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ON ONE EXTENSION THEOREM DEALING WITH WEIGHTED

ORLICZ–SLOBODETSKII SPACE. ANALYSIS ON CUBE

RAJ NARAYAN DHARA AND AGNIESZKA KAŁAMAJSKA

(Communicated by B. Opic)

Abstract. Having given weight ρ̃ = ρ (dist(x,∂Q)) defined on cube Q and Orlicz function R ,
we construct the weight ωρ(·, ·) defined on ∂Q×∂Q and extension operator ExtL : Lipd (∂Q) �→
Lip(Q) from Lipschitz functions defined on ∂Q with certain restricted support to Lipschitz
functions defined on Q , independent of ρ and R , in such a way that ExtL extends to the bounded
operator from certain subspace of weighted Orlicz-Slobodetskii space YR,R

ωρ (∂Q) subordinated

to the weight ωρ to Orlicz Sobolev space W 1,R
ρ (Q) . Result is new in the unweighted Orlicz

setting for general function R as well as in the weighted Lp setting.

1. Introduction

The purpose of this work is to investigate properties of extension operator from
weighted Orlicz-Slobodetskii spaces to the weighted Sobolev spaces of first order. Hav-
ing the given weight ρ̃ defined on cube Q and Orlicz function R , we contribute to
show how to extend every Lipschitz function u defined on the boundary of Q to a Lip-
schitz function ũ defined on cube Q in such a way that this extension defines bounded
operator from certain space Y subordinated to the weight ρ̃ to Orlicz-Sobolev space
W 1,R

ρ̃ (Q) .

The admissible space Y is Orlicz-Slobodetskii space YR,R
ωρ (∂Q) constructed in the

following way. When a domain Ω ⊆ Rn (sufficiently regular), two Orlicz functions
R1,R and the weight ω defined on ∂Ω× ∂Ω are fixed, by YR,R1

ω (∂Ω) we denote the
space of all u ∈ LR(∂Ω) , for which the modular quantity

IR1
ω (u,∂Ω) :=

∫
∂Ω

∫
∂Ω

R1

( |u(x)−u(y)|
|x− y|

)
ω(x,y)

|x− y|n−2 dσ(x)dσ(y)

(where σ is the n− 1 dimensional Hausdorff measure on ∂Ω) is finite. We equip it
with the norm

‖u‖
Y

R,R1
ω (∂Ω)

:= ‖u‖LR(∂Ω) + JR1
ω (u,∂Ω),
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involving Luxemburg-type seminorm

JR1
ω (u,∂Ω) := inf

{
λ > 0 : IR1

ω

( u
λ

,∂Ω
)

� 1
}

.

For our next discussion if the weights are omitted in the notation, they are mend to be
equal to 1 identically.

However in the unweighted Lp -setting the problem of extension and trace operator
has been completely solved in the late 50’s of the last century (see papers by Aronszajn
[2], Slobodetskii [43], Gagliardo [13], see also: Nikolski [39], Lizorkin [31] for rudi-
ments of weighted setting), many important problems are left open when one slightly
generalizes setting. Perhaps the crucial ones are the following:

(a) The problem of trace operator between Orlicz spaces under general growth restric-
tion in the unweighted setting.
This problem has been undertaken by Nečas ([35], Chapter II, Section 4.3), Fougéres
[11, 12] and Lacroix [28] in the 60’s and 70’s of the last century. It was shown that
operator u �→ u|∂Ω defined on C1(Ω) extends to bounded operator “Tr′′ from the
space W 1,R(Ω) to YR,R(∂Ω) , provided that R∗ - the Legendre conjugate function
to R satisfies the Δ2 -condition. Moreover, in that case the operator Tr :W 1,R(Ω)→
YR,R(∂Ω) is a surjection. Then the question is what happens if one relaxes the as-
sumption that R∗ satisfies the Δ2 -condition. In the recent paper [17] by Miroslav
Krbec and second author it is shown that in general case we have embedding
Tr : W 1,R(Ω) → YR,R1(∂Ω) where the pair of Orlicz functions (R1,R) is a Kita
pair (see Section 2.3). It is known that we always have R1 ≺ R and moreover,
R1 ∼ R if and only if the Legendre conjugate to R satisfies the Δ2 condition (see
Remark 2.6). It is not known if trace operator obtained in the paper [17] (which
relates to the general situation) is a surjection.

(b) The problem of extension operator in the unweighted Orlicz setting.
It is clear from description of Problem (a) that the following problem arises in con-
nection with the question about surjectivity of operator “Tr”. Having pair of Or-
licz functions (R1,R) and function u ∈ YR,R1(∂Ω) , can we extend it to a function
ũ∈W 1,R(Ω) defined in the whole of Ω in such a way that ũ|∂Ω = u (in some sense
which we do not explain in details here)? This is possible when R1 = R and R∗
satisfies the Δ2 -condition, ([35], Chapter II, Section 4.3,[11, 12, 28]), but in gen-
eral case answer is unknown. Partial contribution, when we look for an extension
within the same Orlicz space R (i.e. R1 = R), under some special assumptions
(Assumption B) which make R to behave like logarithmic LLogL -space, can be
found in [18], Theorem 5.1. This approach is based on the study of regularity for
solutions to the heat equation{

ũt(x,t) = Δxũ(x,t) in Ω× (0,T),
ũ(x,0) = u ∈ YR,R(∂Ω) for x ∈ Ω,

when Ω is a bounded domain with the sufficiently regular boundary.
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(c) Trace and extension operator in the weighted Lp -setting.
We found very few sources for trace embedding into weighted Orlicz Slobodetskii-
type spaces. One of them is paper by Lacroix [29]. The target space there is de-
fined in a very abstract way and it is not possible to recognize it in practice. Another
source is interesting paper by Kokilashvili [24], where the author gives necessary
and sufficient conditions for a function given on the boundary of a domain to be
the trace of some function with first order partial derivatives in weighted Orlicz-
Sobolev space. Result given there seems to be quite general. However, analysis
there is restricted to the class of measures satisfying certain conditions, being in
general rather hard to be verified in practice and the statements do not involve the
definition of Orlicz-Slobodetskii space, directly.
Some authors investigate weighted Sobolev spaces W 1,p

ρ (Ω) and ask for trace and
embedding theorems for that spaces [27, 35, 45]. Perhaps rudiments of trace em-
bedding and extension theorems in the weighted Lp -setting can be found in the
paper by Nikolskii [39] (written in 1953, before fundamental paper by Slobodetskii
[43] obtained in 1958), which dealt with power measure dist(x,∂Ω)α and p = 2,
in the form not involving Slobodetskii type spaces directly. Extensions within that
class of measures can be found in works by Lizorkin [31], Vasarin [44], Portnov
[41] Kudryavcev [25] (Section 9), Nečas [36], Nekvinda and Pick [37], Nekvinda
[38] and Kim [21]. See also our Example 7.1, part (b).
Generalization of embedding and extension theorems to weighted Sobolev type
spaces defined on interval by means of semigroups of operators (weighted B-
spaces) can be found in paper by Lions [30].

