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Abstract. This paper deals with some additive functionals based on the local time of symmetric
stable process. In concrete, we obtain some Lp -inequalities of the local time and the fractional
derivative of the local time of symmetric stable process of index 1 < α � 2 . As an applica-
tion, we generalize the well known Barlow-Yor [4] inequality, which we use to give a strong
approximation version, (almost surely estimate), of occupation times problem of this process.
Our results generalize those obtained by Csaki et al. [7] for Brownian motion, and Ait Ouahra
and Ouali [2] for symmetric stable process of index 1 < α � 2 in Lp -norm.

1. Introduction

The strong approximations of Brownian additive functionals has been studied by
Csaki et al. [7] as counterparts of limit theorem for additive functionals which feature
the fractional derivative of Brownian local time. We first recall their result.

THEOREM 1. Let f be a Borel function on R such that
∫
R
|x|k| f (x)|dx < ∞ , for

some k > 0 . Then for any 0 < γ < 3
2 (with γ �= 1 ) and all sufficiently small ε > 0 ,

when t goes to infinity, we have∫ t

0
Dγ−1 f (Bs)ds =

I( f )
Γ(1− γ)

Dγ−1l.t (0)+o(t1−
γ
2−ε), a.s.

where I( f ) =
∫
R

f (x)dx , lxt is the local time of the Brownian motion B and Dγ−1 is a
fractional derivative of order γ −1 , (see definition below).

This theorem and the law of the iterated logarithm, (LIL for brevity), of Csaki et
al. [8], proved for Dγ−1L.

t(0) , together imply that there exists a constant 0 < c(γ) < ∞ ,
depending only on γ , such that

lim sup
t→∞

∫ t
0 Dγ−1 f (Bs)ds

t1−
γ
2 (loglog t)

γ
2

= c(γ) a.s.

On the other hand, Ait Ouahra and Ouali [2] have established the following result, in
Lp -norm, for some self similar process, namely symmetric stable process X of index
1 < α � 2 and fractional Brownian motion with Hurst parameter 0 < H < 1.
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THEOREM 2. Let f be a Borel function on R such that
∫
R
|x|k| f (x)|dx < ∞ , for

some k > 0 . Then for any 0 � γ < α−1
2 and all sufficiently small ε > 0 and p � 1 ,

when t goes to infinity, we have

‖
∫ t

0
Dγ f (Xs)ds‖2p =

I( f )
Γ(1− γ)

‖DγL.
t(0)‖2p +o(t

α−1
α − γ

α −ε),

where ‖.‖2p = (E0|.|2p)
1
2p and Lx

t the local time of symmetric stable process X .

REMARK 1. The same estimation in Theorem 2 can be obtained for the self simi-
lar process called Sub-fractional Brownian motion, (sfBm for brevity), of Hurst paramter
0 < H < 1, (see definition of sfBm in Bojdecky et al. [5]).

Our purpose in this paper is to extend the result of Csaki et al. [7], to symmetric
stable process of index 1 < α � 2. We will prove the following theorem.

THEOREM 3. Let f be a Borel function on R such that
∫
R
|x|k| f (x)|dx < ∞ , for

some k > 0 . Then for any 0 < γ < α−1
2 and all sufficiently small ε > 0 , when t goes

to infinity, we have∫ t

0
Dγ f (Xs)ds =

I( f )
Γ(−γ)

DγL.
t(0)+o(t

α−1
α − γ

α −ε), a.s.

The remainder of this paper is organized as follows: In the next section, we estab-
lish some Lp -inequalities for some additive functionals of symmetric stable process.
Finally, in the last section, we give the prove of Theorem 3.

Most of the estimates in this paper contain unspecified positive constants. We use
the same symbol C for these constants, even when they vary from one line to the next.

2. Some inequalities for some additive functionals of symmetric stable process

Throughout this paper, X = (Ω,F ,Ft ,θt ,Xt ,Px) will denote the canonical real-
ization of a real valued symmetric stable process of index 1 < α � 2, with X0 = 0. The
sample paths of Xt are right-continuous with left limits a.s. (càdlàg for brevity), and
has stationary independent increments with characteristic function

E0 exp(iλXt) = exp(−t|λ |α), ∀t � 0,λ ∈ R.

