditions of Hérmander
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Young type. Recently, Lorente, Martell, Pérez and Riveros [15] proved the weighted
norm inequalities for the commutators of singular integral with the kernel K satisfy-
ing Hormander conditions of Young type where the weight is only a local integrable
function.

On the other hand, the following fractional integral operator

dy (0<a<n)

LW = [,

R Jx =y

has also been studied by many mathematicians. For example, see references [9], [10],
[12] and [20] for the fractional integrals with rough kernels. Espically in [24], Pérez
proved that (2) still holds if we replace T(f)(x) by I(f)(x) and MPH*1u(x) by
Mep(MPu(x).

In 1982, Chanillo [4] considered the commutator of fractional integral operator as
follows,

Io(f)(x) = b()Iaf (x) = Iu(bf) (),

where b € BMO(R") and Chanillo proved that the operator 7% is bounded from L?(R")
to LY(R") for p > 1 and 1/q=1/p— o/n. Here we would like to remark that 2, is
not of (L', L"/("=®)=) type, readers may see [11] for details.

Recently, Riveros [29] as well as Bernardis, Lorente and Riveros [2] considered
the generalized fractional integral Ik, (f)(x) = Jp: Ko(x—y)f(y)dy with the kernel Ky,
satisfying the Hormander conditions of Young type defined by

oo

Z (2"R)"*|(Ko(x = .) = Ka(=)) Xomp<fyj<2m 1R () lor p02mt1R) < Cor ()

They proved that I, satisfies the analogous results of (1), (2) and (4). So it is natural
to ask whether (1)—(4) still hold if we consider the vector-valued commutator of the
generalized fractional integral with the kernel satisfying the Hormander conditions of
Young type. In this paper, we will show that the analogous results of (1)—(4) still hold
for the following vector-valued commutators of generalized fractional integral,

- 1/q
Iy .o (F) (%) = |15, () (%) = (21|1§7b(fj)(X)‘1> :

where 7% ,(f7)(x) = fan Ka(x—3)f;(7) (b(x) — b(»))¥dy and b € BMO(R").
We say a kernel Ko € Hyy 1 o if Kq satisfies the following condition,

oo

Z (2"R)"“m"|| (Ko =) = Ka() Xomg<pyj<omi g ()l s o2y S Cor- - (8)

If k=0, we denote Ko, € Hyy .
Before giving the main results of this paper, we introduce the B, condition.
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DEFINITION 1. (B, condition, [23]) For a Young function B, we say B € B),
(I < p < o) if there exists a positive constant ¢ such that

< B(t) dt
/ B(r)dr _
c Pt
Now let us state our main results.

——1
THEOREM 1. Let o/, % and Cy be Young functions such that </ (1)~ '(t)-

-1 -1
Ce ()<twithC, (t)= eVk_If b e BMO and the kernel Ky, € Hy ko NHgp o, then
there exists a constant C such that

L s (D@remar<c [ o, 5)(f)@rowds, ©)

where 0 < p <o, ® € Aw and the definition of M, -, will be introduced in the next
section. 7

By Theorem 1 and the classical duality argument, we can draw the following the-
orem.

THEOREM 2. Suppose that there exist Young functions &, o/ and 0 satisfying
-1
E€By and (1)o7 (1) < & (t). Furthermore, iflll;b.q is a linear operator and

its adjoint operator IZ’]; satisfies

/ 155NN @) C/ 0.7 (1) () 0 (x)dx (10)

for all 0 < p < o and every ® € Aw. Then for any non-negative weight L which is
only local integrable on R", we have

[ 1D REI < C [ 101 Mo b () (an
where 1 < p < oo and D(t) = 0(t'/7).

Finally, we have the weak weighted LlogL estimates for Ig b

THEOREM 3. Let I¥, b,q([)(x) and its kernel K (x) be as in Theorem 1. Suppose

that there exists a Young function D satisfying

[ e (D@ 0x)dr <C [ 1) Mo p0(0)dn (12
for any local integrable function @, then there exists a constant C such that

o{x e R": |, (F)()] > A}
k X
<c/, ¢k<w>ww<x> +M,, 5 0(x) + Moy poo(x))dx,

where ¢y (x) = x[log(e +x)|* with k€ Z*.