We also mention few interesting related sources dealing with trace embedding the-
orems: [7] for embeddings from Orlicz-Sobolev spaces into Orlicz spaces (unweighted,
see also earlier related result [8]), Theorem 9.14 in [27] for embedding theorems from
weighted Sobolev spaces into weighted Lp -spaces and Theorem 2.2 from page 291
in [35] for embeddings from weighted Sobolev space into unweighted Lp -space de-
fined on the boundary. Those sources do not undertake the problem of embedding into
Slobodetskii- type spaces.

Weighted Sobolev Spaces are basic tool to study degenerated PDEs. As one of
the several possible examples, let us consider the following boundary value problem of
elliptic type. {−div(ρ̃(x)∇u(x)) = f in Ω

u = g in ∂Ω.
(1.1)

Suppose that g belongs to some function space Y and there exists bounded extension
operator: Y →W 1,2

ρ̃ (Ω) . In particular there exists Ψg ∈W 1,2
ρ̃ (Ω) such that Ψg|∂Ω = g

in some sense which we will explain later. Let us substitute v := u−Ψg and denote
W 1,2

ρ̃,0 (Ω) as the completion of C∞
0 (Ω) in W 1,2

ρ̃ (Ω) . Then the problem is equivalent to
the following:{

P((u−Ψg)+ Ψg) = f in Ω
u−Ψg = 0 on ∂Ω ⇐⇒

{
Pv = f −PΨg in Ω

v = 0 on ∂Ω,
(1.2)
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where Pw =−div(ρ̃∇w) . Let us consider Hilbert space H =W 1,2
ρ̃,0 (Ω) and assume that

f ∈ H∗ . Simple observation gives PΨg ∈ H∗ , so that last equation translates as

{
Pv = F in Ω

v ∈ H,
(1.3)

where F = f −PΨg ∈ H∗ . With suitable assumptions on the admitted weight ρ̃ one
can easily prove existence of last equation by Lax Milgram theorem. In particular we
also have the solution of (1.1) and boundary data interprets as u−Ψg ∈W 1,2

ρ̃ ,0 (Ω) .

This way tools used to prove existence for homogeneous boundary data combined
with the right extension theorems can be used to prove existence results for boundary
value problems with the nonhomogeneous boundary data.

In some other cases we could also immediately deduce nonexistence for (1.1),
having the trace embedding theorem Tr : W 1,2

ρ̃ (Ω) → Y and knowing that g 
∈ Y .

For some other example motivations to consider weighted Sobolev spaces we refer
to books: [5, 27, 35], papers [22, 23, 32, 34, 40] and to their references. For motivations
to consider Orlicz-Sobolev spaces we refer e.g. to [1, 3, 6, 10, 14, 15].

We are interested in the following problem. Having the given weight ρ̃ defined
on Ω , construct another weight ωρ̃(·, ·) such that every Lipschitz function determined
on ∂Ω can be extended to a Lipschitz function determined on Ω in such a way that
this extension defines bounded operator from weighted Orlicz-Slobodetskii type space
Y =YR,R

ωρ̃ (∂Ω) subordinated to the weight ωρ̃ to the space W 1,R
ρ̃ (Ω) . Here we approach

this question under certain additional assumptions. For this, we analyze the special case
when Ω is a cube (− 1

2 , 1
2 )n and function u is supported in its bottom wall (− 1

2 , 1
2 )n−1×

{− 1
2} . Moreover, we consider ρ̃(x) = ρ(dist(x,∂Ω)) . The weight ω = ωρ(x,y) is

ceratin transform of weight ρ and does not depend on the choice of Orlicz space R (see
formulae (4.1)). When ρ is nonincreasing, integrable and satisfies the Δ 1

2
-condition:

ρ( 1
2 t) � Cρ(t) , we have ωρ(x,y) ∼ ρ(|x− y|) (see Theorem 7.2). Main tools we use

are convolution techniques. The technique to use convolution for extension was used
earlier by other authors also (see e.g. [26]), but our approach requires careful analysis.
In particular it is important to recognize that the convolution operator satisfies certain
first order PDE (see (3.3)) and also certain pointwise estimates for convolution obtained
in Section 5.2 inspired by similar techniques from [18].

Let us mention that the result seems to be new for the weighted approach in the
homogeneous case R(λ ) = λ p . It is also new when R is a general Orlicz function
(without any additional assumptions) in the unweighted setting. For last issue it par-
tially contributes to the open question related to trace operator described in discussion
of problem (a) and we gave partial answer on problems (b) and (c).

Generalization dealing with general Lipschitz boundary domain will be provided
in [9].
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2. Notation and preliminaries

2.1. Basic notation

Let Ω ⊂ R
n be an open set. By C∞(Ω) we mean set of functions which have

smooth extension to certain open neighborhood of Ω . If f is defined on a set A ⊆ R
n ,

by f χA we mean the function f extended by 0 outside A . Having two functions Φ,Ψ
defined on [0,∞) we will say that Ψ dominates Φ (Φ ≺ Ψ) if there exist constants
C1,C2 > 0 such that Φ(x) � C1Ψ(C2x) for every x > 0. Functions Φ,Ψ are called
equivalent if Ψ ≺ Φ and Φ ≺ Ψ . The notation “�” will be used in usual manner,
namely, if Φ,Ψ : A →R are given functions, where A is some abstract domain (it can
be either a subset of Euclidean space, as well as a set of functions), we will write that
Φ � Ψ if there is a constant C > 0 such that Φ(a) � CΨ(a) , for every a ∈ A . When
n ∈ N , we denote: Q′ = (− 1

2 , 1
2 )n−1 , Q = Q′ × (0,1) , and tA := {tx : x ∈ A} when-

ever A is an arbitrary subset of an Euclidean space. In particular tQ′ = (− t
2 , t

2)n−1 ,
tQ = tQ′ × (0, t) . If X is a subset in an Euclidean space, by Lip(X) we denote Lips-
chitz functions defined on X , while the notation Lip0(X) stands for Lipschitz functions
with compact support in X . In our notation the symbol dσ(x) stands for the n− 1-
dimensional Hausdorff measure. If X is measurable space, by L1

+(X) we mean all
nonnegative, measurable and integrable functions defined on X . Symbol [a] stands for
an integer part of real number a .

2.2. Orlicz, Orlicz-Sobolev and Orlicz-Slobodetskii spaces equipped with weights

In the sequel we assume that all weight functions in our considerations on domains
of their definition X belong to L1

+(X) . Moreover, all domains considered here are
cubes.

2.2.1. Orlicz space

We start with the definition of Orlicz space.

DEFINITION 2.1. The function Ψ : [0,∞) → [0,∞) is called Orlicz function if it
is nondecreasing, convex and satisfies conditions: Ψ(0) = 0 and limt→∞ Ψ(t) = +∞ .

