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SOME INEQUALITIES ON GENERAL Lp –CENTROID BODIES

FENG YIBIN, WANG WEIDONG AND LU FENGHONG

(Communicated by Y. Burago)

Abstract. In this article, we define the general Lp -centroid bodies, which extend the notion of
Lp -centroid bodies by Lutwak and Zhang. Further, we generalize the two monotone inequalities
by Wang, Lu and Leng, and establish the Brunn-Minkowski type inequalities of dual quermass-
integrals for this new notion. In particular, the extremal values of dual quermassintegrals of the
polars of general Lp -centroid bodies are also provided.

1. Introduction and main results

Let K n denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space Rn . For the set of convex bodies containing the origin in
their interiors, we write K n

o . The unit ball in Rn and its surface will be denoted by
B and Sn−1 , respectively. V (K) denotes the n -dimensional volume of a body K . We
denote ωn = V (B) for the volume of the unit ball B .

If K ∈ K n , then its support function, hK = h(K, ·) : Rn → (−∞,∞) , is defined by
(see [6, 20])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y .
For K,L ∈ K n

o , p � 1 and λ ,μ � 0 (not both zero), the Firey Lp -combination,
λ ·K +p μ ·L ∈ K n

o , of K and L is defined by (see [5])

h(λ ·K +p μ ·L, ·)p = λh(K, ·)p + μh(L, ·)p, (1.1)

where ” ·” in λ ·K denotes Firey Lp -scalar multiplication. Obviously, Firey Lp -scalar

multiplication and usual scalar multiplication are related by λ ·K = λ
1
p K .

If K is a compact star-shaped (about the origin) set in Rn , then its radial function,
ρK = ρ(K, ·) : Rn \ {0}→ [0,∞) , is defined by (see[6, 20])

ρ(K,u) = max{λ � 0 : λ ·u ∈ K}, u ∈ Sn−1. (1.2)
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If ρK is positive and continuous, call K a star body, and write S n
o for the set of

star bodies in Rn . Two star bodies K , L are said to be dilates (of one another) if
ρK(u)�ρL(u) is independent of u ∈ Sn−1 .

For K,L ∈ S n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic radial

combination, λ �K +−p μ �L ∈ S n
o , of K and L is defined by (see [13])

ρ(λ �K +−p μ �L, ·)−p = λ ρ(K, ·)−p + μρ(L, ·)−p, (1.3)

where λ �K denotes Lp -harmonic radial scalar multiplication, and we easily see λ �

K = λ− 1
p K .

If K ∈ K n
o , the polar body, K∗ , of K is defined by (see [6, 20])

K∗ = {x ∈ Rn : x · y � 1,y ∈ K}. (1.4)

For K,L ∈ S n
o , p � 1 and ε > 0, the Lp -dual mixed volume Ṽ−p(K,L) was

defined in [13] by

n
−p

Ṽ−p(K,L) = lim
ε→0+

V (K +−p ε �L)−V(K)
ε

. (1.5)

Centroid bodies are a classical notion from geometry which have attracted in-
creased attention in recent years (see [2, 7, 14-19, 21]). In particular, Lutwak and
Zhang [16] introduced the notion of Lp -centroid bodies. For each compact star-shaped
(about the origin) K in Rn and real number p � 1, the Lp -centroid body, ΓpK , of K
is an origin-symmetric convex body whose support function is defined by

hp
ΓpK

(u) =
1

cn,pV (K)

∫
K
|u · x|pdx

=
1

cn,p(n+ p)V(K)

∫
Sn−1

|u · v|pρn+p
K (v)dS(v) (1.6)

for all u ∈ Sn−1 . Here

cn,p = ωn+p/ω2ωnωp−1,and ωn = π
n
2 /Γ(1+

n
2
). (1.7)

We recall that for τ ∈ [−1,1] , Ludwig [11] introduced a function ϕτ : R → [0,∞)
by

ϕτ(t) = |t|+ τt. (1.8)

Now, we define a corresponding notion of general Lp -centroid bodies based on Lp -
centroid bodies and definition (1.8). For K ∈ S n

o , p � 1 and τ ∈ [−1,1] , the general
Lp -centroid body, Γτ

pK , of K is a convex body whose support function is defined by

hp
Γτ

pK
(u) =

1
cn,p(τ)V (K)

∫
K

ϕτ(u · x)pdx

=
1

cn,p(τ)(n+ p)V (K)

∫
Sn−1

ϕτ(u · v)pρn+p
K (v)dS(v), (1.9)
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where

cn,p(τ) =
1
2
cn,p[(1+ τ)p +(1− τ)p].