E0 denotes the expectation with respect to the distribution P0 of the process starting
from 0. And (θt ) : Ω → Ω are the translation operators defined by (θt (ω))(s) = ω(t +
s).

Notice that for α = 2, X is a Brownian motion.
It is known from Barlow [3] and Boylan [6] that the local time {Lx

t ; t � 0,x ∈ R}
of X exists and is jointly continuous in t and x with compact support and satisfies the
scaling property

(Lx
t , t � 0,x ∈ R,Py) d

(
λ− α−1

α Lxλ
1
α

λ t ,t � 0,x ∈ R,Pyλ
1
α
)

∀λ > 0, (1)
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where d means the equality in the sense of the finite-dimensional distributions.
In addition, Lx

t is an additive functional

Lx
t (ω) = Lx

s(ω)+Lx
t−s(θs(ω)), (2)

and satisfies the occupation density formula

∫ t

0
f (Xs(ω))ds =

∫
R

f (x)Lx
t (ω)dx, (3)

for any bounded or nonnegative Borel function f .
Moreover, by Lemma 3.3 in Marcus and Rosen [10] and Theorem 1 in Ait Ouahra

and Eddahbi [1] and the Kolmogorov criterion, for all T > 0 fixed, we have almost
surely: ∀ 0 < β < α−1

α , ∃ 0 < C < ∞ such that ∀ 0 � t,s � T , |x| � M , where M is
a constant

|Lx
t −Lx

s | � C|t − s|β . (4)

∀ 0 < β1 < α−1
2α , ∀ 0 < β2 < α−1

2 , ∃ 0 <C < ∞ such that ∀ 0 � t,s � T , |x|, |y|� M ,
where M is a constant

|Lx
t −Ly

t −Lx
s +Ly

s| � C|t− s|β1 |x− y|β2 . (5)

For 0 < γ < α−1
2 , we define the fractional derivative of Lx

t as follows:

Hx
t := DγL.

t(x) =
1

Γ(−γ)

∫ t

0

ds
(Xs− x)1+γ ,

where yγ := |y|γsgn(y).
According to Fitzsimmons and Getoor [9], Hx

t is an additive functional satisfying
the scaling property

(Hx
t , t � 0,x ∈ R,Py) d

(
λ− α−1

α − γ
α Hxλ

1
α

λ t ,t � 0,x ∈ R,Pyλ
1
α
)

∀λ > 0. (6)

On the other hand, Ait Ouahra and Eddahbi [1] showed in Lemma 1 that, for all T > 0
fixed, we have almost surely ∀ 0 < β < α−1

α − γ
α , ∃ 0 <C < ∞ such that ∀ 0 � t,s �

T , |x| � M , where M is a constant

|Hx
t −Hx

s | � C|t− s|β . (7)

We refer the reader for a complete survey on the fractional derivative to Samko et al.
[11] and the references therein.

The next lemma follows easily from the scaling properties (1) and (6).
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LEMMA 1. For all 1 < α � 2 , 0 < ν < α−1
2 and p � 1 , we have

(
sup
x∈R

Lx
t , t � 0,P0

)
d

(
t

α−1
α sup

x∈R

Lx
1,t � 0,P0

)
(8)

(‖L.
t‖p,R, t � 0,P0) d

(
t

α−1
α + 1

pα ‖L.
1‖p,R,t � 0,P0

)
(9)(

sup
x∈R

Hx
t , t � 0,P0

)
d

(
t

α−1
α − γ

α sup
x∈R

Hx
1 ,t � 0,P0

)
(10)(

sup
0�s�t

‖H .
s‖p,R, t � 0,P0

)
d
(
t

α−1
α − γ

α + 1
pα ‖H .

1‖p,R,t � 0,P0
)

(11)

(
sup

0�s�t
sup
x�=y

|Lx
s −Ly

s |
|x− y|ν ,t � 0,P0

)
d

(
t

α−1
α − ν

α sup
x�=y

|Lx
1 −Ly

1|
|x− y|ν ,t � 0,P0

)
(12)

where ‖.‖p,R = (
∫
R
|.|p) 1

p .

In order to establish our results, we need the following lemma, (see Fitzsimmons
and Getoor [9]).

