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A NOTE ON STRONG LAW OF LARGE NUMBERS

FOR DEPENDENT RANDOM SEQUENCE
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(Communicated by N. Elezović)

Abstract. This note is devoted to establish a general strong law of large numbers for dependent
random variables. As corollaries, we generalized some known results.

1. Introduction

The most classical results in the literature on the SLLN problem for a sequence
of independent identically distributed random variables are apparently the Kolmogorov
and Marcinkiewicz’s SLLN. Recently, in reference [1], Jajte gave a strong law of large
numbers (SLLN) for a large class of means for independent and identically distributed
(i.i.d.) random variables.

THEOREM 1. (Jajte, 2003) Let g(·) , be a positive, increasing function and h(·)
a positive function such that φ(y) ≡ g(y)h(y) satisfies the following conditions:

(1) For some d � 0 , φ(·) is strictly increasing on [d,+∞) with range [0,+∞) .
(2) There exist C and a positive integer k0 such that φ(y+1)/φ(y) � C, y � k0 .
(3) There exist constants a and b such that φ2(s)

∫ ∞
s

1
φ2(x)dx � as+b, s > d .

Then, for i.i.d. random variables {Xn,n ∈ N}
1

g(n)

n

∑
k=1

Xk −Xk1(|Xk|�φ(k))

h(k)
→ 0 a.s. if and only if E[φ−1(|X |)] < ∞, (1.1)

where φ−1 is the inverse of function φ .

Inspired by Jajte’s idea, in this paper, we consider the problem of arbitrary random
variables and their limiting behavior from a new prospective. Throughout this paper,
let N denote the set of positive integers, {X ,Xn,Fn,n ∈ N} be a stochastic sequence
defined on the probability space (Ω,F ,P) , i.e., the sequence of σ -fields {Fn,n ∈ N}
in F is increasing in n , and {Fn} are adapted to random variables {Xn} . Throughout
this paper F0 will denote the trivial σ field {Φ,Ω} .

We begin by introducing the terminology and two lemmas.
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DEFINITION 1. Let {Xn,n ∈ N} be a sequence of random variables and is said
to be: stochastically dominated by a random variable X (we write {Xn,n ∈ N} ≺ X ) if
there exists a constant D > 0, for almost every ω ∈ Ω , such that

sup
n∈N

P{|Xn| > t} � DP{|X |> t} f or all t > 0. (1.2)

LEMMA 1. (Chow and Teicher, 1988) Let {Xn,Fn,n ∈ N} be an Lp(1 � p � 2)
martingale difference sequence, if ∑∞

n=1 E(|X |pn |Fn−1)< ∞ , then ∑∞
n=1 Xn a.s. converges.

LEMMA 2. Let {X ,Xn,n ∈ N} be a sequence of random variables. If {Xn} ≺ X ,
then for all t > 0

E|Xn|21(|Xn|�t) � D[t2P(|X | > t)+EX21(|X |�t)] (1.3)

Proof. By the integral equality

2
∫ t

0
sP(|Xn| > s)ds = t2P(|Xn| > t)+E|Xn|21(|Xn|�t),

it follows that

E|Xn|21(|Xn|�t)

�2
∫ t

0
sP(|Xn| > s)ds

�2
∫ t

0
sP(|X | > s)ds

=D[t2P(|X | > t)+EX21(|X |�t)] �

2. Strong law of large numbers

THEOREM 2. Let g(·) , h(·) and φ(·) be as in Theorem 1, and let {X ,Xn,Fn,n ∈
N} be a sequence of random variables defined as before. Assume that {Xn,n∈N}≺X .
If E[φ−1(|X |)] < ∞ , then

lim
n

1
g(n)

n

∑
k=1

Xk −E(Xk1(|Xk|�φ(k))|Fk−1)
h(k)

= 0 a.s. (2.1)