The normalization is chosen such that Γτ
pB = B for every τ ∈ [−1,1] , and Γ0

pK = ΓpK .
Let ϕ+(u · x) = max{u · x,0} (τ = 1) in (1.9), then a special case of definition Γτ

pK is
Γ+

p K . Besides, we also define

Γ−
p K = Γ+

p (−K). (1.10)

From the definitions of Γ±
p K and Γτ

pK , it is easy to verity that

Γτ
pK = f1(τ) ·Γ+

p K +p f2(τ) ·Γ−
p K, (1.11)

where

f1(τ) =
(1+ τ)p

(1+ τ)p +(1− τ)p , f2(τ) =
(1− τ)p

(1+ τ)p +(1− τ)p . (1.12)

From (1.12), it immediately follows that

f1(τ)+ f2(τ) = 1; (1.13)

f1(−τ) = f2(τ), f2(−τ) = f1(τ). (1.14)

By (1.11) and definitions Γ±
p K , we easily get

ΓpK =
1
2
·Γ+

p K +p
1
2
·Γ−

p K; (1.15)

Γ−τ
p K = −Γτ

pK. (1.16)

The following are our main results: First, we show two results below which gen-
eralize the analogs of [21].

THEOREM 1.1. For K,L∈S n
o , p � 1 and τ ∈ [−1,1] , if Ṽ−p(K,Q) � Ṽ−p(L,Q)

for any Q ∈ S n
o , then

V (Γτ,∗
p K)

p
n

V (K)
� V (Γτ,∗

p L)
p
n

V (L)
, (1.17)

with equality if and only if K = L.

THEOREM 1.2. For K,L∈S n
o , p � 1 and τ ∈ [−1,1] , if Ṽ−p(K,Q) � Ṽ−p(L,Q)

for any Q ∈ S n
o , then

V (Γτ
pK)−

p
n

V (K)
�

V (Γτ
pL)−

p
n

V (L)
, (1.18)

with equality if and only if K = L.

Moreover, we establish the following Brunn-Minkowski type inequalities of dual
quermassintegrals for general Lp -centroid bodies.
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THEOREM 1.3. If K,L ∈ S n
o , p � 1 and τ ∈ [−1,1] , then for i � n+ p

W̃i(Γτ,∗
p (K+̂pL))−

p
n−i � W̃i(Γτ,∗

p K)−
p

n−i +W̃i(Γτ,∗
p L)−

p
n−i ; (1.19)

for i < n inequality (1.19) is reversed, with equality in every inequality if and only if
K and L are dilates. Here W̃i(K) is the dual quermassintegrals of K ∈ S n

o defined by
(see [5])

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idS(u) (1.20)

for any real i . Clearly, W̃0(K) =V (K) .

Finally, the following theorem provides the extremal values of dual quermassinte-
grals for general Lp -centroid bodies.

THEOREM 1.4. If K ∈ S n
o , p � 1 and τ ∈ [−1,1] , then for n � j � n+ p � i

W̃i(Γ∗
pK)

W̃j(Γ∗
pK)

� W̃i(Γτ,∗
p K)

W̃j(Γτ,∗
p K)

� W̃i(Γ±,∗
p K)

W̃j(Γ±,∗
p K)

; (1.21)

for j � n � i � n+ p inequality (1.21) is reversed, the left equality of every inequality
holds if and only if Γτ

pK is origin-symmetric and the right equality of every inequality
holds if and only if Γ±

p K is origin-symmetric.

