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STRONG APPROXIMATION OF ALMOST PERIODIC FUNCTIONS

WELODZIMIERZ LENSKI AND BOGDAN SZAL

(Communicated by L. Leindler)

Abstract. We consider summability methods generated by the class GM (23). We generalize
some related results of P. Pych-Taberska [Studia Math. XCVI (1990), 91-103] on strong ap-
proximation of almost periodic functions by their Fourier series and S. M. Mazhar and V.Totik [J.
Approx. Theory, 60(1990), 174-182] on approximation of periodic functions by matrix means
of their Fourier series.

1. Introduction

Let S” (1 < p < ) be the class of all almost periodic functions in the sense of
Stepanov with the norm

sup {3 [ | £(t) |pdt}1/p when 1< p < oo,

1l = sup | f(u)| when p=oo.

Denote yet by Cpy the class of all 27 -periodic functions continuous over Q = [—7, 7]
with the norm

£ e := sup | £(2)
teQ

Suppose that the Fourier series of f € S” has the form

Sfx)=Y Ay(f)e**, where Av(f):Lli_l}l% OLf(t)e_ilvtdt,

V=—o0

with the partial sums '
Suf ()= 3 Av(f)er
v |<w
andthat 0 =2y <Ay < Ay if veN={1,2,3...}, limA, =, A_, = -4, |A/|+
|A_y| > 0. Let Qg ) , with some fixed positive & , be the set of functions of class S”
bounded on R = (—eo,0) whose Fourier exponents satisfy the condition

Avii—Ay = a (veNu{0}).

Mathematics subject classification (2010): 42A24.
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Incase f € Qq,p

S 0 = [ {40+ 7 =0} Wy (O,
where 2sin —(r’_zl)t sin (r’gl)t
Win(t)= CETE (0O<A<n, |t]>0).

Let A := (a,x) be an infinite matrix of real nonnegative numbers such that

Y apx=1,wheren=0,1,2,..., (1)
k=0

and let the A— transformation of (S f) be given by

nAyf Zanksyk (n:071727...).

Let us consider the strong mean

1/q
Tl f (x {Zankw I"} (g>0). )

If f € Cyo, then as usually

s =)y

M

(ay(f)coskx+ by (f)sinkx)

I
—_

1%

and instead of Sy, f we will consider the partial sums

do (f )
2

k
Sef (x) = + Y (av(f)coskx +by(f)sinkx).
v=1

Thus, instead of T, , f and T yf we will consider the quantities 7, , f and T! nalt
defined by the formulas

Toaf (x):= i aniSif (x)  (n=0,1,2,...) 3)
k=

nAf {

respectively. As measures of approximation by the quantities (2), (3) and (4) we use
the best approximation of f by trigonometric polynomials #; of order at most & or by

and

1/q
(x) = f(x )Iq} (q>0), 4)
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entire functions g, of exponential type ¢ bounded on the real axis, shortly gs € Bs
and the modulus of continuity of f, defined by the formulas

Ex(f)can Zi}:f\\f—tkHcM

or
EG(f)S” = iinfo_gGHSP

and
of (8)y=sup [|[f(-+1)=f()llx, X=CrorX=S5",

lt|<6

respectively.
In [10] S. M. Mazhar and V. Totik proved the following theorem:

THEOREM 1. Let f € Cor. Suppose A := (amk) satisfies (1), lim, a0 =0 and
Ani 2 apir1 k=0,1,2,... n=0,1,2,..,

then

it 1
17247 @)= flle,, <K X ansef (m)

Recently, L. Leindler [5] defined a new class of sequences named as sequences of
rest bounded variation, briefly denoted by RBV'S, i.e.,

RBVS = {a = (an) €C: Y, |ay—ar1| < K(a)|am| forallm e N}7 5)

k=m

where here and throughout the paper K (a) always indicates a constant only depending
ona.
Denote by MS the class of nonincreasing sequences. Then it is obvious that

MS C RBVS.

In [6] L. Leindler considered the class of mean rest bounded variation sequences MRBV'S,
where
MRBVS ={a:=(a,) €C:

S 1 m
N lax—ap1| < K(a)— 2 |a| forallm e N 3. (6)
k=m k=m/2
It is clear that
RBVS C MRBVS.