WEIGHTED ESTIMATES FOR VECTOR-VALUED COMMUTATORS 1303

REMARK 1. As far as we know, Theorem 1 is still new even in the non-vector-
valued case. Furthermore, Theorems 1 and 2 improve the main results in [2].

REMARK 2. As an application of our main results in this paper, we get the weighted
boundedness for vector-valued commutators of fractional integrals with a rough kernel
and we will discuss these facts in Section 6 of this paper.

REMARK 3. In [1], the authors got the weak weighted LlogL estimates for com-
mutators of fractional integrals where the weight @ is only a local integrable function.
However, in [1], the authors considered the case when K, = 1. So Theorem 1 in our
paper can be regarded as an improvement of Theorem 1.5 in [1] in some sense.

2. Preliminaries

For & > 0, the Hardy-Littlewood maximal function of order & and the sharp func-
tion of order 6 is defined by Mg and Mg respectively, that is

B i 5 1/6
Ms(H)) ‘i‘éS(w [ o dy)

and s
, 1
ME(f)(x) =§gglgf<a/gf(y)—6|5dy> :

For 6 =1, from [13], we know that

ME(f) (x) ~ sup @ [ 176)= folay:

xeQ

where fp = @ Jo f(y)dy denotes the average of f over Q.

Obviously, M is the classical Hardy-Littlewood maximal function and Mf is the
Fefferman-Stein’s sharp maximal function ([13]). For simplicity, we denote M, (f)(x) =
M(f)(x) and Mi(f)(x) = M (f) (x).

Now we will give a famous lemma which is related to the sharp maximal function.

LEMMA 1. (Fefferman-Stein’s inequalities) [13]

(i) Suppose that ¢ : (0,00) — (0,0) is a doubling function and ® € Aw.. Then
there exists a positive constant C depending on the A« constant of @ and the doubling
condition of ¢, such that

ii%(l’(/l)w({x eR": Ms5(f)(x) > A}) < Ci‘il(’)‘l’@)@({x ER": M5(f)(x) > A})

for every function such that the left-hand side is finite.
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(ii) Suppose that 0 < p < co. Then there exists a positive constant C depending
upon the A« constant of ® and p, such that

/n (Msf(x))’ o(x)dx < C - (Mgf(@)pw(x)dx

for every function if the left-hand side is finite.

We say that a kernel K satisfies the classical Hormander type condition which is
simply denoted by K € Hj, if the following inequality holds,

sup [ [K(x—y) = K(=y)ldy < (13)
xeRr J[y[>2]x]|

Furthermore, we say that a kernel K satisfies the L" (1 < r < o) — Hérmander
type condition which is denoted by K € H,, if there exist numbers ¢, > 1 and C, > 0,
such that for Vx € R" and R > ¢,|x|, we have

oo 1 1/r
2MR)" K(x—y)—K(—y)|'d <G 14
mz:,l( ) ( (2mR>n /2mR<\y\§2m+1R | (‘x y) ( y)‘ y) ( )

with 7 < eo. If r = o (here we denote K € H..), we have

Y (2"R)"  sup  |K(x—y)—K(—y)|<C.. (15)
m=1 2MR<|y|<2m IR

Next we state some basic facts from the theory of Orlicz spaces. For more infor-
mation about Orlicz spaces, readers can see [28].

Let @ : [0,00) — [0,00) be a Young function. That is a continuous, convex, in-
creasing function with @(0) = 0 and such that ®(r) — oo as 1 — oo. For a function f
defined on a cube Q, the mean Luxemburg norm of f is defined by

I7log =inf(A >0 / VO < 1y,

For the Luxemburg norm, the following generalized Holder inequality holds,

57 | 1 @stnx)dx < Clslalelaolilco

where A, B,C are Young functions and satisfy A~'(£)B=1(1)C~'(t) <t (t>1).
At the same time, we have the following generalized Holder inequality,

1/gllz.0 < 2[fllaoligllco,
where A, B,C are Young functions and they satisfy the following condition,

