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INEQUALITIES AND ASYMPTOTIC EXPANSIONS
RELATED TO GLAISHER-KINKELIN CONSTANT

LONG LIN

(Communicated by N. Elezovic)

Abstract. We present sharp inequalities and asymptotic expansions related to Glaisher-Kinkelin

constant. Also, we present sharp inequality and asymptotic expansion for sum ¥} _, kIn (1 + %) .

This solves an open problem proposed in 2009 by Mihdly Bencze.

1. Introduction

The Glaisher-Kinkelin constant A = 1.28242712--- is defined by

lim p"/2~1/2=1/120 /4 ﬁkk =A (1.1)
e k=1
(see [8, 9, 14]), as well as
1/12
lim — Glnt1) _c (1.2)
H—oo /2—1/12(2n)n/2e—3n2/4 A

where G(n) is the Barnes G-function [2].
The Glaisher-Kinkelin constant A has closed-form representations

A—en 01
= (2m)!/12 [ /6= )] 1/7)

(see [5, p. 129, Eq. (3.22)]), where {’(z) is the derivative of the Riemann zeta function
€(z) (see [6]).

The Glaisher-Kinkelin constant A appears in a number of sums and integrals, es-
pecially those involving gamma functions and zeta functions. Finch introduced this
constant A in a section of his book [7, pp. 135-138].

Define the sequence (A,),en by

A, = n—n2/2—n/2—1/126n2/4 ﬁkk (1.3)
k=1
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Very recently, Chen [4, Theorem 1] established the asymptotic expansion of the se-
quence (InA,)uen:

n 1 n2
InA, = ) klnk— | —
n ]; n (2 += 3 + 12) nn+ 1
- (1.4)
Boi2 1

~InA— ,
,Zl 2k(2k+ 1)(2k+2) n?

where By (k€ No:=NuU{0}, N:={1,2,3,...}) are the n-th Bernoulli numbers de-
fined by the following generating function (see, for example, [12, Section 1.6] and [13,
Section 1.7]):

ez_l 2 kk' (2] < 2m). (1.5)

The asymptotic representation (1.4) can be rewritten as

1~2 W2 n 1 n2 hd a;
1'2%n"~An2 2 e Texp | Y, 2 |, (1.6)
=
where
aj=——E . (jeN) (1.7)
TG +2) ’
Namely,
n2 n 1 n2 l 1 l
1122 " A p2 ot % B
" " ¢ e <7zon2 5040n% 1 1008016
(1.8)
1 691 1
n gt 10 ot )
9504n8 " 3603600n 1872n

Mortici [ 1 1] established (1.6) and gave the following system for successively determin-
ing the coefficients a;:

k—1 —
R ) IR S (e
(1.9)

1 1 1
%o a1k kENVTH

By using ¢* = we deduce that

J OJ"

n2 n 1 )12 l 1433
1122~ AnT 2 e 7 (1 — s 1.10
" " ¢ ( 72002 ~ 72576007 * (1.10)

Our first aim in this paper is to give two general asymptotic expansions for 1122 .. "
which includes (1.10) as their special case (see Theorems 2.1 and 2.2).
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In 2009, Bencze [3, p. 451] posed the following open problem: (i) Prove that

11 " 1 11
n—i—ilnn<k§1kln<l+§)<n+2—;—§ln(n+l). (1.11)

(ii) Determine o, 8 € R such that

! 1 1
2k1n<1+—>:n+a+ﬁ1nn+0(—>. (1.12)
&= k n

Our second aim in this paper is to answer this question (see Theorem 2.3).

Our last aim in this work is to present the asymptotic expansion and sharp inequal-
ity for ¥}, k*In (14 1), which are related to the the Glaisher-Kinkelin constant (see
Theorem 2.4).

2. Main results

By using a fundamental theorem of algebra and the Newton formulas, we prove
Theorem 2.1 which includes (1.10) as its special case.

THEOREM 2.1. Let r be a given nonzero real number. The following asymptotic
expression holds:

1/r
)12 n n o b
1020w A pm 5t e <1+2n_j> , 2.1

where the coefficients bj = b;(r) (j € N) are given by
(_r)kl +hototk;j

bj=
/ kilka!- k!

ky+2ky ot k=

(%) () Gt

the summation being taken over all combinations of nonnegative integers k; satisfying
the equation

(2.2)

ki +2ky+ -+ jkj = j.