In [13] the second author proved that RBV'S = MRBV S. Moreover, the above theorem
was generalized for the class MRBV'S in [12] .
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Further, the class of general monotone coefficients, GM , is defined as follows (see

[14]):

2m—1
GM = {a =(an) €C: Y, |ax — ary1| <K (a) |an| forallm e N} . @)

k=m

It is clear
RBVS C GM.

In [7, 14, 15, 16] was defined the class of 3 — general monotone sequences as follows:

DEFINITION 1. Let f:= (f,) be a nonnegative sequence. The sequence of com-
plex numbers a := (a,) is said to be —general monotone, or a € GM (f3), if the

relation
2m—1

Y lax— a1 <K (a) B 8)
k=m

holds for all m.

In the paper [16] Tikhonov considered, among others, the following examples of
the sequences 3, :

(1) lﬁn = |an|7

[cn]
@) 2B,= Y 4 for some ¢ > 1.
k=[n/c]
It is clear that GM (13) = GM. Moreover (see [16, Remark 2.1])

GM (1 +2B)=GM(2f3).

Consequently, we assume that the sequence (K (o)), is bounded, that is, that
there exists a constant K such that

0<K(a) <K

holds for all n, where K (o) denote the sequence of constants appearing in the in-
equalities (5)-(8) for the sequences 0, := (ank ) -
Now we can give the conditions to be used later on. We assume that for all n

2m—1 [cm]

2 |an,k—an7k+l’ <K z azk N
k=m o

holds if o, = (an),_, belongs to GM (). for n=1,2,...
In this paper we consider the class GM (;3) in estimate of the quantity Han ayf

sp’
Precisely, we extend the result of S. M. Mazhar and V. Totik (see [10, Theorem 1]) and

generalize the following result of P. Pych-Taberska (see [1 1, Theorem 5]):
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THEOREM 2. If f € Qg e, 00 >0 and q > 2, then

. Lo 2\ 1N Il
‘ "vAvnysw<< n+1kz{)[wf<k+—1>sj +m’

Jor n=0,1,2,..., where y= (V) is a sequence with Y, = O‘Tk, anj = ﬁ when k<n
and a, j = 0 otherwise.

We shall write I} < I, if there exists a positive constant K, sometimes depended
on some parameters, such that I} < KI,.

2. Statement of the results

We start with two propositions.

PROPOSITION 1. If f € Qg p, 00 >0, n=0(r,) and q >0, then

J 1/q
> sg 1] } < Iflsr,

sp

r"knr

forn=0,1,2,...

PROPOSITION 2. If f € Qg p, 00 >0, n=0(r,) and q >0, then

1/q
S%kf—fj"} < Eatrry (N5

Sp

Ly — n
forn=0,1,2,...

In the special case p = and f € C; Proposition 2 reduce to the fundamental
result of L. Leindler (see [8, Theorem 1]).

Our main results are following

THEOREM 3. If f € Qup, >0, p>q, (any)

w0 € GM (2B3) forall n, (1) and
lim;, .cca, 0 = 0 hold, then

1/q
T <<{ZankE‘1ak (f)sp} ) (10)

Sfor some ¢ > 1 and n=0,1,2,..., where vy = (%) is a sequence with Y, = %k.
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THEOREM 4. If f € Qg ), >0, p>¢q, (an,k):zo € GM (28) forall n, (1) and
lim;, e a0 = 0 hold, then

1/q
[, = { S (55), )

forn=0,1,2,..., where y= () is a sequence with 7y, = O‘Tk.

THEOREM 5. Ifwe additionally suppose that (an,k)::o € MS then
1/q
nAny < {ZankE fs } ,

forn=0,1,2,..., where y= () is a sequence with 7y, = O‘Tk.

REMARK 1. Taking a,; = # when k <n and a,; = 0 otherwise, in the case
p = oo we obtain the better estimate than this one from [1 1, Theorem 5].