We will write that Ψ ∈ Δ2 if it satisfies the Δ2 -condition: Ψ(2λ ) � CΨ(λ ) , for
every λ > 0, with a constant C independent of λ . Symbol Ψ ∈ Δc

2 will mean that the
Legendre conjugate of Ψ , Ψ∗(s) := supt>0{st−Ψ(t)} , satisfies the Δ2 -condition.

We are now ready to define Orlicz space. Of our interest will be that one defined
on domain and on its boundary.
A. Orlicz space on domain.
Let Ψ be an Orlicz function and ρ : Ω → (0,∞) be a given weight function. The space

LΨ
ρ (Ω) := { f ∈ L1

loc(Ω) :
∫

Ω
Ψ(s| f (x)|)ρ(x)dx < ∞ for some s > 0}
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is called weighted Orlicz space with weight ρ . It is a Banach space with the Luxemburg
norm:

‖ f‖LΨ
ρ (Ω) := inf

{
λ > 0 :

∫
Ω

Ψ
( | f (x)|

λ

)
ρ(x)dx � 1

}
.

As is well known, when Ψ(λ ) = λ p and p � 1, then LΨ
ρ (Ω) = Lp

ρ(Ω) . See e.g. [42].

B. Orlicz space on the boundary of domain.
Similarly, we define the weighted Orlicz space on the boundary of the domain:

LΨ
τ (∂Ω) := { f ∈ L1

loc(∂Ω) :
∫

∂Ω
Ψ(s| f (x)|)τ(x)dσ(x) < ∞ for some s > 0},

with the norm:

‖ f‖LΨ
τ (∂Ω) := inf

{
λ > 0 :

∫
∂Ω

Ψ
( | f (x)|

λ

)
τ(x)dσ(x) � 1

}
,

where τ : ∂Ω → (0,∞) is a given weight function defined on the boundary of Ω .
The same notation will be used for vector functions, u : Ω → R

m , with the formal
difference that instead of |u(x)| we shall work with the Euclidean norm of the vector
u(x) .

We will be using the following statement (see e.g. [4], Proposition 2).

PROPOSITION 2.2. Let M be a Young function and (X ,μ) be the measurable
space equipped with the measure μ . Then the expression

‖ f‖LΨ(X ,μ),α := inf

{
λ > 0 :

∫
X

Ψ
( | f (x)|

λ

)
μ(dx) � α

}
.

defines a complete norm on

LΨ(X ,μ) := { f ∈ L1
loc(X) :

∫
Ω

Ψ(s| f (x)|)μ(dx) < ∞ for some s > 0}
for each α ∈ (0,∞) . Moreover, all norms ‖ · ‖LΨ(X ,μ),α , α ∈ (0,∞) are equivalent.

2.2.2. Orlicz-Sobolev space

Let Ω ⊆ R
n be an open bounded domain, k ∈ N , and Ψ : [0,∞) → [0,∞) be a

given Orlicz function. The weighted Orlicz-Sobolev space with weight ρ , Wk,Ψ
ρ (Ω) is

the linear set

{u ∈ L1
loc(Ω) : Dαu ∈ LΨ

ρ (Ω) for every α : |α| � k} (2.1)

equipped with the norm

‖u‖
Wk,Ψ

ρ (Ω) := ∑
α :|α |�k

‖Dαu‖LΨ
ρ (Ω).

Here Dαu means the distributional derivative of u . We will be dealing with k = 1. For
more information we refer e.g. [6].

Symbol W 1,Φ
ρ ,L (Ω) will denote the completion of Lipschitz functions in the norm

of the space W 1,Φ
ρ (Ω) .
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2.2.3. Orlicz-Slobodetskii space Y Ψ,Φ

A. Orlicz-Slobodetskii space in domain.
Let ω ∈ L1(Ω×Ω) be the given weight (in particular ω is non-negative a.e.).

Moreover, let Ψ and Φ be the given two Orlicz functions. By Y Ψ,Φ
ω (Ω) we denote the

space of all u ∈ LΨ(Ω) , for which the quantity

IΦ
ω (u,Ω) :=

∫
Ω

∫
Ω

Φ
( |u(x)−u(y)|

|x− y|
)

ω(x,y)
|x− y|n−1 dxdy (2.2)

is finite. We equip it with the norm

‖u‖
YΨ,Φ

ω (Ω) := ‖u‖LΨ(Ω) + JΦ
ω (u,Ω),

involving Luxemburg-type seminorm

JΦ
ω (u,Ω) := inf

{
λ > 0 : IΦ

ω

( u
λ

,Ω
)

� 1
}

.

B. Orlicz-Slobodetskii space on the boundary of domain.
The same type of space can be defined on the boundary of Ω , with a given weight

ω(x,y) ∈ L1(∂Ω× ∂Ω) . Namely, when

IΦ
ω (u,∂Ω) :=

∫
∂Ω

∫
∂Ω

Φ
( |u(x)−u(y)|

|x− y|
)

ω(x,y)
|x− y|n−2 dσ(x)dσ(y),

we define the space

YΨ,Φ
ω (∂Ω) :=

{
u ∈ LΨ(∂Ω) : there exists s > 0; IΦ

ω (su,∂Ω) < ∞
}

equipped with the norm

‖u‖
YΨ,Ψ

ω (∂Ω) := ‖u‖LΨ(∂Ω) + JΦ
ω (u,∂Ω),

where
JΦ

ω (u,∂Ω) := inf
{

λ > 0 : IΦ
ω

( u
λ

,∂Ω
)

� 1
}

.

In the similar way as before we define spaces: YΨ,Φ
ω,L (Ω) , YΨ,Φ

ρ ,L (∂Ω) as the com-

pletion of Lipschitz functions in the space YΨ,Φ
ω (Ω) and Y Ψ,Φ

ρ (∂Ω) , respectively.

REMARK 2.3. If ω ≡ 1 and Ψ(λ ) = Φ(λ ) = |λ |p , 1 < p < ∞ , then we have

‖u‖YΨ,Φ(∂Ω) ∼ ‖u‖Lp(∂Ω) +
(∫

∂Ω

∫
∂Ω

|u(x)−u(y)|p
|x− y|p+n−2 dσ(x)dσ(y)

)1/p

,

which is the norm of u in the Slobodetskii space W 1− 1
p ,p(∂Ω) , see e.g. [26].
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2.3. Embedding theorem (unweighted case)

We will use the following assumptions.

ASSUMPTION A. (Kita pair, [20]) We assume that a,b : [0,∞) → [0,∞) are
strictly positive continuous functions such that

(a)
∫ 1
0 a(s)/sds < ∞ ,

∫ ∞
1

a(s)
s ds = +∞ ;

(b) b(·) is non-decreasing, lims→∞ b(s) = +∞ .

(c) there exist constants c1 > 0,s0 � 0 such that∫ s

0

a(t)
t

dt � c1b(c1s) for all s > s0, (2.3)

and in the case s0 > 0 mapping s �→ a(s)
s is bounded when s 
= 0 is close to 0.

