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IMPROVED REVERSE ARITHMETIC–GEOMETRIC MEANS

INEQUALITIES FOR POSITIVE OPERATORS ON HILBERT SPACE

HONGLIANG ZUO AND NAN CHENG

(Communicated by J. Pečarić)

Abstract. In this paper, employing induction on the given reverse Young inequalities, we obtain
more reverse arithmetic-geometric means inequalities for two positive operators. Concretely, fol-
lowing the main result from [13] we obtain reverse ratio type inequalities and reverse difference
type inequalities of the refined arithmetic-geometric means inequality for two positive operators
on a Hilbert space.

1. Introduction

Throughout this paper, A , B are both positive operators on a Hilbert space H , and
Bh(H) is the semi-space of all bounded linear self-adjoint operators on H . In additive
notation B+(H) is written as the set of all positive operators in Bh(H) . Besides, we
may assume that A and B are invertible without loss of generality,

A∇μB = (1−μ)A+μB and A�μB = A1/2(A−1/2BA−1/2)μA1/2, where 0 � μ � 1.

When μ = 1/2 we write A∇B and A�B for brevity, respectively, see Kubo and Ando
[9]. The Specht ratio [11] is defined by

S(t) =
t

1
t−1

e log t
1

t−1

for t > 0,t �= 1; and S(1) = lim
t→1

S(t) = 1

and has the following properties.

(i) S(h) = S(1/h) � 1 for h > 0.

(ii) S(h) is a monotone increasing function on (1,+∞) .

(iii) S(h) is a monotone decreasing function on (0,1) .
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We start from the reverse arithmetic-geometric mean inequality with the Specht
ratio for two positive operators:

THEOREM T. [12] For invertible operators A and B with 0 < aIH � A,B � bIH ,
we have

(i) A∇μB � S(h)A�μB,

(ii) A∇μB−A�μB � L(1,h) logS(h)A,

where L(1,h) is defined by L(a,b) = a−b
loga−logb (a �= b);L(a,a) = a, h = b/a.

These inequalities have recently been improved by Furuichi as follows:

THEOREM F. [2] If 0 < aIH � A,B � bIH , then

(i) A∇μB−2r(A∇B−A�B) � S(
√

h)A�μB,

(ii) A∇μB−A�μB−2r(A∇B−A�B) � L(
√

h,1) logS(
√

h)bIH ,

where r = min{μ ,1− μ} , L(a,b) = a−b
loga−logb , h = b

a .

Afterwards, Krnić et al. [8] introduced Jensen’s operator and established some
bounds for spectra of Jensen’s operator. The obtained results were then applied to
operator means. In such a way, they get refinements and converses of numerous mean
inequalities for Hilbert space operators. See [3, 6–12] for more related developments.

See also [13] for another improvement of the reverse weighted arithmetic-geometric
operator mean inequalities. Their proof is independent of [2] but uses [7]:

THEOREM ZF. If 0 < aA � B � bA with a < 1 < b, then

(i) A∇μB−2r(A∇B−A�B) � max{S(
√

a),S(
√

b)}A�μB,

(ii) A∇μB−A�μB−2r(A∇B−A�B)

� max{L(
√

1/a,1) logS(
√

a),L(
√

1/b,1) logS(
√

b)}bA,

where r = min{μ ,1− μ} .

The aim of this paper is to provide a method to obtain more reverse arithmetic-
geometric means inequalities for positive operators on Hilbert space. In the Section 2,
we introduce the main lemmas by means of which as well as of the induction employed
on Theorem ZF, we obtain reverse ratio type inequalities and reverse difference type
inequalities of the refined arithmetic-geometric means inequality for positive operators
in the Section 3 and the Section 4, respectively.
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2. Main lemmas

LEMMA 2.1. If A and B are positive operators on Hilbert space, 0 � μ ,ν � 1 ,
then

A∇μ(A�νB) = A∇μνB− μ(A∇νB−A�νB).

Proof.