2. Preliminaries

In this section, we collect some basic well-known facts that we will use in the
proofs of our results.

According to the definitions of the polar body, the support function and radial
function, it follows for K ∈ K n

o that

hK∗ =
1

ρK
, ρK∗ =

1
hK

. (2.1)

From (1.1), (1.3) and (2.1), we easily see that if K,L ∈ K n
o , p � 1 and λ ,μ � 0

(not both zero), then

(λ ·K +p μ ·L)∗ = λ �K∗+−p μ �L∗. (2.2)

For K,L ∈ S n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic Blaschke

combination, λ ◦K+̂pμ ◦L ∈ S n
o , of K and L is defined by (see [4])

ρ(λ ◦K+̂pμ ◦L, ·)n+p

V (λ ◦K+̂pμ ◦L)
= λ

ρ(K, ·)n+p

V (K)
+ μ

ρ(L, ·)n+p

V (L)
. (2.3)

Here λ ◦K is Lp -harmonic Blaschke scalar multiplication and λ ◦K = λ
1
p K .
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For K,L ∈ K n
o , ε > 0 and p � 1, the Lp -mixed volume Vp(K,L) was defined in

[12] by
n
p
Vp(K,L) = lim

ε→0+

V (K +p ε ·L)−V(K)
ε

.

Lutwak [12] proved that there is a positive Borel measure, Sp(K, ·) , on Sn−1 such that

Vp(K,L) =
1
n

∫
Sn−1

hp
L(u)dSp(K,u). (2.4)

Here Sp(K, ·) is called the Lp -surface area measure of K ∈ K n
o . It turns out that

the measure Sp(K, ·) is absolutely continuous with respect to the classical surface area
measure S(K, ·) of K , and has Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p. (2.5)

From formulas (2.4) and (2.5), it follows immediately that for each K ∈ K n
o

Vp(K,K) = V (K) =
1
n

∫
Sn−1

hK(v)dS(K,v). (2.6)

The Minkowski inequality of Lp -mixed volume (see [13]) states that for K,L ∈ K n
o

and p � 1,

Vp(K,L) � V (K)
n−p

n V (L)
p
n , (2.7)

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and only if
K and L are dilates.

The definition of Lp -dual mixed volume (see (1.5)) and the polar coordinate for-
mula for volume lead to the following integral representation of Lp -dual mixed volume
(see [13]):

Ṽ−p(K,L) =
1
n

∫
Sn−1

ρn+p
K (u)ρ−p

L (u)dS(u), (2.8)

where the integration is with respect to spherical Lebesgue measure S on Sn−1 . From
formula (2.8), we easily see that for K ∈ S n

o and p � 1,

Ṽ−p(K,K) = V (K) =
1
n

∫
Sn−1

ρn
K(u)dS(u). (2.9)

For K,L ∈ S n
o and p � 1, the Lp -dual Minkowski inequality (see [13]) is

Ṽ−p(K,L) � V (K)
n+p

n V (L)−
p
n , (2.10)

with equality if and only if K and L are dilates.
For K ∈K n

o , p � 1 and τ ∈ [−1,1] , the general Lp -projection body, Πτ
pK ∈K n

o ,
of K whose support function is given by (see [8])

hp
Πτ

pK
(u) = αn,p(τ)

∫
Sn−1

ϕτ (u · v)pdSp(K,v),
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where

αn,p(τ) =
αn,p

(1+ τ)p +(1− τ)p , and αn,p =
1

nωncn−2,p
. (2.11)

Haberl and Schuster [8] proved that if K ∈ K n
o , L ∈ S n

o , p � 1 and τ ∈ [−1,1] , then

Vp(K,Mτ
pL) = Ṽ−p(L,Πτ,∗

p K). (2.12)

Here Mτ
pL denotes the Lp -moment body of L ∈ S n

o which is defined by (see [8])

hp
Mτ

pL(u) = αn,p(τ)
∫

Sn−1
ϕτ(u · v)ρ(L,v)n+pdS(v) (2.13)

for all u ∈ Sn−1 , ϕτ(u · v) and αn,p(τ) satisfy (1.8) and (2.11), respectively. From
definitions (1.9) and (2.13), we easily get for K ∈ S n

o , p � 1 and τ ∈ [−1,1] ,

Mτ
pK = (

V (K)
ωn

)
1
p Γτ

pK. (2.14)