We define

Φ(t) :=
∫ t

0
a(s)ds and Ψ(t) :=

∫ t

0
b(s)ds, where t � 0. (2.4)

Operator of trace.
Let us recall the concept of the trace of a function.

Suppose that for given Orlicz-functions Φ and Ψ there is an inequality:

‖u‖YΨ,Φ(∂Ω) � D‖u‖W1,Ψ(Ω),

satisfied for every Lipschitz function u defined on Ω . Let u ∈W 1,Ψ
L (Ω) and consider

any sequence of Lipschitz functions um converging to u in the norm of W 1,Ψ(Ω) . Then
{um} is a Cauchy sequence in YΨ,Φ(∂Ω) (norm convergence) so that it converges to
some element û ∈Y Ψ,Φ

L (∂Ω) . It is easy to check that û is independent of the choice of
Lipschitz sequence {um} , converging to u . It allows to extend the standard definition
of the trace operator:

Tru := lim
m→∞

um = û ∈ YΨ,Φ
L (∂Ω). (2.5)

REMARK 2.4. In the same way we can define the trace operator in weighted case

Tr : W 1,Ψ
ρ ,L (Ω) �−→ Y Φ,Ψ

ω,L (∂Ω),

if we only have the inequality

‖u‖
YΨ,Φ

ω (∂Ω) � D‖u‖
W1,Ψ

ρ (Ω),

holding within Lipschitz functions. In that case, when sequence of Lipschitz functions
{um} converges to u in W 1,Ψ

ρ (Ω) , then sequence of restrictions {um|∂Ω} converges to

some û in Y Ψ,Φ
ω (∂Ω) , and we have

Tru := lim
m→∞

um = û ∈ YΨ,Φ
ω,L (∂Ω). (2.6)
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The following theorem was obtained in [17].

THEOREM 2.5. (embedding theorem) Let the N -functions Φ and Ψ satisfy the
Assumption A and Ω be a bounded domain of class C 0,1 . Then we have:

(i) There is an inequality:

‖u‖YΨ,Φ(∂Ω) � D‖u‖W1,Ψ(Ω), (2.7)

with D independent of u-an arbitrary Lipschitz function defined on Ω;

(ii) The trace operator Tr : W 1,Ψ
L (Ω) �→ Y Ψ,Φ

L (∂Ω) is well defined by (2.5) and for

every u ∈W 1,Ψ
L (Ω) we have

‖Tru‖YΨ,Φ(∂Ω) � D‖u‖W1,Ψ(Ω), (2.8)

where D is the same as in (2.7).

We refer e.g. [26] to definition of C 0,1 class.

REMARK 2.6. It is known that Ψ always dominates Φ whenever (Φ,Ψ) is the
Kita pair. Moreover, we have Ψ ∼ Φ if and only if either Ψ∗ or Φ∗ satisfies the Δ2 -
condition. Moreover, the conditions: (Ψ∗ satisfies the Δ2 -condition) and (Φ∗ satisfies
the Δ2 -condition) are equivalent (see e.g. Proposition 5.1 in [19]).

3. Construction of extension operator

Let φ ∈ Lip0(Rn−1) , 0 � φ � 1 be the Lipschitz compactly supported function
such that φ ≡ 1 in some neighborhood of zero and

∫
Rn−1 φ(x)dx = 1. To have better

control on constants we will choose function having the special form:

φ(x1, . . . ,xn−1) = ψ(x1) · . . . ·ψ(xn−1), (3.1)

where ψ is the Lipschitz one variable even function defined by

ψ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 when 0 � t � 1

4 ,

−2t + 3
2 when 1

4 � t � 3
4 ,

0 when t > 3
4 .

, for t � 0. (3.2)

In particular suppφ ⊆ [− 3
2 , 3

2 ]n−1 = 3Q′ , φ ≡ 1 on the set [− 1
4 , 1

4 ]n−1 = 1
2Q′ .

Moreover, let
φt(x) = t−(n−1)φ(

x
t
).

We have the following remark. Its easy proof is left to the reader.

REMARK 3.1. Function φt satisfies the following properties
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1. ∫
Rn−1

φt (x)dx = 1 for every t > 0,

2.
lim
t→0

∫
Rn−1

R(x)φt(x)dx = R(0) for every R ∈C1
0(R

n−1),

3.

∂
∂ t

φt(x) = −div(gt(x)), where (3.3)

gt(x) =
1

tn−1 g(
x
t
), and g(x) = (φ(x)x1, . . . ,φ(x)xn−1),

and divergence is taken with respect to x .

Let u∈ Lip0(Q′ ×{0}) . At first we will be dealing with the extension of u defined
by formulae

ũ(x, t) = u(·,0)∗φt(x) :=
{∫

Rn−1 u(y,0)φt(x− y)dy when t > 0,
u(x,0) when t = 0.

(3.4)

It is easy to check that ũ ∈ Lip(Q) .
The key role in our paper will be the estimates for ũ .

4. Formulation of main results

Let ρ : [0,1]→ [0,∞) be a given weight function,
∫ 1
0 ρ(t)dt < ∞ and let us define

the following transforms (global and local) of the weight ρ , defined on R
n−1 :

ωρ(z) := |z|n−1
∫ 1

0

1
tn

χ{ z
t ∈(− 3

4 , 3
4 )n−1} ρ(t)dt, z ∈ Rn−1, (4.1)

ωρ ,κ(z) := |z|n−1
∫ κ

0

1
tn

χ{ z
t ∈(− 3

4 , 3
4 )n−1} ρ(t)dt, κ ∈ (0,1), z ∈ Rn−1.

We will deal with weighted Sobolev space W 1,R
ρ̃ (Q) where ρ̃(x′,t) = ρ(t) .

Our first result describes properties of a convolution operator.

THEOREM 4.1. Let R be the given convex function, n � 2 , Q = Q′ × (0,1) , Q′ =
(− 1

2 , 1
2 )n−1 , v : Q′ → R be Lipschitz and compactly supported in (1− d)Q′ , where

d ∈ (0,1) and

ṽ(x, t) = v∗φt(x) :=
{∫

Rn−1 v(y)φt(x− y)dy when t > 0,
v(x) when t = 0.

(4.2)

Moreover, let ρ : [0,1]→ [0,∞) be a given weight function,
∫ 1
0 ρ(t)dt =C(ρ) < ∞ and

ρ̃(x′,t) = ρ(t) . Then we have:
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(i) ∫
Q′

∫ 1

0
R(|ṽ(x,t)|)ρ(t)dxdt � C(ρ)

∫
Q′

R(|v(x)|) dx. (4.3)

In particular, when R is an Orlicz function, then there exists a constant B̃1 inde-
pendent of u such that

‖ṽ‖LR
ρ̃ (Q) � B̃1‖v‖LR(Q′).