A∇μ(A�νB) = (1− μ)A+ μA�νB

= A− μA+ μνA− μνA+ μνB−μνB+ μA�νB

= μνB+(1− μν)A− μ [(1−ν)A+νB−A�νB]
= A∇μνB− μ(A∇νB−A�νB). �

LEMMA 2.2. [7] If A,B ∈ B+(H) , p = (p1, p2) ∈ R
2
+ , then

2min{p1, p2}(A∇B−A�B) � J(A,B,p) � 2max{p1, p2}(A∇B−A�B),

where the operator J: B+(H)×B+(H)×R
2
+ −→ B+(H) is defined by

J(A,B,p) = (p1 + p2)
[
A∇ p1

p1+p2
B−A� p1

p1+p2
B
]
.

3. Reverse ratio type arithmetic-geometric mean inequalities

First of all, we show a refinement of reverse arithmetic-geometric mean inequality,
applying Theorem ZF.

LEMMA 3.1. If 0 < aA � B � bA with a < 1 < b, and 0 � μ � 1 , then

A∇μB−2(r1 + r2)(A∇B−A�B) � max{S( 4
√

a),S( 4
√

b)}A�μB, (3.1)

where r1 = min{μ ,1− μ} , r2 = min{| 1−2μ |,1− | 1−2μ |} .

Proof. If 0 � μ � 1
2 , then 0 � 2μ � 1. Since 0 < aA � B � bA ensures that√

aA � A�B �
√

bA , by substituting B by A�B and μ by 2μ in (i) of Theorem ZF, it
follows that

A∇2μ(A�B)−2min{2μ ,1−2μ}[A∇(A�B)−A�(A�B)] � max{S( 4
√

a),S( 4
√

b)}A�2μ(A�B).

By Lemma 2.1 and Lemma 2.2 it follows that

A∇ 1
4
B−A� 1

4
B � 2max

{1
4
,
3
4

}
(A∇B−A�B) =

3
2
(A∇B−A�B),

A∇(A�B)−A�(A�B) = A∇ 1
4
B− 1

2
(A∇B−A�B)−A� 1

4
B � (A∇B−A�B).
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Then

A∇μB−2(μ +min{2μ ,1−2μ})(A∇B−A�B)� max{S( 4
√

a),S( 4
√

b)}A�μB. (3.2)

If 1
2 � μ � 1, then 0 � 1−μ � 1

2 . The hypothesis 0 < aA � B � bA admits 0 < 1
bB �

A � 1
aB . Then by the inequality (3.2) we have

B∇1−μA−2[(1− μ)+min{2(1− μ),1−2(1− μ)}](B∇A−B�A)

� max
{

S
( 1

4
√

b

)
,S

( 1
4
√

a

)}
B�1−μA.

If we notice that S( 1
4√a

) = S( 4
√

a) and S( 1
4√b

) = S( 4
√

b) , then we have

A∇μB−2[(1− μ)+min{2(1− μ),1−2(1− μ)}](A∇B−A�B)

� max{S( 4
√

a),S( 4
√

b)}A�μB.

Therefore, for 0 � μ � 1, we have

A∇μB−2(r1 + r2)(A∇B−A�B) � max{S( 4
√

a),S( 4
√

b)}A�μB,

where r1 = min{μ ,1− μ} , r2 = min{| 1−2μ |,1− | 1−2μ |} . �

Replacing the hypothesis 0 < aA � B � bA , where a < 1 < b with 0 < aIH �
A,B � bIH , where a < b , we obtain the counterpart of Lemma 3.1.

LEMMA 3.2. If 0 < aIH � A,B � bIH with a < b, and 0 � μ � 1 , then

A∇μB−2(r1 + r2)(A∇B−A�B) � S( 4
√

h)A�μB, (3.3)

where r1 = min{μ ,1− μ} , r2 = min{| 1−2μ |,1− | 1−2μ |} , h = b
a .

Proof. Since 0 < aIH � A,B � bIH admits that
√

1/hA � A�B �
√

hA , we also
substitute B by A�B , μ by 2μ when 0 � μ � 1

2 and 1−μ by 2(1−μ) when 1
2 � μ �

1 in (i) of Theorem ZF, respectively, then by similar work as in the proof of Lemma
3.1, we can get the required inequality (3.3). �

REMARK 3.3. We easily find that both sides in the inequality (3.3) are less than or
equal to those in (i) of Theorem F, so that neither the inequality (3.3) nor (i) of Theorem
F is uniformly better than the other.