LEMMA 2. Let (At)t�0 be a continuous increasing (Ft )-adapted real valued
process with A0 = 0 . Assume that:

(i) At � As +K.At−s ◦θs, ∀ t,s � 0 , for some constant K > 0 .
(ii) There exists a constant q > 0 such that

lim
z→∞

sup
λ>0,y∈R

Py(Aλ > λ
1
q z) = 0.

Then for each p > 0 , there exists a constant 0 < C < ∞ such that

‖At‖p � Ct
1
q , ∀ t � 0,

where ‖.‖p = (E0|.|p)
1
p .

The first application of Lemma 2 is the following result.

LEMMA 3. For each p, p′ � 1 , there is a constant 0 < C < ∞ such that

‖sup
x∈R

Lx
t ‖p � Ct

α−1
α (13)

‖sup
x∈R

|Lx
t −Lx

s |‖p � C|t− s| α−1
α (14)

‖‖L.
t‖p′,R‖p � Ct

α−1
α + 1

p′α (15)

‖ sup
0�s�t

‖H .
s‖p′,R‖p � C|t− s|

α−1
α − γ

α + 1
p′α (16)
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Proof. (13): We apply Lemma 2 with

At = sup
x∈R

Lx
t , q =

(α −1
α

)−1
.

Clearly, At is increasing and satisfies (i) in Lemma 2 by (2).
Using (3), we get Lx

t (τy(ω)) = Lx−y
t (ω) where τy : Ω → Ω is the translation ω →

ω(.) + y . Since X is spatially homogeneous i.e. (τy(P0) = Py ), it follows that the
Py distribution of (At) does not depend on y . Thus, by applying (8) and the fact that
0 < A1 < ∞ by (4), we get

lim
z→∞

sup
λ>0,y∈R

Py(Aλ > λ
1
q z) = lim

z→∞
sup
λ>0

P0(Aλ > λ
1
q z) = lim

z→∞
P0(A1 > z) = 0.

Which completes the proof of (13).
Now, we verify (14). From the Markov property of X in s and (13), we have

E0(sup
x∈R

|Lx
t −Lx

s |p) = E0(sup
x∈R

|Lx
t−s ◦θs|p)

= E0(sup
x∈R

|Lx
t−s|p ◦θs)

= E0(E0(sup
x∈R

|Lx
t−s|p ◦θs/Fs)

=
∫

P0(Xs ∈ dy)E0(sup
x∈R

|Lx−y
t−s |p)

=
∫

P0(Xs ∈ dy)E0(sup
x∈R

|Lx
t−s|p)

� C|t− s| α−1
α .

This gives the desired estimate.
Next, we apply Lemma 2 with

At = ‖L.
t‖p′,R, q =

(α −1
α

+
1

p′α

)−1
.

Clearly, At is increasing and satisfies (i) in Lemma 2.
The Py distribution of (At) does not depend on y by the translation invariance

of the norm ‖.‖p′,R . The finiteness of A1 follows from (4) and the fact that Lx
t has a

compact support. Thus by a scaling property (9), we get

lim
z→∞

sup
λ>0,y∈R

Py(Aλ > λ
1
q z) = lim

z→∞
P0(A1 > z) = 0.

Finally, using the same method as above, we obtain (16). �
A more interesting application of Lemma 2 is the following inequality which gen-

eralize the well known Barlow-Yor inequality to symmetric stable process of index
1 < α � 2. (See Barlow and Yor [4] for the Brownian motion case).
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LEMMA 4. For all t > 0 , 0 < ν < α−1
2 and p � 1 , there exists a constant 0 <

C < ∞ , such that ∥∥∥∥∥ sup
0�s�t

sup
x�=y

|Lx
s −Ly

s|
|x− y|ν

∥∥∥∥∥
p

� Ct
α−1

α − ν
α .

Proof. We apply Lemma 2 with

At = sup
0�s�t

sup
x�=y

|Lx
s −Ly

s |
|x− y|ν , q =

(α −1
α

− ν
α

)−1
.