AN ) <B7 (1) (Ve >0).
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Associated with each Young function @, its complementary function ®(s) is defined
by
@(s) = sup{st — D(1)}.

t>0

It is easy to see that ®(r) =1(1+log*t) is a Young function and its complemen-
tary function ®(r) ~ ¢’ (see [28]). In this case, we have

1
51 L, 00y <17 lolisls

When @(z) = (1 +10g+t)’ we write ”fHLlogL.,Q = Hf”(l).,Q and ”fHexpLQ = Hf”q_)Q
Also for each Young function B, we define the following maximal function asso-
ciated with B,

Mp(f)(x) = sup||f][5,0-
xeQ

From [23], we know that if B € B),, then Mg is bounded on L”(R") space for
1 <p<oo.

Similarly, the fractional maximal function associated with the Young function is
defined by

xXe

Mo 5(f)(x) = sug\Ql% Ifllz.o (0< a<n).

3. Main Lemmas

In this section, we give the main lemmas that will be used throughout this paper.

LEMMA 2. Let 1y 4 be as a vector-valued generalized fractional integral with its
kernel Ko € Hyy . Suppose that 0 < a <n, 1 <g < and 0 < 0 < 1, then there
exists a constant C, such that

M (T, (1)) () < CM, 5 (1) (). (16)

Proof. Let f = {f;}T be any smooth vector-valued function. Fix x € R" and
let B be a ball centered at x of radius r. Now we decompose f = f' + 2, where

f=rfxos={fixs}T.
By the definition of Mg (f)(x), itis enough to prove

1/6
(é/QUa,q(f)(y)la —caldy> <M, (1flg) (). 17
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In order to prove (17), we choose ¢ = I, 4(f?)(x0) and we have the following estimates,

<|Q/"°‘q< DOK —cﬁdy)w
<|Q/aq —log(f )(x0)|5dy>1/6

<C<Q|/ Horg(f )de>1/5+c<Q|/ g (f )()’)_Ia,q(fz)(X())édy>
=C(I+1I).

1/6

For I, by the Kolmogorov’s inequality, it is easy to see

I < CMa(|flg)(x0) < CM,, 5(1f1q)(x0)- (18)

So it suffices to show

1 1/8
(a/Q“a,q(fz)(y)—Ia,q(fz)(X())|5dy> <CM,, 5 (If1)(x0)- (19)

To see this, first we note that

oq (f?) ()| — \Ia,q(fz)(m)\‘s‘ < Mag () (%)~ Tag (1) (x0)[°

and

Tog (/) () = Targ () (x0))
- 1/q
<o (f2)(x) = Ia(f*) (x0) g = (Zl o f7 (%) —Iaf?(XO)|q>
=

- 1/q
= (2/ 20 (Ka(xo—y)—Ka(x—y))ff(y)dy‘f)

1/q
Ko (xo —y) — Ko (x — y))fj(y)dyq>

~/2’”R<\y xO‘<2’”+1R

d 1/q
< Ky (xog— K x q dv.
21/2”’R<|yfxo\<2m+1R( a0 =y) = Ka(x=y)) (2 il ) y

m

Then by (8) and the generalized Holder inequality, we can easily get

o () (x) = L () (x0)| < CM,, 5 (1fg) (x0)-

Thus (19) holds and we finish the proof of Lemma 2. [
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LEMMA 3. Let I](;Jw be as in Theorem 1 with its kernel Ko € Heyy g o NHe o
Then for 0 < 8 < € < 1, there exists a constant C, such that

M1, 5 4 (f)) () <c20HbHi; Me (I, , () () +ClIbll oM, 5(1fla) ). (20)
J

Proof. Without loss of generality, we may assume ||b|[pmo = 1. For any constant
A, we may write

Ig,() (%) = La((A = 0)*(f)) (%) + Z Crm(b(x) = 1)1, f ().
By a similar argument as in the proof of Lemma 2, we choose a ball B centered at x of

radius R > 0. Then we split each f by f = f! + f> where f! = fyop = {fixaB}ioy
Let B=2B and Cp = {C;}7_, which will be chosen later along the proof. Thus we

have
1/6
(|B|/| £ HOP —Cs |)

<Cy O(|B|/ (2105 g ><y>|‘*dy)l/8

1/6
+C<|119| / aq(by —b>"(fl><y>5dy)

1/6
+ (g1 faalby=DHHI0) - Gl
= C(I+1I+111).