Besides, if we substitute B by A�B , μ by 2μ when 0 � μ � 1
2 and 1− μ by

2(1− μ) when 1
2 � μ � 1 in (i) of Theorem F, respectively, then by similar work

we get A∇μB−2(r1 + r2)(A∇B−A�B) � S(
√

h)A�μB, which could be deduced from
Theorem F directly, so we may claim that the above inequality is trivial.

Repeating the above procedure as in Lemma 3.1, that is, employing the induction
on Theorem ZF, we can obtain more inequalities as is shown in the sequel.
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THEOREM 3.4. If 0 < aA � B � bA with a < 1 < b, and 0 � μ � 1 , then

A∇μB−2Σn
i=1ri(A∇B−A�B) � max{S( 2n√

a),S( 2n√
b)}A�μB, (3.4)

where r1 = min{μ ,1− μ} .= min{α1,1− α1} , r2 = min{|1− 2μ |,1− |1− 2μ |} .=
min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,n−1 .

Proof. When n = 1, inequality (3.4) holds by Theorem ZF.
Now, we assume that the inequality (3.4) is valid when n = m , that is,

A∇μB−2Σm
i=1ri(A∇B−A�B) � max{S( 2m√

a),S( 2m√
b)}A�μB. (3.5)

Our task is to prove (3.4) similarly as in Lemma 3.1. We distinguish the following
two cases:

(I) If 0 � μ � 1
2 , then 0 � 2μ � 1. Since 0 < aA � B � bA ensures that

√
aA �

A�B �
√

bA , we replace B by A�B and μ by 2μ in (3.5) and get

A∇μB−2(μ + Σm
i=1r

′
i)(A∇B−A�B) � max{S( 2m+1√

a),S( 2m+1√
b)}A�μB, (3.6)

where r′1 = min{2μ ,1− 2μ} .= min{α ′
1,1−α ′

1} , r′2 = min{|1− 4μ |,1− |1− 4μ |} .=
min{α ′

2,1−α ′
2} , r′i+1 = min{|1−2α ′

i |,1−|1−2α ′
i|} , i = 1,2, · · · ,m−1.

(II) If 1
2 � μ � 1, then 0 � 1−μ � 1

2 . The hypothesis 0 < aA � B � bA admits
0 < 1

bB � A � 1
aB , then by the inequality (3.6) we have

A∇μB−2[(1− μ)+ Σm
i=1r

′′
i )](A∇B−A�B) � max{S( 2m+1√

a),S( 2m+1√
b)}A�μB.

where r′′1 = min{2(1− μ),1−2(1− μ)} .= min{α ′′
1 ,1−α ′′

1 } , r′′2 = min{|4μ −3|,1−
|4μ−3|} .= min{α ′′

2 ,1−α ′′
2} , r′′i+1 = min{|1−2α ′′

i |,1−|1−2α ′′
i |} , i = 1,2, · · · ,m−1.

Combining (I) with (II) we have

A∇μB−2(r1 + Σm
i=1 min{r′i,r′′i })(A∇B−A�B) � max{ 2m+1√

a),S( 2m+1√
b)}A�μB,

that is,

A∇μB−2Σm+1
i=1 ri(A∇B−A�B) � max{S( 2m+1√

a),S( 2m+1√
b)}A�μB,

where r1 = min{μ ,1− μ} .= min{α1,1−α1} , r2 = min{|1− 2μ |,1− |1− 2μ |} .=
min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,m .

This completes the proof. �

In order to show the analogous result holds under the condition 0 < aIH � A,B �
bIH with a < b , we establish the following result.

THEOREM 3.5. If 0 < aIH � A,B � bIH with a < b, and 0 � μ � 1 , then

A∇μB−2Σn
i=1ri(A∇B−A�B) � S( 2n√

h)A�μB. (3.7)

where r1 = min{μ ,1− μ} .= min{α1,1− α1} , r2 = min{|1− 2μ |,1− |1− 2μ |} .=
min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,n−1 .
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Proof. From Theorem ZF, we get the inequality (3.7) when n = 1.
Now, we assume that the inequality (3.7) is valid when n = m , that is,

A∇μB−2Σm
i=1ri(A∇B−A�B) � S( 2m√

h)A�μB. (3.8)