(ii) ∫
Q′

∫ 1

0
R(|∇ṽ|)ρ(t)dtdx � L

∫
x∈Q′

∫
y∈Q′

R

(
I|v(y)− v(x)|

|x− y|
)

ωρ(x− y)
|x− y|n−2 dydx

(4.4)

+
C(ρ)

2

∫
Q′

R(J|v(x)|)dx,

where I = 5n
2

(
3
2

)n
√

n−1
3 , J =

(
3
2d

)n−1 n+7
2 , L = 1

2

(
4
3

)n e√
n−1

, ωρ is defined by

(4.1) and ∇ṽ denotes full gradient of ṽ .

In particular, when R is an Orlicz function, then there exists constant B̃2 inde-
pendent of u such that

‖∇ṽ‖LR
ρ̃ (Q) � B̃2‖v‖YR,R

ωρ (Q′).

(iii) When R is an Orlicz function, then there exists constant B̃3 independent of u such
that

‖ṽ‖
W1,R

ρ̃ (Q) � B̃2‖v‖YR,R
ωρ (Q′).

As a consequence we obtain the following result which applies to the extension
operator.

THEOREM 4.2. Let R be the given convex function, Q=Q′×(0,1) , Q′=(− 1
2 , 1

2 )n−1 ,
d ∈ (0,1) and let us consider

(a) the transformation of weights

Td : L1
+(0,1) �→ L1

+
({

Q′ × {0}}×{
Q′ × {0}}) ,

ρ �→ ωρ , d
3
(x′ − y′) =: ω̃d

ρ (x,y)
(4.1)
= |x− y|n−1

∫ d
3

0

1
tn

χ{ x′−y′
t ∈(− 3

4 , 3
4 )n−1} ρ(t)dt,

where we use the notation z = (z′,0) ∈ Q′ × {0} ;
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(b) the subspace of YR,R
ω,L (∂Q) depending on d ∈ (0,1)

YR,R
ω,L,d(∂Q) := {v ∈ YR,R

ω,L (∂Q) : suppv ⊆ (1−d)Q′ × {0}}.

Then there exists a linear extension operator:

Ext : YR,R
ω̃d

ρ ,L,d
(Q′ × {0}) �→W 1,R

ρ(dist(·,∂Q)),L(Q) (4.5)

such that for ũ := Ext(u) , where u is Lipschitz and we have∫
Q

R(|ũ|)ρ(dist(x,∂Q))dx � D(ρ)
∫

∂Q
R(|u(x)|)dσ(x),

(4.6)∫
Q

R(|∇ũ|)ρ(dist(x,∂Q))dx � L̃
∫

∂Q

∫
∂Q

R

(
Ĩ|u(x)−u(y)|

|x− y|
) ω̃d

ρ (x,y)
|x− y|n−2 dσ(y)dσ(x)

+
3D(ρ)

4

∫
∂Q

R(J̃|u(x)|)dσ(x),

where Ĩ = 5n
( 3

2

)n ·
√

n−1
3 , J̃ =

( 3
2d

)n−1 (n+7) , D(ρ) =
∫ d

3
0 ρ(t)dt , L̃ = 1

4

( 4
3

)n e√
n−1

.

In particular, when R is an Orlicz function, then there exists a constant B̃3 =
B̃3(n,ρ ,d) such that

‖Ext(u)‖
W1,R

ρ(dist(·,∂Q))(Q) � B̃3‖u‖YR,R

ω̃d
ρ

(Q′),

for every u ∈ YR,R
ω̃d

ρ ,L
(Q′ × {0}) supported in (1−d)Q′ × {0} ,

REMARK 4.3. We always have ωρ , d
3

� ωρ . Localization of the weights and more

precise statement allows to admit weights ρ which might not be integrable on the whole
interval (0,1) but they are integrable on (0, d

3 ) .

The remaining part of the paper is devoted to the proof of the above results and
discussion.

5. Properties of convolution operator

Analysis in this section is restricted to the case when function φ used to construct
convolution operator has the special form (3.1). It is clear that the choice of other
Lipschitz compactly supported function does not change formulations of our statements
qualitatively but only the constants can change. Our choice is dictated by the goal to
obtain inequalities with certain control of constants.

Through this section we suppose that assumptions of Theorem 4.1 are satisfied, in
particular R is the given convex function, Q = Q′ × (0,1) , Q′ = (− 1

2 , 1
2 )n−1 , v : Q′ is

Lipschitz and compactly supported in (1−d)Q′ , where d ∈ (0,1) and

ṽ(x, t) = v∗φt(x) :=
{∫

Rn−1 v(y)φt(x− y)dy when t > 0,
v(x) when t = 0.
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Moreover, we have given a weight function ρ : [0,1] → [0,∞) ,
∫ 1
0 ρ(t)dt < ∞ and

ρ̃(x′,t) = ρ(t) .

5.1. Integral estimates for function ṽ

In this subsection we give the proof of Theorem 4.1, part (i).

Proof of Theorem 4.1, part (i). We have

I :=
∫

Q′

∫ 1

0
R
(|ṽ(x′,t)|)ρ(t)dt =

∫
Q′

∫ 1

0
R
(
(φt ∗ v)(x′)

)
ρ(t)dt.

Applying Jensen’s inequality (as φt(x′−y′)dy′ = p(dy′) is a probability measure, there-
fore R(

∫
Rn−1 φt(x′ − y′)v(y′)dy′) �

∫
Rn−1 R(v(y′)) p(dy′) = (R(v)∗φt)(x′)), we get:

I �
∫

Q′

∫ 1

0
(φt ∗R(v))(x′) ρ(t)dtdx′

=
∫

x′∈Q′

∫
t∈(0,1)

∫
y′∈Rn−1

1
tn−1 φ

(
x′ − y′

t

)
R(v(y′)) ρ(t) dy′dtdx′

�
∫

y′∈Q′

(∫ 1

0

{∫
x′∈Rn−1

1
tn−1 φ

(
x′ − y′

t

)
dx′

}
ρ(t)dt

)
R(v(y′)) dy′,

because v is supported in Q′ . This implies the thesis as integral in brackets {·} equals
1 and

∫ 1
0 ρ(t)dt = C(ρ) .

Last part of the statement follows in the rather standard way, but for reader’s con-
venience we submit the proof. We take λ = ‖v‖LR(Q′) , ε > 0 and substitute the function
v1 := v

λ+ε to the just derived inequality (4.3) getting:

∫
Q′

∫ 1

0
R

( |ṽ(x,t)|
λ + ε

)
ρ(t)dxdt � C(ρ)

∫
Q′

R

( |v(x)|
λ + ε

)
dx � C(ρ).

Consequently, using the notation in Proposition 2.2, when ρ̃(x′,t) = ρ(t) and μ(dx) =
ρ̃(x)dx , x = (x′, t) , and α = C(ρ) we get

‖ ṽ
λ + ε

‖LR(Q,μ),α � 1.

Therefore by Proposition 2.2 there exists constant B̃1 > 0 such that ‖ ṽ
λ+ε ‖LR

ρ̃ (Q) � B̃1.

