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STRONG APPROXIMATION OF SOME ADDITIVE

FUNCTIONALS OF SYMMETRIC STABLE PROCESS
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Abstract. This paper deals with some additive functionals based on the local time of symmetric
stable process. In concrete, we obtain some Lp -inequalities of the local time and the fractional
derivative of the local time of symmetric stable process of index 1 < α � 2 . As an applica-
tion, we generalize the well known Barlow-Yor [4] inequality, which we use to give a strong
approximation version, (almost surely estimate), of occupation times problem of this process.
Our results generalize those obtained by Csaki et al. [7] for Brownian motion, and Ait Ouahra
and Ouali [2] for symmetric stable process of index 1 < α � 2 in Lp -norm.
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