Then, for n = m+1, by the similar method we have:
(I) If 0 � μ � 1

2 , then 0 � 2μ � 1. Since 0 < aIH � A,B � bIH ensures that
0 � 1√

h
A � A�B �

√
hA , we substitute B by A�B and μ by 2μ in (3.8) and get

A∇μB−2[μ + Σm
i=1r

′
i](A∇B−A�B) � S( 2m+1√

h)A�μB,

where r′1 = min{2μ ,1− 2μ} .= min{α ′
1,1−α ′

1} , r′2 = min{|1− 4μ |,1− |1− 4μ |} .=
min{α ′

2,1−α ′
2} , r′i+1 = min{|1−2α ′

i |,1−|1−2α ′
i|} , i = 1,2, · · · ,m−1.

(II) If 1
2 � μ � 1, then 0 � 1− μ � 1

2 and

A∇μB−2[(1− μ)+ Σm
i=1r

′′
i ](A∇B−A�B) � S( 2m+1√

h)A�μB,

where r′′1 = min{2(1− μ),1−2(1− μ)} .= min{α ′′
1 ,1−α ′′

1 } , r′′2 = min{|4μ −3|,1−
|4μ−3|} .= min{α ′′

2 ,1−α ′′
2} , r′′i+1 = min{|1−2α ′′

i |,1−|1−2α ′′
i |} , i = 1,2, · · · ,m−1.

Therefore, for 0 � μ � 1, we have

A∇μB−2(r1 + Σm
i=1 min{r′i,r′′i })(A∇B−A�B) � S( 2m+1√

h)A�μB,

that is

A∇μB−2Σm+1
i=1 ri(A∇B−A�B) � S( 2m+1√

h)A�μB,

where r1 = min{μ ,1− μ} .= min{α1,1−α1} , r2 = min{|1− 2μ |,1− |1− 2μ |} .=
min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,m .

This completes the proof. �

4. Reverse difference type arithmetic-geometric mean inequalities

In the following lemma we show the corresponding difference type analog of
Lemma 3.1.

LEMMA 4.1. If 0 < aA � B � bA with a < 1 < b, and 0 � μ � 1 , then

A∇μB−A�μB−2(r1 + r2)(A∇B−A�B)

� max{L( 4
√

a,1) logS( 4
√

a),L( 4
√

b,1) logS( 4
√

b)} b√
a
A,

where r1 = min{μ ,1− μ} , r2 = min{| 1−2μ |,1− | 1−2μ |} .
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Proof. (I) If 0 � μ � 1
2 , then 0 � 2μ � 1. Since 0 < aA � B � bA admits that√

aA � A�B �
√

bA , we substitute B by A�B and μ by 2μ in (ii) of Theorem ZF. Then

A∇2μ(A�B)−A�2μ(A�B)−2min{2μ ,1−2μ}[A∇(A�B)−A�(A�B)]

� max{L( 4
√

1/a,1) logS( 4
√

a),L( 4
√

1/b,1) logS( 4
√

b)}
√

bA.

As we showed in the proof of Lemma 3.1, the following inequality holds:

A∇(A�B)−A�(A�B) = A∇ 1
4
B− 1

2
(A∇B−A�B)−A� 1

4
B � (A∇B−A�B).

Hence

A∇μB−A�μB−2(μ +min{2μ ,1−2μ})(A∇B−A�B) (4.1)

� max{L( 4
√

1/a,1) logS( 4
√

a),L( 4
√

1/b,1) logS( 4
√

b)}
√

bA.

(II) If 1
2 � μ � 1, then 0 � 1− μ � 1

2 . The hypothesis 0 < aA � B � bA ensures
0 < 1

bB � A � 1
aB . Then by the inequality (4.1) and S( 1√

a ) = S(
√

a) , L( 1√
a ,1) =

1√
aL(

√
a,1) , we have

A∇μB−A�μB−2[(1− μ)+min{2(1− μ),1−2(1−μ)}](A∇B−A�B)
= B∇1−μA−B�1−μA−2[(1− μ)+min{2(1− μ),1−2(1−μ)}](B∇A−B�A)

� max{L( 4
√

b,1) logS( 4
√

1/b),L( 4
√

a,1) logS( 4
√

1/a)}
√

1/aB

� max{L( 4
√

b,1) logS( 4
√

b),L( 4
√

a,1) logS( 4
√

a)}b/
√

aA.