Proof. To determine b;(j € N), we first express (2.1) as follows:

In A In 1—|—i b; +0(n 1
rin( — | = —= :
A = "

By using the fundamental theorem of algebra, we see that there exist unique com-
plex numbers xp,...,x; such that

1+b1+m+%:(H)Q)...(Hx_m), (2.3)

n n n
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By applying the following series expansion:

m l)/ IZ/ N
1“(” ):ZTW("’" ) (d<lin—e),
we obtain
by b 2 (—l)j*ISj 1
In 1—|—7+"'+n7 :;T—Fo(n ) (n_>°°)7
where

Sj:x{—l—---—f—x{'n (j=1,...,m).
It follows from (1.6) that
«“ ’Bjy 1 —m—1
rin — 4t om™h,
( ) ,:21]]+1 )(j+2)n ( )

From (2.5) and (2.6), we obtain

S;=S;(r) = (_1)1% (j=12,...,m).
That is,
X1+ X = 81,
X+ a2 =8,
X't X0 = Sy
Let

Pu(x) =x" + e 4o o1+

(2.4)

(2.5)

(2.6)

2.7

(2.8)

be a polynomial with zeros: xi,...,x, which satisfy the system of equations (2.8). So

we have
Pu(x) = (x—x1) - (x—xm).

The Newton formulas (see, for example, [10] and references therein) give the connec-

tion between the coefficients ¢; and the power sums S;:

Si+Sj_1c1+Sj200+-+Sicjo1+jc; =0 (j=1,...,m).

It is known (see [10]) that c¢; can be expressed in terms of S;:

b )y (-1l (& )"1 (Sz)kZ (Sj)kj
j B BTN PR - e _. .
Ky +2ky -t k=] kilky!---k;! 1 2 3

Clearly,
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‘We thus have

pL e (D (1) (H’%)...(H%ﬂ), (2.9)

n n2 nm

By (2.3) and (2.9), the coefficients b; are given by

bj=(~1)¢;

_ l)j Z (_1)k1+k2+-~-+kj (Sl )kl (Sz)kz (Sj)kj
kit 2k Tt = kilkp!---k;! 1 2 J ’

where §; are given in (2.7). That is
(_r)k1+k2+-~-+kj

bj=
/ kilko!- - k;!

ky+2ky oot k=)

' (1 .1823-3)]{1 (2-334-4)]{2”' (%)Iq &N

This completes the proof of Theorem 2.1. [

By using another proving method, we prove Theorem 2.2 which includes Theorem
2.1 as its special case.

THEOREM 2.2. Let r be a given nonzero real number and £ > 0 be a given inte-
ger. The following asymptotic expression holds:

2

!
n*/r
n2 n n & d
1122 ATt <1+ Y —!) , (2.10)
=
where the coefficients dj = d;({,r) (j € N) are given by

(_r)k1+k2+"'+kj

(1+0k +(2+0ko+-+(j+0)kj=]

(55) (55) -~ Godi)

summed over all nonnegative integers k; satisfying the equation

2.11)

(L4 0k + 2+ Oka+ -+ (j+ 0k = j.

Proof. To determine d; (j € N), we first express (2.10) as follows:

r/nf' m
A" _ dj —m—1
(X) = 1+j§1nj+0(n ). (2.12)
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Write (1.6) as

< ~B
( ) gﬁiz)nﬁ%(m (n — o),

where %,,(n) = O(n~™"!). Further, we have

r/nk m —"Byyo
(ﬁ ) _ W/ H i T
A

m 2
_ A "Bt ! —"Bis2
¢ kl:[l l” (k(k+1)(k+2)nk+€> EETAVIE I

- - 1

”k,;:o i k- -k

7, [~
_ AW .
k1=0ky=0

_rB3 kl —rB4 k2 _er+2 km
1-2.3.pl+¢ 2.3.4.p2+ m(m+1)(m+2)nm+€
r R (x) /x" oo oo oo (—r)k1+k2+”'+km
=e (=r)fathotthn

' TSR
K0k =0  kym0 kilko!- - ky,!

([ _Bs “oBy R o Bt o
1-2-3 2:3:4 m(m—+1)(m+2)
1
Ok + 24Okt (m+ Ok

(2.13)

Equating the coefficients by the equal powers of x in (2.12) and (2.13), we see that

(_r)kl +hote+k;

d: = ~ 0
/ kiltko!- - k!

(10K +(2+0ky -+ (j+Okj=)

(55) (5=) - (ortis)

This completes the proof of Theorem 2.2. [

Setting (¢,r) = (0,1) in (2.10), yields (1.10). Here, from (2.10), we give several
explicit expressions:

2

152 n B
1270 ~A-n27272e" 4 | 1+

(2.14)

L R 12
360n2 18144007 :

2 1 1 n
P02t oA e (1 ) 2.15
A ¢ 208 5040 (2.15)
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2

n2 n 1 n2 1 1 "
1220 AnTHitme 7 (1 —_—— ] 2.16
" " ¢ T 7200% 504005 (2.16)

Theorem 2.3 answers the open problem of Bencze.