Last condition is equivalent to the fact that ‖ṽ‖LR
ρ̃ (Q) � B̃1(λ + ε), which after letting

ε → 0 gives the result. �

EXAMPLE 5.1. When ρ(t) = tα ,α > −1, we obtain∫
Q′

∫ 1

0
R(|ṽ(x,t)|) tα dxdt � 1

α +1

∫
Q′

R(|v(x)|) dx.



74 R. NARAYAN DHARA AND A. KAŁAMAJSKA

As an immediate corollary we obtain the following statement which applies to the
unweighted case.

COROLLARY 5.2. Let R be any given convex function, v be Lipschitz function
supported in Q′ and ũ be defined by expression (3.4). Then we have∫

Q′

∫
(0,1)

R(|ṽ(x)|) dxdt �
∫

Q′
R(|v(x)|) dx.

In particular, when R is an Orlicz function, we have

‖ṽ‖LR(Q) � ‖v‖LR(Q′).

5.2. Pointwise estimates for derivatives of ṽ

In this section we obtain pointwise estimates for all derivatives of ṽ . They were
inspired by similar type of estimates from [17] and seem to be of separate interest. We
start with the following simple lemma which will be used in the sequel.

LEMMA 5.3. Let n � 2 , d ∈ (0,1), α > 0 , w(z,t) = 1
tα w̃( z

t ); z∈Q′ = (− 1
2 , 1

2)n−1

and w̃ be bounded and supported in 3
2Q′ . Let x = (x1,x′) ∈ R×R

n−2 and consider
the following expressions

I+(x,t) =
∫

y′∈[− 1
2 , 1

2 ]
n−2 w

(
x1 +

1
2
,x′ − y′,t

)
dy′,

I−(x,t) =
∫

y′∈[− 1
2 , 1

2 ]
n−2 w

(
x1 − 1

2
,x′ − y′,t

)
dy′,

for n > 2 and

I+(x,t) = w

(
x+

1
2
,t

)
, I−(x,t) = w

(
x− 1

2
,t

)
,

for n = 2 . Then for any x ∈ (1−d)Q′ , and any t > 0 , we have

|I+(x,t)|, |I−(x,t)| �
(

3
2d

)α
‖w̃‖∞. (5.1)

Proof. We prove estimation for I+ , because for I− the arguments are almost the
same. When ∣∣∣∣∣x1 + 1

2

t

∣∣∣∣∣ >
3
4
, (5.2)

we have
(x1+ 1

2 ,·)
t /∈ 3

2Q′ . Thus, as w̃(·) is supported in 3
2Q′ , we have w((x1+ 1

2 , ·),t)= 0
and so I+(x, t) = 0. Moreover, when x ∈ (1− d)Q′ , then x1 ∈

(− 1
2(1−d), 1

2 (1−d)
)
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and x1 + 1
2 ∈ (

d
2 ,1− d

2

)
. Consequently,

∣∣x1 + 1
2

∣∣ > d
2 . When d > 3

2 t condition (5.2) is
satisfied. Therefore in case n > 2,

|I+(x, t)| � |I+(x, t)|χ{t� 2
3 d} �

∫
y′∈[− 1

2 , 1
2 ]

n−2

1
tα w̃

(
x1 + 1

2

t
,
x′ − y′

t

)
dy′ · χ{t� 2

3 d}

� 1( 2
3d

)α ‖w̃‖∞,

for α > 0. In case of n = 2 we also have |I+(x,t)| � 1
( 2

3 d)α ‖w̃‖∞ , by simplification of

the above arguments. �
Our next result describes the pointwise estimation of the spatial gradient of ṽ .

LEMMA 5.4. Let n � 2 ,

Pk(z,t) =
1

tn−1 ·
|z|
t
· χ{ z

t ∈ 3
2 Q′} · χ{| zkt |� 1

4} (5.3)

Then for any k ∈ {1, . . . ,n− 1} , v being Lipschitz and compactly supported in (1−
d)Q′ , where d ∈ (0,1) , we have∣∣∣∣ ∂ ṽ

∂xk
(x,t)

∣∣∣∣ � 2
∫

Q′
Pk(x− y,t)

( |v(x)− v(y)|
|x− y|

)
dy+C|v(x)|,

where C =
(

3
2d

)n−1
.

Proof. Let

φk,t (z) :=
∂

∂ zk

(
1

tn−1 φ(
z
t
)
)

=
1
t

(
1

tn−1

∂φ
∂ zk

(z
t

))
=

1
tn

ψ(
z1

t
) · . . . ·

(
2 · χ{| zkt |∈( 1

4 , 3
4 )}sgn(zk)

)
· . . . ·ψ(

zn−1

t
).

Then

∂ ṽ
∂xk

(x, t) =
(
φk,t (·)∗ v

)
(x) =

∫
Q′

φk,t(x− y)v(y)dy

=
∫

Q′
φk,t (x− y)(v(y)− v(x)) dy+ v(x)

∫
Q′

φk,t(x− y)dy

=
∫

Q′
φk,t (x− y)|x− y|

(
v(y)− v(x)
|x− y|

)
dy+ v(x)

∫
Q′

φk,t(x− y)dy

=: A(x,t)+ v(x)Ik(x,t).

It is clear that |φk,t(z)z| � 2Pk(z,t) . Therefore the only nontriviality is to estimate sec-
ond term above. For simplicity let us assume that k = 1 as the remaining computations
are the same. Moreover, as v(·) is supported in (1−d)Q′ , it suffices to estimate I1(x,t)
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when x ∈ (1−d)Q′ . We will show that in such case I1 is estimated by constant inde-
pendent on x and t . To verify this, we use Gauss-Ostrogradsky Theorem, to get

I1 =

{∫
∂Q′ φt(x− y)n1(y)dσ(y), when n > 2,

−[
φt
(
x+ 1

2

)−φt
(
x− 1

2

)]
, when n = 2,

where n1(y) is first coordinate of an outer normal vector to ∂Q′ at y . Clearly, n1

is nonzero only on subsets of ∂Q′ : {− 1
2}× [− 1

2 , 1
2 ]n−2 (here n1 = −1) and { 1

2}×
[− 1

2 , 1
2 ]n−2 (here n1 = 1). Let us consider first n > 2. After decomposing x = (x1,x′)∈

[− 1
2 , 1

2 ]× [− 1
2 ,

1
2 ]n−2 and y = (y1,y′) ∈ [− 1

2 , 1
2 ]× [− 1

2 ,
1
2 ]n−2 , we observe that

I1 =
−1
tn−1

{∫
y′∈[− 1

2 , 1
2 ]n−2

φ

((
x1 + 1

2 ,x′ − y′
)

t

)
dy′

−
∫

y′∈[− 1
2 , 1

2 ]n−2
φ

((
x1− 1

2 ,x′ − y′
)

t

)
dy′

}

= −
{∫

y′∈[− 1
2 , 1

2 ]n−2

1
tn−1 φ

((
x1 + 1

2 ,x′ − y′
)

t

)
dy′

−
∫

y′∈[− 1
2 , 1

2 ]n−2

1
tn−1 φ

((
x1− 1

2 ,x′ − y′
)

t

)
dy′

}
=: −{a−b}.