Proof. To prove (2.1) by applying the Kronecker lemma, it suffices to show that

the series
∞

∑
n=1

Xn−E(Xn1(|Xn|�φ(n))|Fn−1)
φ(n)

converges a.s. (2.2)
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Let Yn = Xn
φ(n)1(|Xn|�φ(n)) , Zn = Xn

φ(n)1(|Xn|>φ(n)) , then Xn
φ(n) = Yn +Zn , n ∈ N . Note that

{Xn} ≺ X and condition E[φ−1(|X |)] < ∞ , we have
∞

∑
n=1

P(|Xn| > φ(n))

�D
∞

∑
n=1

P(|X | > φ(n))

=D
∞

∑
n=1

P(φ−1(|X |) > n)

�DE[φ−1(|X |)] < ∞,

which shows that P({|Xn| > φ(n)}, i.o.) = 0, and hence ∑∞
k=1 Zn < ∞ a.s.

Let Wn = Yn −E(Yn|Fn−1) , then (Wn,Fn,n ∈ N) is a martingale difference se-
quence.

Since
∞

∑
k=1

E(Y 2
k ) =

∞

∑
k=1

E[X2
k 1(|Xk|�φ(k))]

φ2(k)

�D
∞

∑
k=1

[E1(|X |>φ(k)) +
E(X21(|X |�φ(k)))

φ2(k)
] (by lemma 2)

�D
∞

∑
k=1

P(|X | > φ(k))+D[k0 +C2
∞

∑
k=k0+1

E[X21(|X |�φ(k))]
φ2(k+1)

]

�DE[φ−1(|X |)]+Dk0 +DC2E[X2
∫ ∞

φ−1(|X |)
1

φ2(x)
dx]

�DE[φ−1(|X |)]+Dk0 +DC2aE[φ−1(|X |)]+DC2b < ∞

Note that

E[
∞

∑
n=1

E(W 2
n |Fn−1)] � E[

∞

∑
n=1

E(Y 2
n |Fn−1)] =

∞

∑
n=1

EY 2
n < ∞. (2.3)

which implies that ∑∞
n=1 E(W 2

n |Fn−1)< ∞ a.s. , hence by lemma 1, we have ∑∞
n=1Wn a.s.

convergence

Note that
Xn−E(Xn1(|Xn|�φ (n))|Fn−1)

φ(n) = Zn +Wn , these complete the Theorem 2. �
Theorem 2 also includes some particular cases of means, we can establish the

following:

COROLLARY 1. Under the conditions of Theorem 2, we have

lim
n

1
logn

n

∑
k=1

Xk −E(Xk1(|Xk|�φ(k))|Fk−1)
k

= 0 a.s. (2.4)

Proof. Let h(y) = y , g(y) = logy i.e. φ(y) = y logy . In this case φ−1(y) ∼ y
logy

as y → ∞ , therefore E(|X |α) � E[φ−1(|X |)] � E(|X |) , for 0 < α < 1. �
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COROLLARY 2. Under the conditions of Theorem 2, if E|X |α < ∞ (1 � α � 2) ,
we have

lim
n

1

n1/α

n

∑
k=1

[Xk −E(Xk1(|Xk|�φ(k))|Fk−1)] = 0 a.s. (2.5)

Proof. Let h(y) = 1, g(y) = yα i.e. φ(y) = yα . In this case φ−1(y) = y1/α . �

COROLLARY 3. Let {X ,Xn,n∈N} be a sequence of random variables with {Xn}
≺ X . Further, let Fn = σ(X1, · · · ,Xn) and F−n = {Ω,φ} , n � 0 , φn be as in Theorem
1. If E[φ−1(|X |)] < ∞ , then for any m � 1

lim
n

1
g(n)

n

∑
k=1

Xk −E(Xk1(|Xk|�φ(k))|Fk−m)
h(k)

= 0 a.s. (2.6)

Proof. Since {Xnm+l,Fnm+l,n � 1} is a stochastic sequence and {Xnm+l} ≺ X ,
by Theorem 2, we have for l = 0,1, · · · ,m−1 that

