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Abstract. In this paper, the authors study the vector-valued commutator of generalized fractional
integral operator Ikα,b,q where the kernel Kα satisfies some conditions associated with the Young

functions. The authors prove the two-weight norm inequalities for Ikα,b,q where the weight ω
is only a local integrable function. As an application of the main theorems in this paper, the
weighted boundedness for vector-valued commutators of fractional integral with a rough kernel
is also given.

1. Introduction

In the 1950s, Calderón and Zygmund [6] introduced the classical C-Z theory which
plays an important role in harmonic analysis. The classical singular integral T ( f )(x) is
defined by

T ( f )(x) = p.v.
∫

Rn
K(x− y) f (y)dy,

where the kernel K(x) satisfies some size and regular conditions. Later, Muckenhoupt
[19] introduced the weighted theory for singular integral and fractional integral. In
1972, Coifman [7] established a famous weighted estimate for T . Coifman proved that
if K ∈ H∞ (see the definition for H∞ in the next section), then for every Muckenhoupt
weight ω ∈ A∞ and every p ∈ (0,∞) , we have∫

Rn
|T ( f )(x)|pω(x)dx � C

∫
Rn

M f (x)pω(x)dx. (1)

By the classical duality theory and the Coifman’s type estimate in (1), Pérez [21]
obtained the following two-weight norm inequalities,∫

Rn
|T ( f )(x)|pμ(x)dx � C

∫
Rn

| f (x)|pM[p]+1μ(x)dx, (2)

where 1 < p < ∞ and μ is only a local integrable function. For a function b ∈
BMO(Rn) , we define the commutator of singular integral T 1

b ( f )(x) = b(x)T ( f )(x)−
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T (b f )(x) . In 1976, Coifman, Rochberg and Weiss [8] proved that T 1
b is bounded on

Lp(Rn) (1 < p < ∞) space if and only if b∈ BMO(Rn) . When p = 1, Pérez [22] gave
a counterexample that T 1

b is not of weak type (1,1) and he proved that T 1
b satisfies a

weak LlogL estimate. In 1997, Pérez [25] obtained the following inequality,∫
Rn

|T 1
b ( f )(x)|pμ(x)dx � C

∫
Rn

| f (x)|pM[2p]+1μ(x)dx, (3)

where the weight μ is only a local integrable function. Later by using (3) and the
classical C-Z decomposition, Pérez and Pradolini [26] proved the following weighted
endpoint estimate for T 1

b .

μ({x∈R
n : |T 1

b ( f )(x) > λ |}) �Cφ1(‖b‖BMO)
∫

Rn
φ1

( | f (x)|
λ

)
ML(logL)1+δ μ(x)dx, (4)

where φ1(t) = t(1+ log+t) and the definition of ML(logL)1+δ μ(x) will be introduced in
Section 2.

The Coifman’s type estimate has also been studied by many other mathematicians,
see [14] or [30] for details. In these papers, the authors proved that if K ∈ Hr (see the
definition for Hr in the next section), then (1) also holds if we replace M f (x) by another
maximal function Mr′( f )(x) = M(| f |r′ )1/r′(x) for some 1 � r < ∞ . In general, we
can conclude that if we strengthen the roughness of the kernel, then the corresponding
maximal function will become bigger.

However, in 2005, Martell, Pérez and Trujillo-González [18] gave a counterexam-
ple that (1) no longer holds in general with Mr( f )(x) for T ( f )(x) with any r ∈ [1,∞)
if the kernel K satisfies the classical Hörmander type condition H1 . So it is intetest-
ing to seek for new maximal functions so that (1) can still hold if we add some new
Hörmander type conditions on the kernel K . In 2005, Lorente, Riveros and Torre [17]
gave a new class of Hörmander type conditions in the scale of the Orlicz spaces that lies
between the intersection of H1 and H∞ . They gave the analogous results of Coifman’s
type estimates for T ( f )(x) . They proved the following theorem.

THEOREM A. [17] Assume that T is a singular integral operator, bounded on
some Lp spaces, 1 < p < ∞ , whose kernel satisfies the LA (A is a Young function
which will appear in Section 2) – Hörmander type condition. If there are numbers
cA > 1 and CA > 0 such that for any x and R > cA |x| ,

∞

∑
m=1

(2mR)n‖(K(x− .)−K(−.))χ2mR<|y|�2m+1R(.)‖A ,B(0,2m+1R) � CA . (5)

Then, for any 0 < p < ∞ and ω ∈ A∞ , there exists a constant C such that∫
Rn

|T ( f )(x)|pω(x)dx � C
∫

Rn
(M

A
( f )(x))pω(x)dx (6)

where the definition of M
A

will be given in the next section.

In 2008, Lorente, Martell, Riveros and Torre [16] studied the commutator of sin-
gular integral operator T 1

b with the kernel satisfying some conditions of Hörmander
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Young type. Recently, Lorente, Martell, Pérez and Riveros [15] proved the weighted
norm inequalities for the commutators of singular integral with the kernel K satisfy-
ing Hörmander conditions of Young type where the weight is only a local integrable
function.

On the other hand, the following fractional integral operator

Iα( f )(x) =
∫

Rn

f (y)
|x− y|n−α dy (0 < α < n)

has also been studied by many mathematicians. For example, see references [9], [10],
[12] and [20] for the fractional integrals with rough kernels. Espically in [24], Pérez
proved that (2) still holds if we replace T ( f )(x) by Iα( f )(x) and M[p]+1μ(x) by
Mα p(M[p])μ(x) .

In 1982, Chanillo [4] considered the commutator of fractional integral operator as
follows,

Ib
α( f )(x) = b(x)Iα f (x)− Iα(b f )(x),

where b∈BMO(Rn) and Chanillo proved that the operator Ib
α is bounded from Lp(Rn)

to Lq(Rn) for p > 1 and 1/q = 1/p−α/n . Here we would like to remark that Ib
α is

not of (L1,Ln/(n−α),∞) type, readers may see [11] for details.
Recently, Riveros [29] as well as Bernardis, Lorente and Riveros [2] considered

the generalized fractional integral IKα ( f )(x) =
∫
Rn Kα(x−y) f (y)dy with the kernel Kα

satisfying the Hörmander conditions of Young type defined by

∞

∑
m=1

(2mR)n−α‖(Kα(x− .)−Kα(−.))χ2mR<|y|�2m+1R(.)‖A ,B(0,2m+1R) � CA . (7)

They proved that IKα satisfies the analogous results of (1), (2) and (4). So it is natural
to ask whether (1)–(4) still hold if we consider the vector-valued commutator of the
generalized fractional integral with the kernel satisfying the Hörmander conditions of
Young type. In this paper, we will show that the analogous results of (1)–(4) still hold
for the following vector-valued commutators of generalized fractional integral,

Ik
α ,b,q( f )(x) = |Ik

α ,b( f )(x)|q =

(
∞

∑
j=1

|Ik
α ,b( f j)(x)|q

)1/q

,

where Ik
α ,b( f j)(x) =

∫
Rn Kα(x− y) f j(y)(b(x)−b(y))kdy and b ∈ BMO(Rn) .