Combining (2.12) and (2.14), an immediate result is that if K ∈ K n
o , L ∈ S n

o , p � 1
and τ ∈ [−1,1] , then

Vp(K,Γτ
pL) =

ωn

V (L)
Ṽ−p(L,Πτ,∗

p K). (2.15)

3. The proofs of main results

In this section, we prove Theorems 1.1-1.4. The proof of Theorem 1.1 needs the
following lemmas:

LEMMA 3.1. If K,L ∈ S n
o , p � 1 and τ ∈ [−1,1] , then

Ṽ−p(K,Γτ,∗
p L)

V (K)
=

Ṽ−p(L,Γτ,∗
p K)

V (L)
. (3.1)

Proof. From (1.9) and (2.1), we have

ρ−p
Γτ,∗

p K
(u) =

1
cn,p(τ)(n+ p)V(K)

∫
Sn−1

ϕτ (u · v)pρn+p
K (v)dS(v).

Together with (2.8), we get

Ṽ−p(L,Γτ,∗
p K) =

1
n

∫
Sn−1

ρn+p
L (u)ρ−p

Γτ,∗
p K

(u)dS(u)

=
1

n(n+p)cn,p(τ)V (K)

∫
Sn−1

∫
Sn−1

ϕτ(u · v)pρn+p
L (u)ρn+p

K (v)dS(v)dS(u)

=
V (L)
nV (K)

∫
Sn−1

ρn+p
K (v)ρ−p

Γτ,∗
p L

(v)dS(v) =
V (L)
V (K)

Ṽ−p(K,Γτ,∗
p L).

This yields the desired result. �
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LEMMA 3.2. [22] If K,L ∈ S n
o and p � 1 , then for any Q ∈ S n

o ,

Ṽ−p(K,Q) = Ṽ−p(L,Q)

if and only if K = L.

Proof of Theorem 1.1. From Ṽ−p(K,Q) � Ṽ−p(L,Q) for any Q ∈ S n
o , taking

Γτ,∗
p M for Q for any M ∈ S n

o , we have

Ṽ−p(K,Γτ,∗
p M) � Ṽ−p(L,Γτ,∗

p M), (3.2)

with equality if and only if K = L obtained from Lemma 3.2. Combining inequality
(3.2) and equality (3.1), we get

V (K)Ṽ−p(M,Γτ,∗
p K)

V (M)
� V (L)Ṽ−p(M,Γτ,∗

p L)
V (M)

. (3.3)

Taking Γτ,∗
p L for M in (3.3) and using (2.9) and (2.10), we get that

V (L)V (Γτ,∗
p L) � V (K)Ṽ−p(Γτ,∗

p L,Γτ,∗
p K) � V (Γτ,∗

p L)
n+p

n V (Γτ,∗
p K)−

p
n V (K), (3.4)

with equality in the second inequality of (3.4) if and only if K and L are dilates. Thus
it follows from (3.4) that (1.17) holds.

From Lemma 3.1, we know that inequalities (3.2) and (3.3) are equivalent. Thus
equality holds in first inequality of (3.4) if and only if K = L . Together with the equality
condition of the second inequality of (3.4), we get that equality holds in (1.17) if and
only if K = L . �

Proof of Theorem 1.2. Since Ṽ−p(K,Q) � Ṽ−p(L,Q) for any Q ∈ S n
o , taking

Πτ,∗
p M for Q for any M ∈ K n

o , we have

Ṽ−p(K,Πτ,∗
p M) � Ṽ−p(L,Πτ,∗

p M), (3.5)

with equality if and only if K = L obtained from Lemma 3.2. By (2.15), we get

V (K)Vp(M,Γτ
pK) � Vp(M,Γτ

pL)V (L). (3.6)

Taking Γτ
pL for M in (3.6) and using (2.6) and (2.7), we obtain

V (L)V (Γτ
pL) � V (Γτ

pL)
n−p

n V (Γτ
pK)

p
n V (K), (3.7)

with equality if and only if K and L are dilates. Thus from inequality (3.7) this gets
the desired result.