For I, by the Holder inequality, we get

1/6
mo<|B|/' 5) <|B|/'W )
<C 2 1B Me (T 4 () (x).

For II, by the fact that Iy, is of weak type (1,.%5), then we have the following
estimates by the Kolmogorov inequality and the generalized Holder inequality,

Mo (b — BN, o

) [alee
AV 72!
<M= o

|B|1—a/n
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For I11, we choose Cp = {C;}7_; = {Iu((b5 —b)*f7)(xp)}7_, and let B,, =2""'B.
First, we calculate |Ioq(bg— b)kfz( ) —Cp| as follows.

o q(bg— D) f*(y) — Csl
< la((bg — b)Y f2(v) — Iu(bg — D) £2) ()4

1/q
(Z /"\23 9 = byl |Ka(y - )_Ka(xB—Z)Hfj(Z)IdZIq)

1/q
(2 > st ang 20~ ol Kaly = >—Ka<x3—z>|f,-<z>|dz|q>

j=1 m=1

< oo

S b(z) — byl"|K, Ko (xp— NE l/qd
;112—'1/2"7“3\%3‘ (2) = b3l |Ka(y = 2) = Kal(xp —2) g 2)|7)dz

< ZmR b —b k K - B hd q l/qd
2 |B | 2m+lB\2mB‘ (Z) Bm‘ | Ot(y ) XB Z ; | 7
+Z (2" RY"m Bl s \Ka(y—z)—Ka(xB_Z)|ij(Z)|f(Z)|qu

m=2
=C(IV+V).

For 1V, by the generalized Holder inequality, we obtain

oo

Z 2"RY" (b= b)) g W Flall 7 g, 1K = ) = Keults =) 5.,

Rean. Z 2"R)" ||Ka(y — ) — Ka(x — )|,

7 fla) ()

[~2R

For V, again using the generalized Holder inequality we can get

oo

(2"R)"m"||(Ka(y—.) — Koo —=))xsiller 51l flall 7.5,

oo

<SCM,, 5(1flg)(x Z (2"R)" “m | Ka(. — (x5 =))) = Ka() 7 zf2mr

My ).

m=2

Combining the estimates above, we finish the proof of Lemma 3. [
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4. Proofs of Theorems 1 and 2

In order to prove Theorem 1, by the extrapolation theorem in [5] ( (2.3) in [5]), we
know that Theorem 1 holds for all 0 < p < e and all ® € A.. if and only if (9) holds
for some fixed pg € (0,0) and all ® € A... First we only consider the case that @ and
b are all L™ functions. By homogeneity, we may assume that ||b||gmo = 1. Now we
proceed by induction.

When k£ =0, by Lemma 2, Lebesgue differential theorem and the Fefferman-
Stein’s inequality, we can easily prove Theorem 1 in the case £k =0.

Next, we assume that the results hold for all 0 < j < k—1 and we will treat
the case j =k. For f € Cy(R"), and without loss of generality we may assume
that [M,, - (Iflg)ll 110 1s finite otherwise there is nothing to prove. Therefore, by the
Fefferman-Stein’s inequality and Lemma 3, we have

1 g ()0 < UM IS g () 0 < M2 (D)0

k—1 )
<CYIMe(E ()20 +ClIMy 5 (1F14) 0.
j=0

Next we should give the estimate of ||M, (Ié b DI ro -

Since 6 < 22 <1, we can choose € > 1 suchthat § <e <2 <l and w €A
then we have

| | 1 |
M0 )0 = IMC1EG 5 F)IEVI TS < I ) 0

po/e>

Then by induction hypothesis, we can get
1Me (1, o (D20 < CllEg o (Dllro < ClIM, 5 (1F1g)l] 20