We say a kernel Kα ∈ HA ,k,α if Kα satisfies the following condition,

∞

∑
m=1

(2mR)n−αmk‖(Kα(.− y)−Kα(.))χ2mR<|y|�2m+1R(.)‖A ,B(0,2m+1R) � CA . (8)

If k = 0, we denote Kα ∈ HA ,α .
Before giving the main results of this paper, we introduce the Bp condition.
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DEFINITION 1. (Bp condition, [23]) For a Young function B , we say B ∈ Bp

(1 < p < ∞) if there exists a positive constant c such that∫ ∞

c

B(t)
t p

dt
t

< ∞.

Now let us state our main results.

THEOREM 1. Let A , B and Ck be Young functions such that A
−1

(t)B−1(t) ·
Ck

−1
(t) � t with Ck

−1
(t) = e1/k . If b∈ BMO and the kernel Kα ∈HA ,k,α ∩HB,α , then

there exists a constant C such that∫
Rn

|Ik
α ,b,q( f )(x)|pω(x)dx � C

∫
Rn

(Mα ,A
)(| f |q)(x)pω(x)dx, (9)

where 0 < p < ∞ , ω ∈ A∞ and the definition of Mα ,A
will be introduced in the next

section.

By Theorem 1 and the classical duality argument, we can draw the following the-
orem.

THEOREM 2. Suppose that there exist Young functions ξ , A and θ satisfying

ξ ∈ Bp′ and ξ−1(t)θ−1(t) � A
−1

(t) . Furthermore, if Ik
α ,b,q is a linear operator and

its adjoint operator I∗,kα ,b,q satisfies∫
Rn

|I∗,kα ,b,q( f )(x)|pω(x)dx � C
∫

Rn
(Mα ,A

)(| f |q)(x)pω(x)dx (10)

for all 0 < p < ∞ and every ω ∈ A∞ . Then for any non-negative weight μ which is
only local integrable on R

n , we have∫
Rn

|Ik
α ,b,q( f )(x)|pμ(x)dx � C

∫
Rn

| f (x)|pqMα p,Dμ(x)dx (11)

where 1 < p < ∞ and D(t) = θ (t1/p) .

Finally, we have the weak weighted LlogL estimates for Ik
α ,b,q .

THEOREM 3. Let Ik
α ,b,q( f )(x) and its kernel Kα(x) be as in Theorem 1. Suppose

that there exists a Young function D satisfying∫
Rn

|Ik
α ,b,q( f )(x)|pω(x)dx � C

∫
Rn

| f (x)|pqMα p,Dω(x)dx (12)

for any local integrable function ω , then there exists a constant C such that

ω{x ∈ R
n : |Ik

α ,b,q( f )(x)| > λ}

� C
∫

Rn
φk(

‖b‖k
BMO| f (x)|q

λ
)(Mω(x)+Mα ,A

ω(x)+Mα p,Dω(x))dx,

where φk(x) = x[log(e+ x)]k with k ∈ Z+ .
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REMARK 1. As far as we know, Theorem 1 is still new even in the non-vector-
valued case. Furthermore, Theorems 1 and 2 improve the main results in [2].

REMARK 2. As an application of our main results in this paper, we get the weighted
boundedness for vector-valued commutators of fractional integrals with a rough kernel
and we will discuss these facts in Section 6 of this paper.

REMARK 3. In [1], the authors got the weak weighted LlogL estimates for com-
mutators of fractional integrals where the weight ω is only a local integrable function.
However, in [1], the authors considered the case when Kα ≡ 1. So Theorem 1 in our
paper can be regarded as an improvement of Theorem 1.5 in [1] in some sense.

2. Preliminaries

For δ > 0, the Hardy-Littlewood maximal function of order δ and the sharp func-
tion of order δ is defined by Mδ and M�

δ respectively, that is

Mδ ( f )(x) = sup
x∈Q

(
1
|Q|

∫
Q
| f (y)|δ dy

)1/δ

and

M�
δ ( f )(x) = sup

x∈Q
inf
c

(
1
|Q|

∫
Q
| f (y)− c|δ dy

)1/δ
.

For δ = 1, from [13], we know that

M�
1( f )(x) ≈ sup

x∈Q

1
|Q|

∫
Q
| f (y)− fQ|dy,

where fQ = 1
|Q|
∫
Q f (y)dy denotes the average of f over Q .

Obviously, M1 is the classical Hardy-Littlewood maximal function and M�
1 is the

Fefferman-Stein’s sharp maximal function ([13]). For simplicity, we denote M1( f )(x)=
M( f )(x) and M�

1( f )(x) = M�( f )(x) .
Now we will give a famous lemma which is related to the sharp maximal function.

LEMMA 1. (Fefferman-Stein’s inequalities) [13]
(i) Suppose that φ : (0,∞) → (0,∞) is a doubling function and ω ∈ A∞ . Then

there exists a positive constant C depending on the A∞ constant of ω and the doubling
condition of φ , such that

sup
λ>0

φ(λ )ω({x ∈ R
n : Mδ ( f )(x) > λ}) � C sup

λ>0
φ(λ )ω({x ∈ R

n : M�
δ ( f )(x) > λ})

for every function such that the left-hand side is finite.
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(ii) Suppose that 0 < p < ∞ . Then there exists a positive constant C depending
upon the A∞ constant of ω and p, such that∫

Rn
(Mδ f (x))p ω(x)dx � C

∫
Rn

(
M�

δ f (x)
)p

ω(x)dx

for every function if the left-hand side is finite.