THEOREM 2.3. (i) The following asymptotic expansion holds:

L 1 1
Y kln (1 + —> ~n+1-In(v2r)— = Inn
= k 2

. (2.17)
o (-1 B ) !
+ . - . ; n—oo),
,22< j JjG=1)) ni™t ( )
namely,
u | 1 7 1 89
kln{ 14— |~ I-In(V2n)—zInhn— —+————=+--. (2.18
,{; n( +k> nl=In(vam) = shnn = o0+ 50~ 308 T (2.18)
(ii) For n € N, we have
ln2—l+n—£lnn< ikln l—l—1 <1—1n(\/27t)+n—llnn (2.19)
2 & k 2 '
The constants In2 — 1 and 1 —1n(\/27x) are the best possible.
Proof. Elementary calculations show that
kl kln(k+1) klnk
g n( k) Z n(k+ Z n
n+1 n+l
= Eklnk Elnk Zklnk (2.20)

= nln(n+ 1) —lnF(n+ l)

1
=nlnn+nln (1 + —) —InT(n+1),
n
where I" denotes the gamma function. It is well-known that

B 1 < B
InT'(n+1) = <n+§>lnn—n+ln\/2n¢+m§12 2 (n—e0) (2.21)

m— 1)p2m=1

(see [1, p. 257, Equation (6.1.40)]) and

In <1+1) = i (_W:_l (n>1). (2.22)
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Substituting from (2.21) and (2.22) into (2.20), yields the desired formula (2.17).
The upper and lower bounds are both obtained by considering the sequence (x,),en

defined by
n 1 1
Xn :];kln <1+§) — (n—Elnn> .

Elementary calculations show that

1 1 1
X1 —Xp = (n+1)1n<1+n+1> +§ln <1+;> —1=: f(n).

Differentiation yields

£(x) =1In x+2)\ 202 4-3x+2 .
- \x+1 2(x+ 1) (x+2)x
Ix* 4+ 12x+4
)= XIS k).

2(x+1)2(x+2)%2
Hence,

f(x) < lim f'(x) =0 (x=1),

X—00
which implies

Xn1—Xp = f(n) > lim f(n) =0 (neN).

n—o0

Therefore, the sequence (x,),> is strictly increasing, and we have

In2—1=x; <x, < limx, =1-1n(v2m) (neN).

This completes the proof of Theorem 2.3. [

REMARK. The inequalities (2.19) are sharper than inequalities (1.11).

Motivated by the open problem of Bencze, we establish the asymptotic expan-
sion and sharp inequality for ¥}, ?In (1 + 1), which are related to the the Glaisher-
Kinkelin constant.

THEOREM 2.4. (i) The following asymptotic expansion holds:

n 1 1 5
2k21n<1+—>~n21n(n+1)_<n2__>lnn+n(n )
k=1 k 3 2
\/— hind ZB.+2 1 (223)
+In(vV21/A%) + 3 ( Bjor+ = ) . o),
n( /A7) ;( j+l it2 ) G+ (n— o)
namely,
n 1 1 _2
> Kln <1+%> ~n*In(n+1)— <n2_§>1nn+n(n2 )
. (2.24)

| |
(V27 /A2) 4 — — — 4 ...
HIn(V2/AT) + 5~ 3ot

(n— ).
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(>ii) For n € N, we have

5 &, 1
2 <Y RIn(1+-
nezen()

| 5 | (2.25)
- [nzln(n+1)— < - 5) Inn+ n(n 2_ )—l-m < In(V2m/A%).
The constants % and In(v/21/A?) are the best possible.
Proof. Elementary calculations show that
n 1 n n
K*1n 1+—) =Y Eln(k+1)- Y klnk
Zem(1+g) - Zemen -5
n+1
= Z k—1)?Ink— Zkzlnk (2.26)
:n2ln(n—|—1)—22klnk—|—1nl"(n+1).
k=1
The asymptotic formula (1.6) can be rewritten as
iklnk InA+ + + — ! Inn— iil (2.27)
= 2 212 “JG+1)G+2)n '

Substituting from (2.21) and (2.27) into (2.26), yields the desired formula (2.23).
Consider the sequence (y,),en defined by

i 1 1 nn—=2) 1
=Y EIn(1+-)— |n’] - (n*—2)1 —.
kgl n( +k) [n n(n+1) (n 3) N+ ———+ -

Elementary calculations show that

12n* + 120 —4n? — 4n
12n(n+1)

Yn+1 —Yn = g(n)a

where

(X)=In 1_|_1 123 +6x2—6x—1
W= X 12x4 + 12x3 —4x2 — 4x~

Differentiation yields

2
p x4+ 2x—1
=— 0 >1).
8 ()C) 4x2(3x3 —|—3x2—x— 1)2 < (.X )

Therefore, g(x) is strictly decreasing for x > 1, and we have

g(n)>limg(n)=0 andso y,+1 > yn (neN).

n—oo
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Therefore, the sequence (y,),> is strictly increasing, and we have

5 Vo
v =y1 <y < limyn:hl( 2”/A2) (n EN)'

This completes the proof of Theorem 2.4. [
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