So it remains to prove HMS(Igc,b,q(f))”LZP < oo,

For @ € A.., then there exists r > 1 such that @ € A,. By the fact that 0 < § <
po/r <1, which implies r < py/3, we have @ €A, /5. Then by the L” () (0 € Ap)
boundedness of M(f)(x), we can easily check

po/

1
M50 g U D)z = M LD s < €ty

So it suffices to show
k
12 g () <o

As ® € L™, the above problem reduces to prove [|I¥ gN)llzro < es. By the
extrapolation theorem in [5] and Theorem 2.1 in [29], we have the boundedness of
Iy g from LPV to L0 with 1/py —1/po = a/n, thus we have

k
17664 (N)lro = 1 Y, Con b " Tag (& F)llro < Cllblz=[If | < o=
m=0
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In order to remove the restrictions that w € L and b € L™, we can solve this
problem easily if we follow the arguments in [16, p. 1415-1416] and we omit the
details here.

So far the proof of Theorem 1 has been finished.

REMARK 4. In [2], the authors proved a similar Coifman’s type estimate for the
commutators of generalized fractional integral in the non-vector-valued case. However,
we cannot use the vector-valued extrapolation theorem ((2.5) in [5]) to get Theorem 1
directly due to the definition of M 7 Uflg) ().

Next, let us give the proof of Theorem 2. By a duality argument, it suffices to show
[ e DO M) v <C [ If7ue . @

From [3, p. 1512], we know that (Mg, pt(x))® € A; for 0 < § < 1. Choosing
r>p and 6 = (p'—1)/(r—1), we have

(Mep ot (6))' ™" = {(Mop pa ()"~} € 4, C A,
Since the B, condition implies the L” boundedness of Mg(f)(x), then by Theo-

——1
rem 1, the condition € ~(1)0~'(t) <&/ (1) with D(r) = 6(¢'/?) and the generalized
Holder inequality, we obtain

| ab7q( PP (M pit ()7 dx
< /Rn(Ma Q;\f\ql(x))ﬁ’(MWDu(x))lfp/dx
_ |g| L e /n(Mﬁ|f|q’(x))pl(MDu(x))I*P’dx
<C [ Mg 7) 0 Mo (7)o (Mppa () 7
- C/Rn M (|f 1yt~ 7) (0) (Mpp (x))?77 (Mpp (x)) 7 dx
= C/RnMgﬂfIqr;,fl/P)(x)P'dx < C/Rn |f|Zf/IJ(X)17”,dx.
So far, we have proved (21) and the proof of Theorem 2 has been finished.

5. Proof of Theorem 3

In order to prove Theorem 3, we proceed by induction. Without loss of generality,
we may assume ||b||pmo = 1.

First, we treat the case k = 0. For a fixed A >0, let {Q;} be the standard family
of nonoverlapping dyadic cubes satisfying

1
— dx <2"A 22
< |Q,-\/Qj () gdx (22)
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maximal with respect to the left hand side inequality. Furthermore, we denote by Q; =
O(zj,r;) with z; and r; be the center and sidelength of each Q;, respectively. Denote
Q=U;0;j, then we have [f(x)[; <A forae. x € R"\ Q.

Now we proceed to construct a slightly different version of the classical Calderén-
Zygmund decomposition, readers may see [27] for more details. Split f as f =g+
h, where g = {gi}>, and each g;(x) is given by g;(x) = fi(x) if x € R"\ Q and
gi(x) = (fi)g; if x € Qj, where (f;)o, is defined by the average of f; on the cube Q;.
Furthermore, we denote

h(x) = {hix 11—{2% }

with h;;(x) = (fi(x) = (fi)o;) 0, ().
Let Q= J2Q;, then we have
J

({x€ R : Io.q(f) ()| > A})
o({x € R"\Q: Inq(g)(x)| > 1/2}) + 0(€)
+w({x€R"\Q Horg(R)(x)| > A /2})
To estimate the first term, setting ®*(x) = @(x)2pn o and by Theorem 2, we obtain

o({y € R"\Q: |lo4(g)(x)| > 4/2})

< 37 o g M@ 00

M/\aq 00" (x)dx

<15 [ 18615 Map 00" ()

C
<37 oV ONEMe 0" )t 1 [ 1) p00 (51

= C(I+1I).