We say that a kernel K satisfies the classical Hörmander type condition which is
simply denoted by K ∈ H1 , if the following inequality holds,

sup
x∈Rn

∫
|y|>2|x|

|K(x− y)−K(−y)|dy < ∞. (13)

Furthermore, we say that a kernel K satisfies the Lr (1 � r < ∞) – Hörmander
type condition which is denoted by K ∈ Hr , if there exist numbers cr > 1 and Cr > 0,
such that for ∀x ∈ R

n and R > cr|x| , we have

∞

∑
m=1

(2mR)n
(

1
(2mR)n

∫
2mR<|y|�2m+1R

|K(x− y)−K(−y)|rdy

)1/r

� Cr (14)

with r < ∞ . If r = ∞ (here we denote K ∈ H∞ ), we have

∞

∑
m=1

(2mR)n sup
2mR<|y|�2m+1R

|K(x− y)−K(−y)|� C∞. (15)

Next we state some basic facts from the theory of Orlicz spaces. For more infor-
mation about Orlicz spaces, readers can see [28].

Let Φ : [0,∞) → [0,∞) be a Young function. That is a continuous, convex, in-
creasing function with Φ(0) = 0 and such that Φ(t) → ∞ as t → ∞ . For a function f
defined on a cube Q , the mean Luxemburg norm of f is defined by

‖ f‖Φ,Q = inf{λ > 0 :
1
|Q|

∫
Q

Φ
( | f (y)|

λ

)
dt � 1}.

For the Luxemburg norm, the following generalized Hölder inequality holds,

1
|Q|

∫
Q

f (x)g(x)h(x)dx � C‖ f‖A,Q‖g‖B,Q‖h‖C,Q,

where A,B,C are Young functions and satisfy A−1(t)B−1(t)C−1(t) � t (t � 1) .
At the same time, we have the following generalized Hölder inequality,

‖ f g‖B,Q � 2‖ f‖A,Q‖g‖C,Q,

where A,B,C are Young functions and they satisfy the following condition,

A−1(t)C−1(t) � B−1(t) (∀t > 0).
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Associated with each Young function Φ , its complementary function Φ(s) is defined
by

Φ(s) = sup
t>0

{st−Φ(t)}.

It is easy to see that Φ(t) = t(1+ log+t) is a Young function and its complemen-
tary function Φ(t) ≈ et (see [28]). In this case, we have

1
|Q|

∫
Q
| f (y)g(y)|dy � ‖ f‖Φ,Q‖g‖Φ,Q.

When Φ(t) = t(1+ log+t) , we write ‖ f‖LlogL,Q = ‖ f‖Φ,Q and ‖ f‖expL,Q = ‖ f‖Φ,Q .
Also for each Young function B , we define the following maximal function asso-

ciated with B ,

MB( f )(x) = sup
x∈Q

‖ f‖B,Q.

From [23], we know that if B ∈ Bp , then MB is bounded on Lp(Rn) space for
1 < p < ∞ .

Similarly, the fractional maximal function associated with the Young function is
defined by

Mα ,B( f )(x) = sup
x∈Q

|Q| α
n ‖ f‖B,Q (0 < α < n).

3. Main Lemmas

In this section, we give the main lemmas that will be used throughout this paper.

LEMMA 2. Let Iα ,q be as a vector-valued generalized fractional integral with its
kernel Kα ∈ HA ,α . Suppose that 0 < α < n, 1 < q < ∞ and 0 < δ � 1 , then there
exists a constant C , such that

M�
δ (Iα ,q( f ))(x) � CMα ,A

(| f |q)(x). (16)

Proof. Let f = { f j}∞
1 be any smooth vector-valued function. Fix x ∈ R

n and
let B be a ball centered at x of radius r . Now we decompose f = f 1 + f 2 , where
f 1 = f χ2B = { f jχ2B}∞

1 .

By the definition of M�
δ ( f )(x) , it is enough to prove

(
1
|Q|

∫
Q
||Iα ,q( f )(y)|δ − cδ |dy

)1/δ
� CMα ,A

(| f |q)(x). (17)



1306 J. CHEN AND X. YU

In order to prove (17), we choose c = Iα ,q( f 2)(x0) and we have the following estimates,

(
1
|Q|

∫
Q
||Iα ,q( f )(y)|δ − cδ |dy

)1/δ

�
(

1
|Q|

∫
Q
|Iα ,q( f )(y)− Iα ,q( f 2)(x0)|δ dy

)1/δ

� C

(
1
|Q|

∫
Q
|Iα ,q( f 1)(y)|δ dy

)1/δ
+C

(
1
|Q|

∫
Q
|Iα ,q( f 2)(y)− Iα ,q( f 2)(x0)|δ dy

)1/δ

= C(I + II).

For I , by the Kolmogorov’s inequality, it is easy to see

I � CMα(| f |q)(x0) � CMα ,A
(| f |q)(x0). (18)

So it suffices to show(
1
|Q|

∫
Q
|Iα ,q( f 2)(y)− Iα ,q( f 2)(x0)|δ dy

)1/δ
� CMα ,A

(| f |q)(x0). (19)

To see this, first we note that∣∣∣|Iα ,q( f 2)(x)|δ −|Iα ,q( f 2)(x0)|δ
∣∣∣� |Iα ,q( f 2)(x)− Iα ,q( f 2)(x0)|δ

and

|Iα ,q( f 2)(x)− Iα ,q( f 2)(x0)|

� |Iα( f 2)(x)− Iα( f 2)(x0)|q =

(
∞

∑
j=1

|Iα f 2
j (x)− Iα f 2

j (x0)|q
)1/q

=

(
∞

∑
j=1

|
∫

Rn/2Q
(Kα (x0− y)−Kα(x− y)) f j(y)dy|q

)1/q

=

(
∞

∑
j=1

|
∞

∑
m=1

∫
2mR<|y−x0|�2m+1R

(Kα (x0− y)−Kα(x− y)) f j(y)dy|q
)1/q

�
∞

∑
m=1

∫
2mR<|y−x0|�2m+1R

(Kα (x0− y)−Kα(x− y))|
(

∞

∑
j=1

| f j|q
)1/q

dy.

Then by (8) and the generalized Hölder inequality, we can easily get

|Iα ,q( f 2)(x)− Iα ,q( f 2)(x0)| � CMα ,A
(| f |q)(x0).