Both terms a and b in the expression of I1 are of the same sign (both are positive) and
according to Lemma 5.3 they obey the same estimation:

a,b �
(

3
2d

)n−1

‖φ‖∞ =
(

3
2d

)n−1

.

Consequently, |I1| �
( 3

2d

)n−1 = C. The same estimation holds when n = 2 by simpli-
fication of the above arguments. This finishes the proof. �

We are now to estimate the derivative of ṽ with respect to the last variable.

LEMMA 5.5. Let n � 2 and

Q(z,t) =
1

tn−1

|z|
t

χ{ z
t ∈ 3

2 Q′}.

Then for any k ∈ {1, . . . ,n− 1} , v being Lipschitz and compactly supported in (1−
d)Q′ , d ∈ (0,1) , we have∣∣∣∣∂ ṽ

∂ t
(x, t)

∣∣∣∣ � D
∫

Q′
Q(x− y,t)

( |v(x)− v(y)|
|x− y|

)
dy+E|v(x)|, where

D = (n−1)
5
2
, E = (n−1)

(
3
2d

)n−1 1
4
.
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Proof. According to property (3.3) and the fact that v is supported in Q′ , we have:

∂ ṽ
∂ t

(x, t) =
∂
∂ t

(φt ∗ v)(x) =
(

(
∂
∂ t

φt)∗ v

)
(x) = −{(div(g1,t , . . . ,gn−1,t))∗ v}

= −
n−1

∑
k=1

{(
Dkgk,t

)∗ v)
}

(x) = −
n−1

∑
k=1

∫
Rn−1

(
(Dkgk,t

)
(x− y))v(y)dy

= −
n−1

∑
k=1

∫
Q′

(
(Dkgk,t

)
(x− y))v(y)dy =: −

n−1

∑
k=1

Tk(x,t), (5.4)

where gk,t(x) = 1
tn−1

xk
t ψ( x1

t ) · . . . ·ψ( xn−1
t ) with ψ defined in (3.2). Moreover, for every

k ∈ {1, . . . ,n−1} :

Tk(x, t) =
∫

Q′

(
(Dkgk,t

)
(x− y))(v(y)− v(x))dy+ v(x)

∫
Q′

(
(Dkgk,t

)
(x− y))dy

=
∫

Q′

{(
(Dkgk,t

)
(x− y))|x− y|}(v(y)− v(x)

|x− y|
)

dy

+ v(x)
∫

Q′

(
(Dkgk,t

)
(x− y))dy

=: Ik(x)+ v(x)Jk(x). (5.5)

We will estimate every term: Ik and Jk separately.
Estimations for Ik .

Let Ak(z, t) =
(
(Dkgk,t

)
(z))|z| . We will show that

|Ak(z,t)| � 5
2
Q(z,t). (5.6)

Indeed, we have

|Dkφ(x1, . . . ,xn−1)| � 2χ{ 1
4 <| xkt |< 3

4 } · χ{ z
t ∈ 3

2 Q′}

and (5.6) follows by the following estimates:

|(Dkgk,t
)
(z)| |z| � 1

tn−1

{
2χ{ 1

4 <| zkt |< 3
4 } ·

1
t
· |zk|

t
+

1
t

}
χ{ z

t ∈ 3
2 Q′}|z|

� 5
2

1
tn−1

|z|
t

χ{ z
t ∈ 3

2 Q′} =
5
2
Q(z,t).

Estimations for Jk .
When x ∈ Q′ \ (1− d)Q′ we have v(x) = 0 and hence v(x)Jk(x) = 0. Therefore it
suffices to provide the estimates for Jk only when x ∈ (1− d)Q′ . We will do it for
k = 1 and n > 2 only. The case n = 2 is more simpler.

Using the Gauss-Ostrogradsky Theorem, we get

J1(x) =
∫

∂Q′
g1,t(x− y)n1(y)dσ(y),
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where n1 is first coordinate of an outer normal vector to ∂Q′ at y . Obviously n1 is
nonzero only on subsets of ∂Q′ : {− 1

2}× [− 1
2 ,

1
2 ]n−2 (n1 = −1) and { 1

2}× [− 1
2 ,

1
2 ]n−2

(n1 = 1). After decomposing x = (x1,x′) ∈ [− 1
2 , 1

2 ]× [− 1
2 , 1

2 ]n−2 and y = (y1,y′) ∈
[− 1

2 , 1
2 ]× [− 1

2 ,
1
2 ]n−2 , we get that

J1(x,t) =−
{∫

y′∈[− 1
2 , 1

2 ]n−2
g1,t

(
x1 +

1
2
,x′ − y′

)
dy′

−
∫

y′∈[− 1
2 , 1

2 ]n−2
g1,t

(
x1− 1

2
,x′ − y′

)
dy′

}
=:−{a−b}.

and a and b are of the same sign, so that |J1| � max{|a|, |b|} . We note that g̃1,t(·) is
supported in 3

2Q′ and g1,t(·) = 1
tn−1

{
φ
(

x
t

) x1
t

}
. Therefore by Lemma 5.1 applied to a

and b , where w̃(z) = φ(z)z1 and α = n−1, we obtain

|J1(x,t)| �
(

3
2d

)n−1

‖w̃‖∞ =
(

3
2d

)n−1 1
4
. (5.7)

Final assertion is obtained after summing up the estimations: (5.4),(5.5),(5.6),(5.7) with
respect to k ∈ {1, · · · ,n−1} . �

We arrive at the following result which seems to be of separate interest, it provides
pointwise estimates for the full gradient of ṽ .

THEOREM 5.6. Let n � 2 , Q = Q′ × (0,1) , Q′ = (− 1
2 , 1

2 )n−1 , v : Q′ → R be
Lipschitz and compactly supported in (1−d)Q′ , where d ∈ (0,1) , moreover,

ṽ(x, t) = v∗φt(x) :=
{∫

Rn−1 v(y)φt(x− y)dy when t > 0,
v(x) when t = 0.

and

Q(z,t) =
1

tn−1

|z|
t

χ{ z
t ∈ 3

2 Q′}. (5.8)

Then for any k ∈ {1, . . . ,n−1} , we have for (x,t) ∈ Q

|∇ṽ(x, t)| � F
∫

Q′
Q(x− y,t)

( |v(x)− v(y)|
|x− y|

)
dy+G|v(x)|, where

F = 5n
2 , G =

( 3
2d

)n−1 n+7
4 and ∇ṽ denotes full gradient of ṽ .