Combining (I) with (II), then for 0 � μ � 1, we have

A∇μB−A�μB−2(r1 + r2)(A∇B−A�B)

� max{L( 4
√

a,1) logS( 4
√

a),L( 4
√

b,1) logS( 4
√

b)} b√
a
A,

where r1 = min{μ ,1− μ} , r2 = min{| 1−2μ |,1− | 1−2μ |} . �

If we put a =
√

1/h , b =
√

h in Lemma 4.1 and repeat the above procedure, then
we obtain more refined difference type arithmetic-geometric mean inequalities.

THEOREM 4.2. If 0 <
√

1/hA � B �
√

hA with h > 1 , and 0 � μ � 1 , then

A∇μB−A�μB−2Σn
i=1ri(A∇B−A�B) � h1− 1

2n L( 2n+1√
h,1) logS( 2n+1√

h)A, (4.2)

where h = b
a , r1 = min{μ ,1− μ} .= min{α1,1−α1} , r2 = min{|1− 2μ |,1− |1−

2μ |} .= min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,n−1 .
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Proof. When n = 1, inequality (4.2) holds by (ii) of Theorem ZF.
Now, we assume that the inequality (4.2) is valid when n = m , that is,

A∇μB−A�μB−2Σm
i=1ri(A∇B−A�B) � h1− 1

2m L( 2m+1√
h,1) logS( 2m+1√

h)A. (4.3)

Our task is to prove (4.2) for n = m+ 1, using the similar way to (4.3) as in Lemma
4.1. We distinguish the following two cases:

(I) If 0 � μ � 1
2 , then 0 � 2μ � 1. Since 0 <

√
1/hA � B �

√
hA admits that

0 � 1
4√h

A � A�B � 4
√

hA . Replace B by A�B and μ by 2μ in (3.11), respectively, it

follows that

A∇μB−A�μB−2(μ+Σm
i=1r

′
i)(A∇B−A�B) � h

1
2 (1− 1

2m )L( 2m+2√
h,1) logS( 2m+2√

h)A, (4.4)

where r′1 = min{2μ ,1− 2μ} .= min{α ′
1,1−α ′

1} , r′2 = min{|1− 4μ |,1− |1− 4μ |} .=
min{α ′

2,1−α ′
2} , r′i+1 = min{|1−2α ′

i |,1−|1−2α ′
i|} , i = 1,2, · · · ,m−1.

(II) If 1
2 � μ � 1, then 0 � 1− μ � 1

2 . Since 0 <
√

1/hA � B �
√

hA ensures
that 0 <

√
1/hB � A �

√
hB , then by the inequality (4.3) we have

A∇μB−A�μB−2[(1− μ)+ Σm
i=1r

′′
i )](A∇B−A�B) � L( 2m+2√

h,1) logS( 2m+2√
h)h

1
2 A.

where r′′1 = min{2(1− μ),1−2(1− μ)} .= min{α ′′
1 ,1−α ′′

1 } , r′′2 = min{|4μ −3|,1−
|4μ−3|} .= min{α ′′

2 ,1−α ′′
2} , r′′i+1 = min{|1−2α ′′

i |,1−|1−2α ′′
i |} , i = 1,2, · · · ,m−1.

Combining (I) with (II) for 0 � μ � 1 we have

A∇μB−2(r1 + Σm
i=1 min{r′i,r′′i })(A∇B−A�B) � h1− 1

2m+1 L( 2m+2√
h,1) logS( 2m+2√

h)A,

that is,

A∇μB−2Σm+1
i=1 ri(A∇B−A�B) � h1− 1

2m+1 L( 2m+2√
h,1) logS( 2m+2√

h)A,

where r1 = min{μ ,1− μ} .= min{α1,1−α1} , r2 = min{|1− 2μ |,1− |1− 2μ |} .=
min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,m .

This completes the proof. �

REMARK 4.3. We have tried to show the analogous result under the condition of
0 < aA � B � bA with a < 1 < b , but the final result is so complicated that two different
inequalities were obtained according to parity of n . As a consequence, we obtain the
above simplified elegant form (4.2) under the hypothesis of 0 <

√
1/hA � B �

√
hA

with h > 1, which is weaker than the condition of Lemma 4.1.