Thus (19) holds and we finish the proof of Lemma 2. �
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LEMMA 3. Let Ik
α ,b,q be as in Theorem 1 with its kernel Kα ∈ HA ,k,α ∩HB,α .

Then for 0 < δ < ε < 1 , there exists a constant C , such that

M�
δ (Ik

α ,b,q( f ))(x) � C
k−1

∑
j=0

‖b‖k− j
BMOMε(I

j
α ,q,b( f ))(x)+C‖b‖k

BMOMα ,A
(| f |q)(x). (20)

Proof. Without loss of generality, we may assume ‖b‖BMO = 1. For any constant
λ , we may write

Ik
α ,b( f )(x) = Iα((λ −b)k( f ))(x)+

k−1

∑
m=0

Ck,m(b(x)−λ )k−mIm
α f (x).

By a similar argument as in the proof of Lemma 2, we choose a ball B centered at x of
radius R > 0. Then we split each f by f = f 1 + f 2 where f 1 = f χ2B = { f jχ2B}∞

j=1 .

Let B = 2B and CB = {Cj}∞
j=1 which will be chosen later along the proof. Thus we

have (
1
|B|
∫

B
||Ik

α ,b,q( f )(y)|δ −|CB|δ |
)1/δ

� C
k−1

∑
m=0

(
1
|B|
∫

B
|b(y)−bB|(k−m)δ |Im

α ,b,q( f )(y)|δ dy

)1/δ

+C

(
1
|B|
∫

B
|Iα ,q(bB −b)k( f 1)(y)|δ dy

)1/δ

+C

(
1
|B|
∫

B
|Iα ,q(bB −b)k( f 2)(y)−CB|δ dy

)1/δ

= C(I + II + III).

For I , by the Hölder inequality, we get

I �
k−1

∑
m=0

(
1
|B|
∫

B
|b(y)−bB|(k−m)δq′

)1/δq′( 1
|B|
∫

B
|Im

α ,b,q( f )(y)|dy

)1/δq

� C
k−1

∑
m=0

‖b‖k−m
BMOMε(Im

α ,b,q( f ))(x).

For II , by the fact that Iα ,q is of weak type (1, n
n−α ) , then we have the following

estimates by the Kolmogorov inequality and the generalized Hölder inequality,

II � C
‖Iα ,q((bB −b)k( f 1))‖

WL
n

n−α

‖χB‖ n−α
n

� C
‖(bB −b)k( f 1)‖L1

|B|1−α/n
� CMα ,A

( f )(x).
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For III , we choose CB = {Cj}∞
j=1 = {Iα((bB − b)k f 2

j )(xB)}∞
j=1 and let Bm = 2m+1B .

First, we calculate |Iα ,q(bB−b)k f 2(y)−CB| as follows.

|Iα ,q(bB −b)k f 2(y)−CB|
� |Iα((bB −b)k f 2(y)− Iα(bB −b)k f 2)(xB)|q

�
(

∞

∑
j=1

|
∫

Rn\2B
|b(z)−bB|k|Kα(y− z)−Kα(xB − z)|| f j(z)|dz|q

)1/q

�
(

∞

∑
j=1

|
+∞

∑
m=1

∫
2m+1B\2mB

|b(z)−bB|k|Kα (y− z)−Kα(xB − z)|| f j(z)|dz|q
)1/q

�
+∞

∑
m=1

∫
2m+1B\2mB

|b(z)−bB|k|Kα(y− z)−Kα(xB − z)|(
∞

∑
j=1

| f j(z)|q)1/qdz

�
+∞

∑
m=1

(2mR)n 1
|Bm|

∫
2m+1B\2mB

|b(z)−bBm|k|Kα(y− z)−Kα(xB − z)|(
∞

∑
j=1

| f j(z)|q)1/qdz

+
∞

∑
m=2

(2mR)nmk 1
|Bm|

∫
Bm

|Kα(y− z)−Kα(xB − z)|χS j(z)| f (z)|qdz

= C(IV +V).

For IV , by the generalized Hölder inequality, we obtain

IV �
∞

∑
m=1

(2mR)n‖(b−b j)k‖Ck,Bj
‖| f |q‖A ,Bj

‖Kα(y− .)−Kα(xB − .)‖B,Bj

� Mα ,A(| f |q)(x)
∞

∑
j=1

(2mR)m−α‖Kα(y− .)−Kα(xB − .)‖B,|z|∼2R

� CMα ,A
(| f |q)(x).

For V , again using the generalized Hölder inequality we can get

V �
∞

∑
m=2

(2mR)nmk‖(Kα(y− .)−Kα(xB − .))χS j‖A ,Bj‖| f |q‖A ,Bj

� CMα ,A
(| f |q)(x)

∞

∑
m=1

(2mR)n−αmk‖Kα(.− (xB− y)))−Kα(.)‖A ,|z|∼2mR

� CMα ,A
(| f |q)(x).

Combining the estimates above, we finish the proof of Lemma 3. �
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4. Proofs of Theorems 1 and 2

In order to prove Theorem 1, by the extrapolation theorem in [5] ( (2.3) in [5]), we
know that Theorem 1 holds for all 0 < p < ∞ and all ω ∈ A∞ if and only if (9) holds
for some fixed p0 ∈ (0,∞) and all ω ∈ A∞ . First we only consider the case that ω and
b are all L∞ functions. By homogeneity, we may assume that ‖b‖BMO = 1. Now we
proceed by induction.

When k = 0, by Lemma 2, Lebesgue differential theorem and the Fefferman-
Stein’s inequality, we can easily prove Theorem 1 in the case k = 0.

Next, we assume that the results hold for all 0 � j � k− 1 and we will treat
the case j = k . For f ∈ C∞

0 (Rn) , and without loss of generality we may assume
that ‖Mα ,A

(| f |q)‖L
p0
ω

is finite otherwise there is nothing to prove. Therefore, by the
Fefferman-Stein’s inequality and Lemma 3, we have

‖Ik
α ,b,q( f )‖L

p0
ω

� ‖Mδ (Ik
α ,b,q( f ))‖L

p0
ω

� ‖M�
δ (Ik

α ,b,q( f ))‖L
p0
ω

� C
k−1

∑
j=0

‖Mε(I
j
α ,b,q( f ))‖L

p0
ω

+C‖Mα ,A
(| f |q)‖L

p0
ω

.