According to the equality conditions of (3.5) and (3.7), we see that equality holds
in (1.18) if and only if K = L . �
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Proof of Theorem 1.3. From (1.9) and (2.3), and using (2.1), we easily get for any
u ∈ Sn−1

ρ−p
Γτ,∗

p (K+̂pL)
(u) = ρ−p

Γτ,∗
p K

(u)+ ρ−p
Γτ,∗

p L
(u). (3.8)

Since i � n+ p , it follows that − n−i
p � 1. Thus from (1.20), (3.8) and the Minkowski’s

integral inequality (see [9]), we get

W̃i(Γτ,∗
p (K+̂pL))−

p
n−i =

(
1
n

∫
Sn−1

(ρ−p
Γτ,∗

p (K+̂pL)
(u))−

n−i
p dS(u)

)− p
n−i

� W̃i(Γτ,∗
p K)−

p
n−i +W̃i(Γτ,∗

p L)−
p

n−i .

This yields inequality (1.19). From i < n⇒− n−i
p < 0, similar to the proof of (1.19), we

use the inverse Minkowski’s integral inequality (see [9]) to get the reversed inequality
of (1.19).

According to the equality conditions of Minkowski’s integral inequalities, we see
that equality holds in every inequality of Theorem 1.3 if and only if K and L are
dilates. �

A special case of the reversed inequality of (1.19) is as follows:

COROLLARY 3.1. If K,L ∈ S n
o , p � 1 and τ ∈ [−1,1] , then

V (Γτ,∗
p (K+̂pL))−

p
n � V (Γτ,∗

p K)−
p
n +V(Γτ,∗

p L)−
p
n ,

with equality if and only if K and L are dilates.

An extension of Beckenbach’s inequality (see [1], sec. 24) was obtained by Dresher
(see [3]) through the means of moment-space techniques.

LEMMA 3.3. (The Beckenbach-Dresher Inequality) If p � 1 � r � 0 , f ,g � 0 ,
and φ is a distribution function, then(∫

E( f +g)pdφ∫
E( f +g)rdφ

) 1
p−r

�
(∫

E f pdφ∫
E f rdφ

) 1
p−r

+
(∫

E gpdφ∫
E grdφ

) 1
p−r

; (3.9)

for r � 0 � p � 1 inequality (3.9) is reversed (see [10]), with equality in every in-
equality if and only if the functions f and g are positively proportional. Here E is a
bounded measurable subset in Rn .

Proof of Theorem 1.4. We first prove the left inequality of (1.21), From (1.11),
(1.13), (1.14), (1.15) and (2.1), we have

ρ−p(Γτ,∗
p K, ·)+ ρ−p(Γ−τ,∗

p K, ·) = ρ−p(Γ+,∗
p K, ·)+ ρ−p(Γ−,∗

p K, ·). (3.10)

Together with (1.15), we obtain

ρ−p(Γ∗
pK, ·) =

1
2

ρ−p(Γτ,∗
p K, ·)+

1
2

ρ−p(Γ−τ,∗
p K, ·). (3.11)
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Combining (1.20) and (3.11), we get

W̃n−r(Γ∗
pK) =

1
n

∫
Sn−1

(
1
2

ρ−p(Γτ,∗
p K,u)+

1
2

ρ−p(Γ−τ,∗
p K,u)

)− r
p

dS(u). (3.12)

Similarly,

W̃n−s(Γ∗
pK) =

1
n

∫
Sn−1

(
1
2

ρ−p(Γτ,∗
p K,u)+

1
2

ρ−p(Γ−τ,∗
p K,u)

)− s
p

dS(u). (3.13)

By the Beckenbach-Dresher inequality together with (3.12) and (3.13), we have(
W̃n−r(Γ∗

pK)

W̃n−s(Γ∗
pK)