The estimate of [ is trival since |f|, <A fora.e. x € R"\ Q.

Now we only need to treat /I, from [15], we know that for any Young func-
tion o/ and weight v with M, v < e for a.e. x € R" and any cube Q, there is
Moy (VxRm\20) () ~ esszi&szW(van\zQ)(z) fora.e. y € Q and x € Q. Thus we get

Mopp;j(x) =~ ess ieﬂQf Mop p®j(2). (23)
el

Setting @;(x) = @(x) g g, then by (23) and the generalized Minkowski inequality,
we obtain

c .
"= /Q 1(0)[2 Mo 0@ (x)dlx

—C *
= AP Z/ |g(x)|§MO¢p7DCU (.X)dx
j 7
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C o p/a
- ﬁ;/gj (; (fi)ol ) Mop pw;(x)dx

g\ Pl
) IQ,f\yiean Moy p@;(y)
J

Z(Z o] / o)z

C .

1% (17, ) 101 i 0,09
C 1 _

<5 (17 17t 10 1 by 0
C

<73, Qb))

<7 [ @My ol@) @)z

For the second term @ (€2), by a standard argument, we have

2Q, 2Q,
<C 2 d

<xgévwﬂmw@<%@u@¢m@@

For the last term, by the Minkowski inequality, we get

o({xeR"\Q: \Iaq( Jx)| > 2/2})

<5 Lo g lasmo0)ay

1/q
A " lea ] o(y)dy
c :+w 1/q
== o Z/Q Ko (y—2)hij(z)dz ] o(y)dy
Li=1|7j /2
c Moo qy1/4
== (Koly—2) — K, hij(2)dz d
xwmjlz/ =)~ Kaly— >><>z] o0)dy

1/q
Y [Ka(y—2)— Ka(y_zj)qhij(zﬂq] dZ) o(y)dy

% R"\Q (2/(2
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- 1/q
S Lo [ Z ka2~ Kab=2) Q)| @()dy | dz
770 \ JRMN20; |2

1/q
/ /l‘{ |Ko(y—2) — —Z; [2|h,1 ] o(y)dy | dz.

0; "\20;

>>|
\M

Now we are going to treat the inner term in the last inequality. First, by (8) with k=0,
we have the following estimates.

/ Ko (y — 2) = Kau(y — 2j) | @(y)dy
R™M\20;

<3 / Koy —2) = Koy = 2)) | 0(y)dy

m=17y=2j|~2"r;
oo
<C 2 (zmr,)" ”KOC (y - Z) - Ka(y - Z/) H%,\y—zjlww”r_,- || w”(“%aly_zjlgszrl”j

<CinfM, - o(x).
g

So by (23) and the generalized Holder inequality, we have
o({x eR"\Q: |l q(h)(x)| > 1/2})

=

1/q
<§2/Q An\zgj|Ka<y—z>—Ka<y—zj>[2|hi,-<z>|q] o)y | dz

i=1
1/q
AE/Q [Eh,, 1 dziélijmp;,w(x)

C
<5 /fz M -w(z)dz+ — /gz dzinfM - o(x
/1; le (@)IgM,, 5 0(2) /1; le (@)l ntMy 7 (x)
=1I1I+1V.

For 111, it is obvious that 111 < § [ | f(2) l4M,, 5 0(2)dz.
To estimate /V, we have

C | 1
V< — i(z)d
Axlzl o7 J
C 1 .
<7 gy o, MOl igth, 5o
C
< @M, stz

= L@l soe:

q] 14
] |Q,/\igija7ég/w
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So far, we have proved Theorem 3 in the case k = 0.

Next we will consider the case when k € Z*. Suppose that the theorem is true for
all j < k, then with the same notation as in the proof of the case k = 0, we can get

(xR |1, (1)) > 1}
O e RN\ D1, (2)(0) > 4/2}) + 0(Q)
+o({xcR"\Q: \I§7h7qh(x)| >1/2})
=I1+11+111.