Next we should give the estimate of ‖Mε(I
j
α ,b,q( f ))‖L

p0
ω

.

Since δ < p0
r < 1, we can choose ε > 1 such that δ < ε < p0

r < 1 and ω ∈ Ap0/ε ,
then we have

‖Mε(I
j
α ,b,q( f ))‖L

p0
ω

= ‖M(|I j
α ,b,q( f )|ε )‖1/ε

L
p0/ε
ω

� C‖I j
α ,b,q( f )‖L

p0
ω

.

Then by induction hypothesis, we can get

‖Mε(I
j
α ,b,q( f ))‖L

p0
ω

� C‖I j
α ,b,q( f )‖L

p0
ω

� C‖Mα ,A
(| f |q)‖L

p0
ω

.

So it remains to prove ‖Mδ (Ik
α ,b,q( f ))‖L

p0
ω

< ∞.

For ω ∈ A∞ , then there exists r > 1 such that ω ∈ Ar . By the fact that 0 < δ <
p0/r < 1, which implies r < p0/δ , we have ω ∈ Ap0/δ . Then by the Lp(ω) (ω ∈ Ap )
boundedness of M( f )(x) , we can easily check

‖Mδ (Ik
α ,b,q(| f |))‖L

p0
ω

= ‖M(Ik
α ,b,q(| f |)δ )‖1/δ

L
p0/δ
ω

� C‖Ik
α ,b,q( f )‖L

p0
ω

.

So it suffices to show
‖Ik

α ,b,q( f )‖L
p0
ω

< ∞.

As ω ∈ L∞ , the above problem reduces to prove ‖Ik
α ,b,q( f )‖Lp0 < ∞ . By the

extrapolation theorem in [5] and Theorem 2.1 in [29], we have the boundedness of
Iα ,q from Lp1 to Lp0 with 1/p1−1/p0 = α/n , thus we have

‖Ik
α ,b,q( f )‖Lp0 = ‖

k

∑
m=0

Cm, jb
k−mIα ,q(bm f )‖Lp0 � C‖b‖L∞‖ f‖Lp1 < ∞.
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In order to remove the restrictions that ω ∈ L∞ and b ∈ L∞ , we can solve this
problem easily if we follow the arguments in [16, p. 1415-1416] and we omit the
details here.

So far the proof of Theorem 1 has been finished.

REMARK 4. In [2], the authors proved a similar Coifman’s type estimate for the
commutators of generalized fractional integral in the non-vector-valued case. However,
we cannot use the vector-valued extrapolation theorem ((2.5) in [5]) to get Theorem 1
directly due to the definition of Mα ,A

(| f |q)(x) .
Next, let us give the proof of Theorem 2. By a duality argument, it suffices to show∫

Rn
|I∗,kα ,b,q′( f )(x)|p′(Mα p,Dμ(x))1−p′dx � C

∫
Rn

| f |p′q′ μ(x)1−p′dx. (21)

From [3, p. 1512], we know that (Mα p,Dμ(x))δ ∈ A1 for 0 < δ < 1. Choosing
r > p′ and δ = (p′ −1)/(r−1) , we have

(Mα p,Dμ(x))1−p′ = {(Mα p,Dμ(x))(p
′−1)/(r−1)}1−r ∈ Ar ⊂ A∞.

Since the Bp condition implies the Lp boundedness of MB( f )(x) , then by Theo-

rem 1, the condition ξ−1(t)θ−1(t) � A
−1

(t) with D(t) = θ (t1/p) and the generalized
Hölder inequality, we obtain∫

Rn
|I∗,kα ,b,q( f )(x)|p(Mα p,Dμ(x))1−p′dx

�
∫

Rn
(Mα ,A

| f |q′(x))p′(Mα p,Dμ(x))1−p′dx

= |Q| α p′
n + α p(1−p′)

n

∫
Rn

(M
A
| f |q′(x))p′(MDμ(x))1−p′dx

� C
∫

Rn
Mξ (| f |q′μ−1/p)(x)p′Mθ (μ1/p)(x)p′(MDμ(x))1−p′dx

= C
∫

Rn
Mξ (| f |q′μ−1/p)(x)p′(MDμ(x))p/p′(MDμ(x))1−p′dx

= C
∫

Rn
Mξ (| f |q′μ−1/p)(x)p′dx � C

∫
Rn

| f |p′q′ μ(x)1−p′dx.

So far, we have proved (21) and the proof of Theorem 2 has been finished.

5. Proof of Theorem 3

In order to prove Theorem 3, we proceed by induction. Without loss of generality,
we may assume ‖b‖BMO = 1.

First, we treat the case k = 0. For a fixed λ > 0, let {Qj} be the standard family
of nonoverlapping dyadic cubes satisfying

λ <
1

|Qj|
∫

Qj

| f (x)|qdx � 2nλ (22)
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maximal with respect to the left hand side inequality. Furthermore, we denote by Qj =
Q(z j,r j) with z j and r j be the center and sidelength of each Qj , respectively. Denote
Ω =

⋃
j Q j , then we have | f (x)|q � λ for a.e. x ∈ R

n \Ω .
Now we proceed to construct a slightly different version of the classical Calderón-

Zygmund decomposition, readers may see [27] for more details. Split f as f = g +
h , where g = {gi}∞

i=1 and each gi(x) is given by gi(x) = fi(x) if x ∈ R
n \Ω and

gi(x) = ( fi)Qj if x ∈ Qj , where ( fi)Qj is defined by the average of fi on the cube Qj .
Furthermore, we denote

h(x) = {hi(x)}∞
i=1 =

{
∑
j

hi j(x)

}∞

i=1

with hi j(x) = ( fi(x)− ( fi)Qj )χQj (x) .
Let Ω̃ =

⋃
j
2Qj , then we have

ω({x ∈ R
n : |Iα ,q( f )(x)| > λ})

� ω({x ∈ R
n \ Ω̃ : |Iα ,q(g)(x)| > λ/2})+ ω(Ω̃)

+ ω({x ∈ R
n \ Ω̃ : |Iα ,q(h)(x)| > λ/2})

To estimate the first term, setting ω∗(x) = ω(x)χ
Rn\Ω̃ and by Theorem 2, we obtain

ω({y ∈ R
n \ Ω̃ : |Iα ,q(g)(x)| > λ/2})

� C
λ p

∫
Rn\Ω̃

|Iα ,q(g)(x)|pω(x)dx

=
C
λ p

∫
Rn

|Iα ,q(g)(x)|pω∗(x)dx

� C
λ p

∫
Rn

|g(x)|pqMα p,Dω∗(x)dx

� C
λ p

∫
Rn\Ω

| f (x)|pqMα p,Dω∗(x)dx+
C
λ p

∫
Ω
|g(x)|pqMα p,Dω∗(x)dx

= C(I + II).