) p
s−r

� 1
2

(
W̃n−r(Γτ,∗

p K)
W̃n−s(Γτ,∗

p K)

) p
s−r

+
1
2

(
W̃n−r(Γ−τ,∗

p K)
W̃n−s(Γ−τ,∗

p K)

) p
s−r

. (3.14)

From Lemma 3.3, we know that − r
p � 1 � − s

p � 0 ⇒ r � −p � s � 0. Together with

(1.16), and notice that W̃i(−K) = W̃i(K) for any K ∈ S n
o , we get

W̃n−r(Γ∗
pK)

W̃n−s(Γ∗
pK)

� W̃n−r(Γτ,∗
p K)

W̃n−s(Γτ,∗
p K)

. (3.15)

Let r = n− i and s = n− j in (3.15), from r � −p � s � 0 ⇒ n � j � n+ p � i , this
yields

W̃i(Γ∗
pK)

W̃j(Γ∗
pK)

� W̃i(Γτ,∗
p K)

W̃j(Γτ,∗
p K)

. (3.16)

According to the equality condition of Lemma 3.3, we see that equality holds in in-
equality (3.16) if and only if ρ(Γτ,∗

p K,u) and ρ(Γ−τ,∗
p K,u) are positively proportional,

namely, Γτ,∗
p K and Γ−τ,∗

p K are dilates. Since Γ−τ,∗
p K = −Γτ,∗

p K , we have Γτ,∗
p K =

Γ−τ,∗
p K , i.e., Γτ

pK = Γ−τ
p K . From (1.16), this gets that Γτ

pK is origin-symmetric. Thus
with equality in inequality (3.16) if and only if Γτ

pK is origin-symmetric.
Now, we prove the right inequality of (1.21). From (1.3), (1.11), (1.20) and (2.2),

we have

W̃n−r(Γτ,∗
p K) =

1
n

∫
Sn−1

(
f1(τ)ρ−p

Γ+,∗
p K

(u)+ f2(τ)ρ−p

Γ−,∗
p K

(u)
)− r

p

dS(u). (3.17)

Similarly,

W̃n−s(Γτ,∗
p K) =

1
n

∫
Sn−1

(
f1(τ)ρ−p

Γ+,∗
p K

(u)+ f2(τ)ρ−p

Γ−,∗
p K

(u)
)− s

p

dS(u). (3.18)

Similar to the proof of inequality (3.14), from (3.17), (3.18) and the Beckenbach-
Dresher inequality, we get(

W̃n−r(Γτ,∗
p K)

W̃n−s(Γτ,∗
p K)

) p
s−r

� f1(τ)

(
W̃n−r(Γ+,∗

p K)
W̃n−s(Γ+,∗

p K)

) p
s−r

+ f2(τ)

(
W̃n−r(Γ−,∗

p K)
W̃n−s(Γ−,∗

p K)

) p
s−r

.

(3.19)
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From (1.10) and (1.13), analogue to the deducing process of (3.16), this gets for in-
equality (3.19),

W̃i(Γτ,∗
p K)

W̃j(Γτ,∗
p K)

� W̃i(Γ±,∗
p K)

W̃j(Γ±,∗
p K)

. (3.20)

Based on the equality condition of (3.9), we see that equality holds in inequal-
ity (3.20) if and only if ρ(Γ+,∗

p K,u) and ρ(Γ−,∗
p K,u) are positively proportional, i.e.,

Γ+,∗
p K and Γ−,∗

p K are dilates. Since Γ−,∗
p K = −Γ+,∗

p K , it follows that Γ+,∗
p K = Γ−,∗

p K ,
namely, Γ+

p K = Γ−
p K . From Γ−

p K =−Γ+
p K or Γ+

p K =−Γ−
p K , we have Γ+

p K =−Γ+
p K

or Γ−
p K = −Γ−

p K . This means that Γ±
p K is origin-symmetric, thus with equality in in-

equality (3.20) if and only if Γ±
p K is origin-symmetric.

Applying the above method, it follows from the reversed Beckenbach-Dresher
inequality that the reversed inequality of (1.21) holds. �
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