Clearly, (At) is increasing and satisfies (i) in Lemma 2.
In fact, for all 0 � s � t , we have

At = sup
0�r�t

sup
x�=y

|Lx
r −Ly

r|
|x− y|ν

� max

{
sup

0�r�s
sup
x�=y

|Lx
r −Ly

r |
|x− y|ν ; sup

s�r�t
sup
x�=y

|Lx
r −Ly

r |
|x− y|ν

}

= max{As ; At−s ◦θs}
� As +At−s ◦θs.

Moreover,

At−s ◦θs = sup
0�r�t−s

sup
x�=y

|Lx
r ◦θs−Ly

r ◦θs|
|x− y|ν

= sup
s�r+s�t

sup
x�=y

|Lx
r ◦θs−Ly

r ◦θs|
|x− y|ν

= sup
s�r+s�t

sup
x�=y

|Lx
r+s−Lx

s −Ly
r+s +Ly

s |
|x− y|ν

= sup
s�r�t

sup
x�=y

|Lx
r −Lx

s −Ly
r +Ly

s |
|x− y|ν .

It follows from (5) that

At −As � At−s ◦θs � C sup
s�r�t

|r− s|β1 � C|t − s|β1 ,

for any 0 < β1 < α−1
2α . Which implies that At is continuous.

Since Lx
t (τy(ω)) = Lx−y

t (ω) and X is spatially homogenous, it follows that the Py

distribution of At does not depend on y . Thus, by (12) we have

lim
z→∞

sup
λ>0,y∈R

Py(Aλ > λ
1
q z)= lim

z→∞
sup
λ>0

P0(Aλ > λ
1
q z)= lim

z→∞
P0

(
sup
x�=y

|Lx
1 −Ly

1|
|x− y|ν > z

)
= 0.
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Finally, by (5) and the fact that Lx
0 = 0, we get

sup
x�=y

|Lx
s −Ly

s|
|x− y|ν < ∞, a.s.

This completes the proof of Lemma (4). �
The proof of Theorem 3 is based on the following

COROLLARY 1. For any ν ∈]0, α−1
2 [ and ε > 0 , when t → ∞ ,

sup
x�=y

|Lx
s −Ly

s |
|x− y|ν = o(t

α−1
α − ν

α +ε), a.s. (17)

Proof. Using Tchebychev’s inequality and Lemma 4 with p = 2
ε , for any n � 1,

P0

(
sup

0�s�n
sup
x�=y

|Lx
s −Ly

s |
|x− y|ν > n

α−1
α − ν

α +ε

)
� C(ν,ε)n−2.

Then, by the Borel-Cantelli lemma, we get as n → +∞ , almost surely,

sup
0�s�n

sup
x�=y

|Lx
s −Ly

s |
|x− y|ν = O(n

α−1
α − ν

α +ε).

Since At is increasing and since ε can be arbitrarily small, we have proved the corol-
lary. �

3. Proof of Theorem 3

The idea of the proof is inspired from that used in Csaki et al. [7] for the Brownian
motion case. For this, we need the following lemmas.

LEMMA 5. For any 0 < γ < δ < α−1
2 and ε > 0 , when t → ∞ ,

sup
x∈R

∣∣∣∣∣
∫ 1

0

Lx+y
t −Lx−y

t

y1+γ dy

∣∣∣∣∣= o(t
α−1

α − δ
α +ε), a.s. (18)

sup
|x|�ta

∣∣∣∣∣
∫ ∞

1

Lx+y
t −Ly

t

y1+γ dy

∣∣∣∣∣= o(t
α−1

α − δ
α +aδ+ε), a.s. (19)

for some a > 0 .

Proof. We have almost surely,

sup
x∈R

∣∣∣∣∣
∫ 1

0

Lx+y
t −Lx−y

t

y1+γ dy

∣∣∣∣∣� sup
x∈R

sup
0<y�1

|Lx+y
t −Lx−y

t |
yδ

∫ 1

0

dy

y1+γ−δ = o(t
α−1

α − δ
α +ε),
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where we have used in the last equality (17) and the fact that δ > γ .
Next, by (17), almost surely,

sup
|x|�ta

∣∣∣∣∣
∫ ∞

1

Lx+y
t −Ly

t

y1+γ dy

∣∣∣∣∣� sup
|x|�ta

|x|δ sup
y∈R

|Lx+y
t −Ly

t |
|x|δ

∫ ∞

1

dy
y1+γ = o(t

α−1
α − δ

α +aδ+ε). �

LEMMA 6. For any 0 < γ < α−1
2 and ε > 0 , when t → ∞ ,

sup
x∈R

∣∣∣∣
∫ t

0

ds
(Xs− x)1+γ

∣∣∣∣= o(t
α−1

α − γ
α +ε), a.s. (20)