The estimate of I is trival since | f |q � λ for a.e. x ∈ R
n \Ω .

Now we only need to treat II , from [15], we know that for any Young func-
tion A and weight ν with MA ν < ∞ for a.e. x ∈ R

n and any cube Q , there is
MA (νχRn\2Q)(y) ≈ ess inf

z∈Q
MA (vχRn\2Q)(z) for a.e. y ∈ Q and x ∈ Q . Thus we get

Mα p,Dω j(x) ≈ ess inf
z∈Qj

Mα p,Dω j(z). (23)

Setting ω j(x) = ω(x)χRn\Qj
, then by (23) and the generalized Minkowski inequality,

we obtain

II =
C
λ p

∫
Ω
|g(x)|pqMα p,Dω∗(x)dx

=
C
λ p ∑

j

∫
Qj

|g(x)|pqMα p,Dω∗(x)dx
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=
C
λ p ∑

j

∫
Qj

(
∞

∑
i=1

|( fi)Qj |q
)p/q

Mα p,Dω j(x)dx

� C
λ p ∑

j

(
∞

∑
i=1

∣∣∣∣ 1
|Qj|

∫
Qj

fi(z)dz

∣∣∣∣
q
)p/q

|Qj| inf
y∈Qj

Mα p,Dω j(y)

� C
λ p ∑

j

(
1

|Qj|
∫

Qj

| f (z)|qdz

)p

|Qj| inf
y∈Qj

Mα p,Dω j(y)

� C
λ ∑

j

(
1

|Qj|
∫

Qj

| f (z)|qdz

)
|Qj| inf

y∈Qj
Mα p,Dω j(y)

� C
λ ∑

j

∫
Qj

| f (z)|qMα p,D(ω)(z)dz

� C
λ

∫
Rn

| f (z)|qMα p,D(ω)(z)dz.

For the second term ω(Ω̃) , by a standard argument, we have

ω(Ω̃) � C∑
j

ω(2Qj)
|2Qj| |2Qj| � C

λ ∑
j

ω(2Qj)
|2Qj|

∫
Qj

| f (y)|qdy

� C
λ ∑

j

∫
Qj

| f (y)|qMω(y)dy � C
λ

∫
Rn

| f (y)|qMω(y)dy.

For the last term, by the Minkowski inequality, we get

ω({x ∈ R
n \ Ω̃ : |Iα ,q(h)(x)| > λ/2})

� C
λ

∫
Rn\Ω̃

|Iα ,q(h)(y)|ω(y)dy

=
C
λ

∫
Rn\Ω̃

[
∞

∑
i=1

|Iα(hi)(y)|q
]1/q

ω(y)dy

=
C
λ

∫
Rn\Ω̃

[
+∞

∑
i=1

∣∣∣∣∣∑j

∫
Qj

Kα (y− z)hi j(z)dz

∣∣∣∣∣
q]1/q

ω(y)dy

=
C
λ

∫
Rn\Ω̃

[
+∞

∑
i=1

∣∣∣∣∣∑j

∫
Qj

(Kα (y− z)−Kα(y− z j))hi j(z)dz

∣∣∣∣∣
q]1/q

ω(y)dy

� C
λ

∫
Rn\Ω̃

⎛
⎝∑

j

∫
Qj

[
∞

∑
i=1

|Kα (y− z)−Kα(y− z j)|q|hi j(z)|q
]1/q

dz

⎞
⎠ω(y)dy
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� C
λ ∑

j

∫
Qj

⎛
⎝∫

Rn\2Qj

[
∞

∑
i=1

|Kα(y− z)−Kα(y− z j)|q|hi j(z)|q
]1/q

ω(y)dy

⎞
⎠dz

� C
λ ∑

j

∫
Qj

⎛
⎝∫

Rn\2Qj

|Kα(y− z)−Kα(y− z j)|
[

∞

∑
i=1

|hi j(z)|q
]1/q

ω(y)dy

⎞
⎠dz.

Now we are going to treat the inner term in the last inequality. First, by (8) with k = 0,
we have the following estimates.∫

Rn\2Qj

|Kα (y− z)−Kα(y− z j)|ω(y)dy

�
∞

∑
m=1

∫
|y−z j |∼2mr j

|Kα(y− z)−Kα(y− z j)|ω(y)dy

� C
+∞

∑
m=1

(2mr j)n‖Kα(y− z)−Kα(y− z j)‖A ,|y−z j |∼2mr j
‖ω‖

A ,|y−z j |�2m+1r j

� C inf
Qj

Mα ,A
ω(x).

So by (23) and the generalized Hölder inequality, we have

ω({x ∈ R
n \ Ω̃ : |Iα ,q(h)(x)| > λ/2})

� C
λ ∑

j

∫
Qj

⎛
⎝∫

Rn\2Qj

|Kα(y− z)−Kα(y− z j)|
[

∞

∑
i=1

|hi j(z)|q
]1/q

ω(y)dy

⎞
⎠dz

� C
λ ∑

j

∫
Qj

[
∞

∑
i=1

|hi j(z)|q
]1/q

dz inf
Qj

Mα ,A
ω(x)

� C
λ ∑

j

∫
Qj

| f (z)|qMα ,A
ω(z)dz+

C
λ ∑

j

∫
Qj

|g(z)|qdz inf
Qj

Mα ,A
ω(x)

= III + IV.