On the other hand, under the condition of 0 < aIH � A,B � bIH with a < b we can
easily get the reverse difference type arithmetic-geometric mean inequalities as follows.

THEOREM 4.4. If 0 < aIH � A,B � bIH with a < b, and 0 � μ � 1 , then

A∇μB−A�μB−2Σn
i=1ri(A∇B−A�B) � bh1− 1

2n−1 L( 2n√
h,1) logS( 2n√

h)IH , (4.5)

where h = b
a , r1 = min{μ ,1− μ} .= min{α1,1−α1} , r2 = min{|1− 2μ |,1− |1−

2μ |} .= min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,n−1 .
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Proof. When n = 1, inequality (4.5) holds by (ii) of Theorem F.
Now, we assume that the inequality (4.5) is valid when n = m , that is,

A∇μB−A�μB−2Σm
i=1ri(A∇B−A�B) � bh1− 1

2m−1 L( 2m√
h,1) logS( 2m√

h)IH . (4.6)

We only have to prove (4.5) for n = m+1, using the similar procedure as in Theorem
4.3 applied to (4.6). We distinguish the following two cases:

(I) If 0 � μ � 1
2 , then 0 � 2μ � 1. Since 0 < aIH � A,B � bIH admits that

0 � 1√
h
A � A�B �

√
hA , we replace B by A�B and μ by 2μ in (3.10) when n = m ,

respectively, then

A∇μB−A�μB−2(μ + Σm
i=1r

′
i)(A∇B−A�B) � bh1− 1

2m L( 2m+1√
h,1) logS( 2m+1√

h)IH .

where r′1 = min{2μ ,1− 2μ} .= min{α ′
1,1−α ′

1} , r′2 = min{|1− 4μ |,1− |1− 4μ |} .=
min{α ′

2,1−α ′
2} , r′i+1 = min{|1−2α ′

i |,1−|1−2α ′
i|} , i = 1,2, · · · ,m−1.

(II) If 1
2 � μ � 1, then 0 � 1− μ � 1

2 , we have

A∇μB−A�μB−2[(1−μ)+Σm
i=1r

′′
i )](A∇B−A�B)� bh1− 1

2m L( 2m+1√
h,1) logS( 2m+1√

h)IH .

where r′′1 = min{2(1− μ),1−2(1− μ)} .= min{α ′′
1 ,1−α ′′

1 } , r′′2 = min{|4μ −3|,1−
|4μ−3|} .= min{α ′′

2 ,1−α ′′
2} , r′′i+1 = min{|1−2α ′′

i |,1−|1−2α ′′
i |} , i = 1,2, · · · ,m−1.

Combining (I) with (II), then, for 0 � μ � 1, we have

A∇μB−2(r1 + Σm
i=1 min{r′i,r′′i })(A∇B−A�B) � bh1− 1

2m L( 2m+1√
h,1) logS( 2m+1√

h)IH ,

that is,

A∇μB−2Σm+1
i=1 ri(A∇B−A�B) � bh1− 1

2m L( 2m+1√
h,1) logS( 2m+1√

h)IH ,

where r1 = min{μ ,1− μ} .= min{α1,1−α1} , r2 = min{|1− 2μ |,1− |1− 2μ |} .=
min{α2,1−α2} , ri+1 = min{|1−2αi|,1−|1−2αi|} , i = 1,2, · · · ,m .

This completes the proof. �

COROLLARY 4.5. If 0 < aIH � A,B � bIH with a < b, and 0 � μ � 1 , then

A∇μB−A�μB−2(r1 + r2)(A∇B−A�B) � b
√

hL( 4
√

h,1) logS( 4
√

h)IH ,

where r1 = min{μ ,1− μ} , r2 = min{| 1−2μ |,1− | 1−2μ |} , h = b
a .
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of means inequalities for Hilert space operators, Banach J. Math. Anal., 7, 2 (2013), 15–19.

[4] F. KITTANEH, Reverse Young inequalities for matrices, Linear Multilinear Algebra, 59, 9 (2011),
1031–1037.

[5] F. KITTANEH AND Y. MANASRAH, Improved Young and Heinz inequalities for matrices, J. Math.
Anal. Appl., 36, 1 (2010), 262–269.
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