Proof. This lemma follows immediately by the same arguments used in the proof
of Corollary 1. More precisely, we apply Lemma 2 with

At = sup
0�s�t

sup
x∈R

|Hx
t |, q =

(α −1
α

− γ
α

)−1
. �

We are now able to prove Theorem 3.

Proof of Theorem 3. By Fubini’s theorem, we have

I(t) =
∫ t

0
Dγ f (Xs)ds− I( f )

Γ(−γ)
DγL.

t(0)

=
1

Γ(−γ)

∫
R

(∫ t

0

ds
(Xs − x)1+γ −

∫ t

0

ds

X1+γ
s

)
f (x)dx

=
1

Γ(−γ)
(I1(t)+ I1(t)),

where

I1(t) =
∫
|x|>ta

(∫ t

0

ds
(Xs− x)1+γ −

∫ t

0

ds

X1+γ
s

)
f (x)dx,

I2(t) =
∫
|x|�ta

(∫ t

0

ds
(Xs− x)1+γ −

∫ t

0

ds

X1+γ
s

)
f (x)dx,

for some 0 < a � 1
α .

Let us deal with the first term I1(t) . By (20), we get

I1(t) � sup
|x|>ta

∣∣∣∣
∫ t

0

ds
(Xs− x)1+γ −

∫ t

0

ds
(Xs)1+γ

∣∣∣∣
∫
|x|>ta

|x|−k|x|k| f (x)|dx

� o(t
α−1

α − γ
α −ak+ε)

∫
|x|>ta

|x|k| f (x)|dx

= o(t
α−1

α − γ
α −ak+ε). a.s.
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Now, we deal with I2(t) . Using (3) and the fact that f is integrable, we obtain

I2(t) � sup
|x|�ta

∣∣∣∣
∫ t

0

ds
(Xs − x)1+γ −

∫ t

0

ds
(Xs)1+γ

∣∣∣∣
∫
|x|�ta

| f (x)|dx

� C sup
|x|�ta

∣∣∣∣∣
∫ ∞

0

Lx+y
t −Lx−y

t −Ly
t −L−y

t

y1+γ

∣∣∣∣∣
� C sup

|x|�ta

∣∣∣∣∣
∫ 1

0

Lx+y
t −Lx−y

t −Ly
t −L−y

t

y1+γ

∣∣∣∣∣+C sup
|x|�ta

∣∣∣∣∣
∫ ∞

1

Lx+y
t −Lx−y

t −Ly
t −L−y

t

y1+γ

∣∣∣∣∣ ,
which, in view of (18) and (19), implies

I2(t) = o(t
α−1

α − δ
α +ε)+o(t

α−1
α − δ

α +aδ+ε) = o(t
α−1

α − δ
α +aδ+ε). a.s.

Then

I(t) = o(t
α−1

α − δ
α +aδ+ε)+o(t

α−1
α − γ

α −ak+ε). a.s.

Choosing

a =
δ − γ

α(δ + k)
,

it is clear that 0 < a � 1
α . It follows that

I(t) = o(tb+ε), a.s.

with

b =
α −1

α
− γ

α
− k

δ −ν
α(δ + k)

<
α −1

α
− γ

α
.

Then for all sufficiently small ε > 0, when t → ∞ ,

I(t) = o(t
α−1

α − γ
α −ε), a.s.

The theorem is proved. �

REMARK 2.

1. It would be interesting to prove the LIL for DγL.
t (0) in case of symmetric stable

process of index 1 < α � 2. This allows to deduce the LIL of the functional∫ t
0 Dγ f (Xs)ds.

2. The Lp - estimate of Ait Ouahra and Ouali [2] is proved for fractional Brownian
motion of Hurst parameter 0 < H < 1 which is a non Markovian process. The
question which arises is if we can also extend previous results to this process.
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