For III , it is obvious that III � C
λ
∫
Rn | f (z)|qMα ,A

ω(z)dz .
To estimate IV , we have

IV � C
λ ∑

j

[
∞

∑
i=1

∣∣∣∣ 1
|Qj|

∫
Qj

fi(z)dz

∣∣∣∣
q
]1/q

|Qj| inf
Qj

Mα ,A
ω

� C
λ ∑

j

1
|Qj|

∫
Qj

| f (z)|qdz|Qj| inf
Qj

Mα ,A
ω

� C
λ ∑

j

∫
Qj

| f (z)|qMα ,A
ω(z)dz

� C
λ

∫
Rn

| f (z)|qMα ,A
ω(z)dz.
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So far, we have proved Theorem 3 in the case k = 0.
Next we will consider the case when k ∈ Z+ . Suppose that the theorem is true for

all j < k , then with the same notation as in the proof of the case k = 0, we can get

ω{x ∈ R
n : |Ik

α ,b,q( f )(x)| > λ}
� ω({x ∈ R

n \ Ω̃ : Ik
α ,b,q(g)(x) > λ/2})+ ω(Ω̃)

+ ω({x ∈ R
n \ Ω̃ : |Ik

α ,b,qh(x)| > λ/2})
= I + II + III.

By an argument similar to the proof of the previous case when k = 0, we have the
following estimates for I and II ,

I � C
λ

∫
Rn

| f (x)|qMα p,D(ω)(x)dx (24)

and

II � C
λ

∫
Rn

| f (x)|qMω(x)dx. (25)

Now, we plan to give the estimate of III . First we split Ik
α ,b,q as follows,

Ik
α ,b,q(h)(x) �

(
∑
i

∣∣∣∣∣∑j
[(b(x)− (b)Qj)

kIα(hi j)(x)

∣∣∣∣∣
q)1/q

+

(
∑
i

∣∣∣∣∣∑j
Iα((b(x)− (b)Qj)

khi j)(x)

∣∣∣∣∣
q)1/q

+

(
∑
i

∣∣∣∣∣
k−1

∑
l=1

Ck,l I
l
α ,b(∑

j
(b− (b)Qj)

k−lhi j)(x)

∣∣∣∣∣
q)1/q

= A1(x)+A2(x)+A3(x).

Thus we get

III � III1 + III2 + III3,

where IIIi = ω{x ∈ R
n \Ω : Ai(x) > λ/6} .

For III1 , by the generalized Hölder inequality, we have

III1 = ω

⎧⎨
⎩x ∈ R

n \Ω :

(
∑
i

∣∣∣∣∣∑j
[(b(x)− (b)Qj)

kIα(hi j)(x)

∣∣∣∣∣
q)1/q

> λ/6

⎫⎬
⎭

� ∑
j

C
λ

∫
Rn\2Qj

|b(x)− (b)Qj |k
(

∑
i
|Iα(hi j)(x)|q

)1/q

ω(x)dx
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� ∑
j

C
λ

∫
Rn\2Qj

|b(x)−(b)Qj |k
∫

Qj

|Kα (x−y)−Kα(x−z j)|
(

∑
i
|hi j(y)|q

)1/q

ω(x)dydx

� ∑
j

C
λ

∫
Qj

(
∑
i
|hi j(y)|q

)1/q(∫
Rn\2Qj

|Kα(x−y)−Kα(x−z j)||b(x)−(b)Qj |kω(x)dx

)
dy.

Now, we give the estimates of
∫
Rn\2Qj

|Kα (x− y)−Kα(x− z j)||b(x)− (b)Qj |kω(x)dx .
By the generalized Hölder inequality and the fact Kα ∈ HA ,k,α ∩HB,α , we have

∫
Rn\2Qj

|Kα(x− y)−Kα(x− z j)||b(x)− (b)Qj |kω(x)dx

=
∞

∑
m=1

∫
2mr j�|x−z j |<2m+1r j

|Kα(x− y)−Kα(x− z j)||b(x)− (b)Qj |kω(x)dx

�
∞

∑
m=1

∫
2mr j�|x−z j |<2m+1r j

|Kα(x− y)−Kα(x− z j)||b(x)− (b)2m+1Qj
|kω(x)dx

+
∞

∑
m=1

∫
2mr j�|x−z j |<2m+1r j

|Kα(x− y)−Kα(x− z j)||(b)2m+1Qj
− (b)Qj |kω(x)dx

�
∞

∑
m=1

(2mr j)n‖Kα(.−y)−Kα(.−z j)‖B,|x−z j |<2mr j
‖|b−(b)2m+1Qj

|k‖Ck,2m+1Qj
‖ω‖

A ,2m+1Qj

+
∞

∑
m=1

(2mr j)nmk‖Kα(.− y)−Kα(.− z j)‖A ,|x−z j |<2mr j
‖ω‖

A ,2m+1Qj

� ess infMα ,A
(ω)(x).

So by an argument similar to the previous case when k = 0, we can easily get

III1 � C
∫

Rn
| f (y)|qMα ,A

ω(x)dx.

For III2 , noting the following fact

(∑
i
|hi j|q)1/q � | f |qχQj + |g|qχQj , (26)

then by the induction hypothesis, we have

III2 =

⎧⎨
⎩x ∈ R

n \ Ω̃ :

(
∑
i
|∑

j
Iα(b(x)− (b)Qj)

khi j(x)|q
)1/q

> λ/6

⎫⎬
⎭

� C
λ

∫
Rn

[
∑
i
|∑

j
|b(x)− (b)Qj |hi j(x)|q

]1/q

×
(
Mω(x)+Mα ,A

ω(x)+Mα p,Dω(x)
)

χRn\2Qj
dx
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� C
λ ∑

j

∫
Qj

|b(x)− (b)Qj |
(

∑
i
|hi j(x)|q

)1/q

×
(
M(χRn\2Qj

ω)(x)+Mα ,A
(χRn\2Qj

ω)(x)Mα p,D(χRn\2Qj
ω)(x)

)
dx

� C
λ ∑

j
inf
Qj

[
M(χRn\2Qj

ω)(x)+Mα ,A
(χRn\2Qj

ω)(x)Mα p,D(χRn\2Qj
ω)(x)

]

×
(∫

Qj

|b(x)− (b)Qj || f (x)|qχQjdx+
∫
Qj

|b(x)− (b)Qj ||g(x)|qχQjdx

)
= V1 +V2.

For V2 , by the definition of BMO, then a similar argument as in the case k = 0 leads
to

V2 � C
λ

∫
Rn

| f (x)|q
(
Mω(x)+Mα ,A

ω(x)+Mα p,Dω(x)
)

dx.

For V1 , by the generalized Hölder inequality, we have

V1 � C
λ ∑

j
inf
Qj

[
M(χRn\2Qj

ω)(x)+Mα ,A
(χRn\2Qj

ω)(x)+Mα p,D(χRn\2Qj
ω)(x)

]
×|Qj|‖| f |q‖Qj ,L(logL)k .