3. Proofs of the results

3.1. Proof of Proposition 1

Denote by S f the sums of the form

Sgf)= 3 Av(pe

Av|< %

ok 06( +1)

such that the interval ( ) does not contain any A,. Applying Lemma 1.10.2

of [9] we easily verify that
Skf / q)x \Pk

where @, (1) := f(x+1)+ f(x—1)—2f (x) and Wi (1) = ‘Pazk atie1) (1) ie.,

o(2k+1)r
4sin & 4 sin 7

lIlk (t) ot

(see also [3], p. 41). Evidently, if the interval <°‘k a(k; U) contains a Fourier exponent
Av, then
Saka(x) =S f (%) — (Av (f) MLAL, (f) e‘ik‘/x> )

Since

- 1/q
{ 2 Av(f)|q} < fllgy for 1 <p< 2andq_p—([1 ,p-78])
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and
I fllgr <N fllsp for p=1([2,p. 7D),

where [|-| 5, is the Besicovitch norm, we have
Ay (A < fllsp forp>1,

whence the deviation

1 ol ‘q

Sgf(x) 1 ()

Tn k=n—r,
can be estimated from above by

n—1

+l S (1l

"knr

oo

1 n—1

rpY

Tn k=n—r,

@ (1) Wi (1) dit

where x equals 0 or 1. Putting 4 =27/ (on) we obtain
/ O (t) Wik (1) dt = </ +/ +/ )‘Px ) Wik (t)dt
=1 (k) + L (k) + 15 (k).

By elementary calculations we get

2k+3)a (" I
n W< EEIE Pl lar < [ locola
0 0

and

561< [l il < [ 2,

Therefore

1 n—1 x
=S i n o< [ [ oo [

Ly — n

Consequently, we have to estimate the quantity - Zk - |l (k)|7. The inequality of
Hausdorf-Young [17, Chap. XII, Th. 3.3 II] ylelds (cf. [11, p. 102])

/ /dq
1 n—1 1 nh N q g
— 3 k< - 2‘1 ) < - l/h |<Pt(qf/)\ dt] ’

Tn k=n—ry

where ¢ = % and ¢ > 2.
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vy /v
} with respect to v > 0,

By monotonicity of { >l .

O | nl ’ 1/q
S far-} | <|{2 5 [ser-o]

s N k=n—ry

nh
p P.
<. /ﬁw Olgar+ [ 10l ﬂd+{ / ”(>”m} + s

!

”k n—r,
n Sp

1/q

f "L f
it [ Wy {1 UL
- 1 1 /mh 1/q'
2 —d - —d
+/nh 12 It (n/h 1 t) < ||fHSp7

forany v € (0,q] such that ¢’ < p.
Thus the desired result follows.[]

< || fllgp

3.2. Proof of Proposition 2

The proof is standard and the estimate follows from that of Proposition 1. Namely,
taking g € Bg such that Eq(f)sr = || f — go|g» We obtain

1 n—1 q l/q
{;k=n2—4rn S%kf_f’ }
NZ
1 n—1 q l/q
= {_ 2 S%kf_go_(f_gc) }
NZ

- ’ 1/q
— {— 2 S%k(f_go)_(f_go)’}

'n k=n—ry,

sp
< |If—gsllss

with 0 = M, and thus our result follows. [J

3.3. Proof of Theorem 3
Let

q
Toayt

’ 1/q
2ld—1 g = q
o = 2 An k S%kf_f’ +k_22[6]an,k S%’\f_f‘

k=0

NG
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ol 1/q o omtl_q 1/q
q q
< { Z A k S%kf_f’ } + { 2 2 Qp k S%kf—f’ }