By an argument similar to the proof of the previous case when & = 0, we have the

following estimates for I and 17,

1< % /R M )lgMap,p (@) (x)dx

and

1< % /R )l Mox)dx

Now, we plan to give the estimate of 11. First we split I’Oj bq 3 follows,

q\ 1/a
DU(b(x) = (b)) T (i) (x) )

J
a\ /4
(2 )
k—1
+ (2_ lilchzla.,b(z(b— (b)o,)*hij) (x)
L= J

=A1(x) +Az(x) +A3(x).

15,4 () (x) < (2

i

2 La((b(x) = (b)g,) hij) (x)

q) 1/q

Thus we get
I <IN+ 17 + 111,

where IIT' = o{x € R"\ Q: A;(x) > 1/6}.
For I1I', by the generalized Holder inequality, we have

aq\ 1/q
) >A1/6

1/q
<Xz ORI (Zlawi,,»)(x)w) o(x)dx

2U(b() = (0)g,) o (hij) (x)

J

nr' = o xeR"\Q: (2

i

1

(24)

(25)
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1/q

/q

< z% /, j(;hi,/(y)l") ( /R » Q{;a(x—y)—Ka(x—z,-nb<x>—<b>g,kw<x>dx) dy.

Now, we give the estimates of fRﬂ\zgj Ko (x =) — Ko (x = 2;)[|b(x) — (D), Ko (x)dx.
By the generalized Holder inequality and the fact Ko € Hyy .o N Hg o, We have

Lo [Kals=3) = Kalx=2))[[6(x) = (D)o, ()
"\20;

= Z/ |Ka(x—y)—Ka(x—zj)Hb(x)—(b)Qj|ka)(x)dx
m=172"rj<x—zj[<2" ;)

< Ko(x—v) — Kg(x — 2:)||6(x) = (B)oms1 [F0(x)dx
,Z’l/zmrjg\xfzj|<2m+lrj| alx—y) a(x—2))[[b(x) — (b), “QJ‘ (x)

=

- 2 /2'" el \Ka(x—y) _Ka(x_zj)H(b)zmHQj - (b)Qj|k(D()C)dx
ri<lx—zj|<2

Q2"r;)"|Ka(.—y)—Ka(.—z)| 2,

m:l

k
o= B)ane1,Hly pm10, |01 5 i,

=

k
+ X @) Ko (= 3) = K- = 2) et jasc2mr, [0 5 i

m=1

<essinfM - (@)(x).

So by an argument similar to the previous case when k = 0, we can easily get

' <c [ 1501, ;0()dx

For 1117, noting the following fact

(X i)Y < | flaxe; + I8laxo; (26)

then by the induction hypothesis, we have
1/q
P ={xcR"\Q: (22,%: (b)g,)*h; (x)|‘1> >1/6

1/q
<</ SIS lot) - bl >|]

X (Ma)(x) +Ma7’0—ja)(x) +Map,Dw(x)> XR”\2dex
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c 1/q
S X;/QJ [6(x) = (P)g)] (;hi,/’(x)q>

x ( (Xrm 20, @) (x )+Ma7,0}(7CR”\2Qjw)(x)MamD(XR"\szw)(x)> dx
< 5 inf (M 20,) ()4 M, e 20,0) (Mo o 20,0) )]

J
< (] 1660~ 0o 0zt [ 166~ 0o leltosds )
=Vi+ V. |

For V,, by the definition of BMO, then a similar argument as in the case k = 0 leads
to

C
<5 L1l (M0 +M, 5000 +Mapp0(0) dx.
For V|, by the generalized Holder inequality, we have
C <.
Vi< g Xint [M (e 20,0)(x) +M,, 5 (tzm a0, @) () + Mapp(izm o, ®) ()]
% 1Q)111flallg, £ togrrt-
Now we should note the following fact,

T al o, <2 [, oG s

Thus we have

V1<C/ o |f|q

)(Ma’(%—{w(x) +Mepp0(x) + Mo(x))dx.