Now we should note the following fact,

1
λ
|Qj|‖| f |q‖Qj ,L(logL)k � 2

∫
Qj

φk(
| f |q
λ

)(x)dx.

Thus we have

V1 � C
∫

Rn
φk(

| f |q
λ

)(x)(Mα ,A
ω(x)+Mα p,Dω(x)+Mω(x))dx.

Finally, to estimate III3 , we may decompose III3 as follows,

III3 = ω

⎛
⎝x ∈ R

n \Ω :

(
∑
i

∣∣∣∣∣
k−1

∑
l=1

Ck,l I
l
α ,b(∑

j
(b− (b)Qj)

k−1hi j)(x)]

∣∣∣∣∣
q)1/q

> λ/6

⎞
⎠

� ω

(
x ∈ R

n \Ω :
k−1

∑
l=1

CklI
l
α ,b(∑

j
[(b−bQj)

k−l(∑
i
|hi j|q)1/q]) > λ/6

)

�
k−1

∑
l=1

ω

(
x ∈ R

n \Ω : Il
α ,b(∑

j
(b−bQj)

k−l(∑
i
|hi j|q)1/q) > λ/6

)

�
k−1

∑
l=1

ω

(
x ∈ R

n \Ω : Il
α ,b(∑

j
(b−bQj)

k−l | f |qχQj ) > λ/12

)

+
k−1

∑
l=1

ω

(
x ∈ R

n \Ω : Il
α ,b(∑

j
(b−bQj)

k−l |g|qχQj ) > λ/12

)



WEIGHTED ESTIMATES FOR VECTOR-VALUED COMMUTATORS 1317

= III31 + III32.

For III31 , as ω∗(x) = ω(x)χ
Rn\Ω̃ , then by induction hypothesis and (23), we have

III31 =
k−1

∑
l=1

ω

(
x ∈ R

n \Ω : Il
α ,b

(
∑
j
(b−bQj)

k−l | f |qχQj

)
(x) > λ/12

)

�
k−1

∑
l=1

∫
Rn

φl

⎛
⎜⎝∑

j
|b−bQj |k−l | f |qχQj

λ

⎞
⎟⎠(x)

(
Mα ,A ω∗(x)+Mα pω∗(x)+Mω∗(x)

)
dx

�
k−1

∑
l=1

∑
j

∫
Qj

φl

( | f |q
λ

|b−bQj |k−l
)

(x)(Mα ,A ω j(x)+Mα p,Dω j(x)+Mω j(x))dx

�
k−1

∑
l=1

∑
j

(
inf
Qj

Mα ,A ω j(x)+ inf
Qj

Mα p,Dω j(x)+ inf
Qj

Mω j(x)
)∫

Qj

φl

( | f |q
λ

|b−bQj |k−l
)

(x)dx.

By an argument similar in [1, p. 472], we can easily get∫
Qj

φl

( | f |q
λ

|b−bQj |k−l
)
(x)dx � C

∫
Qj

φk

( | f |q
λ

)
(x)dx. (27)

Thus we obtain

III31 � C
∫

Rn
φk

( | f |q
λ

)
(x)
(
Mω(x)+Mα ,A

ω(x)+Mα p,Dω(x)
)

dx.

To estimate III32 , by the Jensen inequality, (27) and the similar argument as in the case
k = 0, we obtain

III32 �C∑
j

∫
Qj

φl

( | f |q
λ

|b−bQj |k−l
)
(x)Mα ,A

ω(x)dx �C
∫

Rn
φk

( | f |q
λ

)
(x)Mα ,A

ω(x)dx.

Combining the above estimates, we can draw that the proof of Theorem 3 has been
finished.

6. Applications

In this section, we will show that by Theorems 1-3, we can easily get the weighted
boundedness of vector-valued commutator of fractional integral with a rough kernel.
Before giving the main results in this section, let us give some definitions and notations.

Denote by S
n−1 be the unit sphere on R

n . For any x = 0, we write x′ = x/|x| .
Assume that Ω ∈ L1(Sn−1) is a homogeneous of degree 0 function on S

n−1 . For 0 <

α < n , let A be a Young function such that B(t) = A (t
n−α

n ) is also a Young function.
Suppose that Ω belongs to ∈ LA (Sn−1) and Ω satisfies the following LA (Sn−1)-Dini
condition, i.e., ∫ 1

0
ωA (t)

dt
t

< ∞,
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where
ωA (t) = sup

|y|�t
‖Ω(.+ y)−Ω(.)‖A ,Sn−1 .

Now we will study the vector-valued commutator of fractional integral operator with a
rough kernel as follows,

IΩ,k
α ,b,q( f )(x) = |IΩ,k

α ,b ( f )(x)|q =

(
∞

∑
j=1

|IΩ,k
α ,b ( f j)(x)|q

)1/q

,

where IΩ,k
α ,b ( f )(x) =

∫
Rn

Ω(x−y)
|x−y|n−α f (y)(b(x)− b(y))kdy . By the discussions in [15] and

[29], we can easily conclude that the kernel Ω(y)
|y|n−α ∈ HA ,k,α ∩HB,α . Thus from Theo-

rems 1-3, we get the following results and we omit the proofs here.

THEOREM 4. Assume that Ω ∈ Lr(Sn−1) is homogeneous of degree 0 on S
n−1 .

If Ω satisfies the Lr -Dini condition, we have
(a) If 0 < p < ∞ and ω ∈ A∞ , then∫

Rn
|IΩ,k

α ,b,q( f )(x)|pω(x)dx � C
∫

Rn
(Mα ,r′ | f |q(x))pω(x)dx.

(b) If 1 < p < r and μ is a weight which is only local integrable, then∫
Rn

|IΩ,k
α ,b,q( f )(x)|pμ(x)dx � C

∫
Rn

| f (x)|pqMα p,Dμ(x)dx.

(c) If 1 < p < r and μ is a weight which is only local integrable, then for any
λ > 0 ,

μ{x ∈ R
n : |IΩ,k

α ,b,q( f )(x) > λ} � C
λ

∫
Rn

| f (x)|q(Mr′μ(x)+Mα p,Dμ(x))dx.

In the above cases, D(t) = t(r/p)′(1 + log+t)(r/p)′(p−1)+ε and ε is a positive number
which is small enough.
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