— | — [~ —m
k=0 P m=[c|] k=2 o

=L+

for some ¢ > 1. Using Proposition 2 we obtain, for p > g,

1/q
S%f—fr}

2l 1 k
k/2+1
I <
1 {z ity 3

k=0 o
[12[42‘1 Lo$ q7
<029 Y |l X [Ser-f
k=0 kf2+1, 45,12 o
ol /a
< Z an’kE& (f)sp} .
k=0 4
By partial summation, our Proposition 2 gives
0o 2m+1 2 k q
(an,k_an,k+l) 2 Sﬂf_f‘
k=2 1= 7
2m+171 q 1/(1
+an om+1_1 2 Sorlf_f’
7 1=m 17 o
oo 2m+1_2 k q l/q 4
ST | Y k= anan| || X [sa 1]
m=[c] | k=2m 1=om o
—— 1/q14 1/q
+an72m+171 Z )Salf f’ )
l 2'71 Sp

o0 om+1_o
< { > [zm > |an7k_an,k+1’Eli%m(f)sp
]

m=[c k=2m

l/q
2 11 q(12m (f)sz:l }
n,2 5=

. 2m+172 l/q
< { > sz?ﬂm (f)sr [ Y fank = angar +an.,2m+1—1]} ’

m=|c] k=2m

for p > q.



1362 W. LENSKI AND B. SZAL
Since (9) holds, we have

Aps+1 — Anr

s
< |an,r_an,s+l| < Z ’an,k_an,k+l|

k=r
2m+1_2 [sz] s
< Y |tk —anp| <Y (2<2m<r<s<2’”+1—2),
=2 w=amsa K
whence
[c2™] i 1
aps+1 <K Apr+ Z k (2 <M L<r<s <Mt 2)
k=[2"/c]
Consequently,
om omtl_p
2man72m+1_1 = — l 2 (1" om+1_1
72I71
omtl_p 2" o X
< 2 anrt Y, ;
r=2m k=[2m/c]
amtlg 2", .
<3 e Yo
r=2m k=[2m/c]

and therefore

[c2™] ln om+1_| 1/q
sz?sz (f)S” Z k +Ea2m (f)SI’ Z an.’k .

2 k=[2"/c] k=2m

,2<<{§

m=|c|

Using typical transformations we get

oo om+|c] om+1 1/q
L < { 3 lszzﬂm fsr Y, k +Ea2m Fsr Y, an’k]}

m=|c| J=2m—Ic] k=2m

o 2m+[r] l/q
2 ocZ’" SI’ 2 an.’k }
m=| ]

k=2om—lc

—om—|c] k=2m

<

oo 2m_ | om+[c] l/q
{ Z zm SI’ Z ank+ z Eazm SI’ z an7k}

o omHld 1/q
Z Z a”"Eak Jsv + Z zankE ok SI’}

m=|c] g=2m~[c] m=|c] k=2m zr+1
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o Mt _q

<<{Z Z ankEaA )sp + Z Z ankE? . (f)s

[¢] k=2m—Ic] m=lc|] k=2" 2ld+T

- 1/q
+ Z Eazm SPan72m+[c]}

m=|c]

o ] ommrtl_q [c]—1om+rt1_g
= { Z 2 Z an,kE f)sp + 2 2 Z amqu[o]r_k (f)sr

m:[c] r=1 jf=pm-r m:[c r=0 jf=2m+r olel+1

oo 1/q
+ 2 Et@ (f)span72m+[c] }
[

m=|c]

] oo
{Z Z ankEak )sp + Z Z a,,kE Tk (f)sp

r=1p_olc]-r r=0 g—olc+r 2lel+1

1/q - 1/q
+ Z ankEazm(f) } <<{Zan7quak(f)S”} .

k=22[c] k=0 ole]+1

Thus we obtain the desired result. []

3.4. Proof of Theorem 4

The proof follows by the Jackson type theorem

Eolf)sr < of (é)

sp

and basic properties of the modulus of continuity @f (-)g,. O

3.5. Proof of Theorem 5
If (an,k)::o € MS, then (an,k)::o € GM (»8) and using Theorem 4 we obtain

1/q o (k+1)21 1 e
anA ny < { 2 Qn qu ok (f)Sf’} = 2 2 anmk ak (f)S”
=0 olel+1 k=0 jp—g2ld 2lel+1
- (k120 — /a - 1/a
S YELNs Y anm < { 2 2ME@ (f)sra, gl }

k=0 2 m=rkolc] k=0 2

1/q - 1/q

{ZMEE spank} <<{ZE (f)Spank}
k=0

This ends our proof. []
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