a\ 1/q
) > x/6>

<o (x eR"\Q: kilezlé,b(E[(b — b)) (X hij| 1)) > l/6>
=1 I i

Finally, to estimate I, we may decompose III as follows,

1P = o (xeR"\Q: (Z

k—1
IZ Crally , (X, (b= (b)g,)* hij) (x)]
—1 j

k-1

<Yo ( e RN Q: 1L, (3 (b~ bo ) (X ) ) > m)

1 J
1

~ o~
Il

< (xeR"\Q:IQ,,(Z(b—bQ,)"—’quQ_,.) >A/1z>

J

-
Il

1
k—1
Z, (x €RN\Q: Iy, (X (0 —bo,) ' I8laxo,) > 1/12>

J
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=11P" + 1112

For IIP!, as ©*(x) = @(x) Xz & » then by induction hypothesis and (23), we have

1P = kf o (x ERN\Q:1I,, (2(19 — ij)kl|f|quj> (x) > /1/12>

=1 j
_ Z‘b_bQ,‘|kil|f|q%Q,‘
< 2 - o / D (x) (Ma7,9yw* (X) + Mypo* (x) + Mo* (x)) dx
I=1

M |

2/ <f11|b b ‘k l)( )(MOC?,Q(COJ'(X)+Map,ij(x)+MCQf(x))dx

or (1100, ) (v

~ o~
Il
_ =

||M

2 (mea o 0j(x )+infMamDa)j(x)—anMa)j(x))/
j Qj Qj 0

j J

By an argument similar in [1, p.472], we can easily get
Qj

Thus we obtain
/]
Pl < C/]R” ¢k(7‘1)(x) <Ma)(x) —l—Ma?’O?a)(x)—i—Mappa)(x)) dx.

To estimate 1112, by the Jensen inequality, (27) and the similar argument as in the case
k =0, we obtain

e \f\qb bo [ ¥)dx <C \f\q B dx.
<C3 [, (74t Yoo, gotar<C [ 0u(54) M, g0y

Combining the above estimates, we can draw that the proof of Theorem 3 has been
finished.

6. Applications

In this section, we will show that by Theorems 1-3, we can easily get the weighted
boundedness of vector-valued commutator of fractional integral with a rough kernel.
Before giving the main results in this section, let us give some definitions and notations.

Denote by S"~! be the unit sphere on R". For any x # 0, we write x' = x/|x|.
Assume that Q € L'(S"~!) is a homogeneous of degree 0 function on $"~!. For 0 <
o < n, let o/ be a Young function such that %(r) = 7 (¢"#" ) is also a Young function.
Suppose that Q belongs to € L (S"~!) and Q satisfies the following L (S"~!)-Dini

condition, i.e.,
/ (1)@7 — < oo,
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where
@y (t) = sup |Q(. +y) — Q)| o gn1-

yl<e

Now we will study the vector-valued commutator of fractional integral operator with a
rough kernel as follows,

- 1/q
15 (1)) = I (£)( u-(z IS () (x ) :

where If,b( )(x) = fRn T y‘n a f()(b(x) — b(y))*dy. By the discussions in [15] and

[29], we can easily conclude that the kernel \ﬁ”@“ € Hy7 ko NHg ¢ . Thus from Theo-
rems 1-3, we get the following results and we omit the proofs here.

THEOREM 4. Assume that Q € L' (S"~") is homogeneous of degree 0 on S"~!.
If Q satisfies the L"-Dini condition, we have
(a)If 0 < p <ooand W€ A, then

LA (D@ 0wdr <C [ (Myp1fly00) 0x)dx.

(b)If 1 < p <rand U is aweight which is only local integrable, then

[ 25 DI BEI < C [ 101 Mo b (3)dx

(c)If 1 < p <rand U is a weight which is only local integrable, then for any
A >0,

plv R I (10> A} < T [ 1601 (Mo () + May o1 ()

In the above cases, D(1) = tU"/P)' (1 + log™1)"/P)(P=V%¢ and ¢ is a positive number
which is small enough.

Acknowledgements. The authors would like to express their gratitude to the referee
for his/her valuable suggestions.
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