∞

∑
n=1

Xnm+l −E(Xnm+l1(|Xnm+l |�φ(nm+l))|F(n−1)m+l)
φ(nm+ l)

converges a.s. (2.7)

therefore we have

∞

∑
n=m

Xn−E(Xn1(|Xn|�φ(n))|Fn−m)
φ(n)

=
m−1

∑
l=0

∞

∑
n=1

Xnm+l −E(Xnm+l1(|Xnm+l |�φ(nm+l))|F(n−1)m+l)
φ(nm+ l)

converges a.s. � (2.8)

COROLLARY 4. Let {Xn,n ∈ N} be a sequence of m-dependent random vari-
ables. Further, let Fn = σ(X1, · · · ,Xn) and F−n = {Ω,φ} , n � 0 , φn be as in Theorem
1. If there exists a random variable X such that {Xn} ≺ X and E[φ−1(|X |)] < ∞ , then

lim
n

1
g(n)

n

∑
k=1

Xk −E(Xk1(|Xk|�φ(k)))
h(k)

= 0 a.s. (2.9)

Proof. Note that {Xn,n ∈ N} is a sequence of m-dependent random variables,
then E(Xn|Fn−m) = EXn , the corollary follows from Corollary 3. �

DEFINITION 2. Let {Xn,n∈N} be a sequence of randomvariables, and let Fm
n =

σ(Xn, · · · ,Xm). We say that the sequence {Xn,n ∈ N} is *-mixing if there exist a pos-
itive integer M and a nondecreasing function ϕ(n) defined on integers n � M with
limn ϕ(n) = 0, such that for n > M , A ∈ Fm

0 and B ∈ F∞
m+n the relation

|P(A∩B)−P(A)P(B)|� ϕ(n)P(A)P(B),
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holds for any integer m � 1.

It has been proved (see [5]) that the *-mixing condition is equivalent to the condi-
tion

|P(B|Fm
0 )−P(B)|� ϕ(n)P(B) a.s.

for B ∈ F∞
m+n and m � 1, implies

|E(Xn+m|Fm
0 )−EXn+m| � ϕ(n)E|Xn+m| a.s. (2.10)

THEOREM 3. Let {X ,Xn,n ∈ N} be a sequence of *-mixing random variables
with {Xn} ≺ X . Further, let Fn = σ(X1, · · · ,Xn) and F−n = {Ω,φ} , n � 0 , φn be as
in Theorem 1. Assume E|Xk1(|Xk|�φ(k))| � K < ∞ for every k � 1 . If E[φ−1(|X |)] < ∞ ,
then

lim
n

1
n

n

∑
k=1

[Xk −EXk1(|Xk|�φ(k))] = 0 a.s. (2.11)

Proof. By Corollary 3 of Theorem 2, we have for each m � 1

lim
n

1
n

n

∑
k=1

[Xk −E(Xk1(|Xk|�φ(k))|Fk−m)] = 0 a.s. (2.12)

Since {Xn,n ∈ N} is *-mixing, by (2.10) and (2.12), we obtain

|1
n

n

∑
k=1

[Xk −EXk1(|Xk|�φ(k))]|

�|1
n

n

∑
k=1

[Xk −E(Xk1(|Xk|�φ(k))|Fk−m)]|

+
1
n

n

∑
k=1

|[E(Xk1(|Xk|�φ(k))|Fk−m)−EXk1(|Xk|�φ(k))]|

�|1
n

n

∑
k=1

[Xk −E(Xk1(|Xk|�φ(k))|Fk−m)]|+ ϕ(m)
n

n

∑
k=1

E|Xk1(|Xk|�φ(k))|

�|1
n

n

∑
k=1

[Xk −E(Xk1(|Xk|�φ(k))|Fk−m)]|+ ϕ(m)K → 0 a.s. (as n → ∞).

thus, using the Kroneker lemma, (2.11) follows. �
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