Proof. We observe that Pk(z,t) � Q(z,t) , where Pk is as in Lemma 5.4. Accord-
ing to Lemmas 5.4 and 5.5, after changing the notation xn := t we observe that all
partial derivatives of ũ obey the same estimations:∣∣∣ ∂ ṽ

∂xk
(x)

∣∣∣ � D1,k

∫
Q′

Q(x′ − y′,xn)
( |v(x′)− v(y′)|

|x′ − y′|
)

dy′ +D2,k|v(x′)|,
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where x = (x′,xn) ∈ Q , (D1,k,D2,k) = (2,( 3
2d )n−1) when k ∈ {1, . . . ,n − 1} and

(D1,n,D2,n) = ((n− 1) 5
2 ,(n− 1)

(
3
2d

)n−1 1
4) . To compute constants efficiently we de-

note:

zk :=
∂ ṽ
∂xk

(x), z := (z1, . . . ,zn), a :=
∫

Q′
Q(x′ − y′,xn)

( |v(x′)− v(y′)|
|x′ − y′|

)
dy′,

b := |v(x′)|, D1 := (D1,1, . . . ,D1,n), D2 := (D2,1, . . . ,D2,n).

As we have: |zk| � D1,ka+D2,kb and Di,k,a,b are nonnegative, this implies:

|z| � |D1|a+ |D2|b.

Now result follows from simple estimation:

|D1| � n
5
2
, |D2| �

(
3
2d

)n−1 ∣∣∣(1, . . . ,1,
n−1

4

)∣∣∣ �
(

3
2d

)n−1 n+7
4

,

after we switch to our previous notation (t = xn) . �

5.3. Integral estimates for function ∇ṽ

We are now to prove Theorem 4.1, part (ii).

Proof. [Proof of Theorem 4.1, part (ii)]

(a) The case ρ ≡ 1.
By the convexity argument

(
R(a+b) � 1

2R(2a)+ 1
2R(2b)

)
and Theorem 5.6:

R(|∇ṽ(x, t)|) � 1
2
R

(∫
Q′

(
Q(x− y,t)

C(x,t)

)(
2FC(x,t)|v(y)− v(x)|

|x− y|
)

dy

)
+

1
2
R(2G|v(x)|)

� 1
2

∫
Q′

(
Q(x− y,t)

C(x,t)

)
R

(
2FH|v(y)− v(x)|

|x− y|
)

dy

+
1
2
R(2G|v(x)|) =:

1
2
A(x,t)+

1
2
R(2G|v(x)|) , (5.9)

where F = 5n
2 , G =

( 3
2d

)n−1 n+7
4 (so that 2G = J ), Q is defined by (5.8), C(x,t) �

H (H will be established later) and

C(x, t) :=
∫

Q′
Q(x− y,t)dy =

∫
{y∈Q′: x−y

t ∈ 3
2 Q′}

1
tn−1

|x− y|
t

dy.

We will show that
√

n−1
e

(
3
4

)n

� C(x,t) � 1
2

(
3
2

)n
√

n−1
3

, (5.10)
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whenever t ∈ (0,1) . We observe that

C(x, t) =
∫
{y∈Q′: x−y

t ∈ 3
2 Q′}

1
tn−1

|x− y|
t

dy
z:=x−y

=
1
tn

∫
{z∈x+Q′,z∈ 3

2 tQ′}
|z|dz.

Moreover,

C((x1, . . . ,xk−1,−xk,xk+1, . . . ,xn−1),t) = C((x1, . . . ,xk−1,xk,xk+1, . . . ,xn−1),t).
(5.11)

Therefore for our estimations we can assume that x1, . . . ,xn−1 � 0. Note that for
x ∈ {(x1, . . . ,xn−1) : xi � 0, i = 1, . . . ,n−1} sets

B(x,t) := {x+Q′}∩{3
2
tQ′}

obey the inclusion property:

B((x1, . . . ,xk, . . . ,xn−1),t) ⊇ B((x1, . . . , xk, . . . ,xn−1),t)

whenever xk � xk � 0. Therefore when x1, . . . ,xn−1 are nonnegative, biggest value
of C(x, t) is achieved for x having possible small coordinates, i.e. at x = (0, . . . ,0) ,
while smallest value is achieved when x has the possibly big coordinates in Q′ . We
estimate (roughly, more precise estimations would be if we used the assumption
x ∈ (1−d)Q′ ):

C
((1

2
, . . . ,

1
2

)
,t
)

� C(x,t) � C((0, . . . ,0),t). (5.12)

To give the precise value of C(( 1
2 , . . . , 1

2 ),t) we observe that{(1
2
, . . . ,

1
2

)
+Q′

}
∩
{3

2
tQ′

}
= [0,1]n−1∩

{3
2
tQ′

}
=

[
0,min

{
1,

3
4
t
}]n−1

=
[
0,

3
4
t
]n−1

.

Therefore

C
((1

2
, . . . ,

1
2

)
,t
)

=
1
tn

∫
[0, 3

4 t]n−1
|z|dz. (5.13)

By the property (5.11) for ε1, . . .εn−1 ∈ {+1,−1} we have

C
((

ε1
1
2
, . . . ,εn−1

1
2

)
,t
)

= C
((1

2
, . . . ,

1
2

)
,t
)
.

and as

B(0, t) = {Q′}∩
{3

2
tQ′

}
=

[
−min

{1
2
,
3
4
t
}
,min

{1
2
,
3
4
t
}]n−1 ⊆

[
− 3

4
t,

3
4
t
]n−1

,

we obtain

C((0, . . . ,0),t) � 1
tn

∫
[− 3

4 t, 3
4 t]n−1

|z|dz =: H . (5.14)
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Moreover, let ε = (ε1, . . . ,εn−1) ∈ {−1,1}n−1 and let Iε(t) be the range of cube
I(t) = [0, 3

4 t]
n−1 under the mapping (x1, . . . ,xn−1) �→ (ε1x1, . . . ,εn−1xn−1) . It is

clear that aε := 1
tn
∫
Iε (t) |z|dz is the same for every ε ∈ {−1,1}n−1 . Therefore

H = ∑
ε∈{−1,1}n−1

aε = 2n−1 1
tn

∫
I(t)

|z|dz = 2n−1C
((1

2
, . . . ,

1
2

)
,t
)
. (5.15)

To estimate C( 1
2 , . . . , 1

2 ),t) given by (5.13) we note that

In−1(y) :=
∫

[0,y]n−1
|z|dz = |y|nIn−1(1).

Moreover, Schwartz inequality yields

In−1(1) =
∫

z∈[0,1]n−1

(√
n−1

∑
i=1

z2
i

)
dz �

(∫
z∈[0,1]n−1

n−1

∑
i=1

z2
i dz

) 1
2

�
√

n−1
3

.

On the other hand, using the inequality between arithmatic and geometric means,
we have

In−1(1) =
∫

z∈[0,1]n−1

(√
n−1

∑
i=1

z2
i

)
dz �

√
n−1

∫
z∈[0,1]n−1

n−1

∏
i=1

z
1

n−1
i dz

=
√

n−1
n−1

∏
i=1

∫ 1

0
z

1
n−1
i dzi =

√
n−1

1
(1+1/(n−1))n−1 �

√
n−1
e

.

Therefore
√

n−1
e

(
3
4

)n

� C((
1
2
, . . . ,

1
2
),t) �

(
3
4

)n
√

n−1
3

. (5.16)

Now inequalities (5.10) follow from (5.16), (5.12), (5.14), (5.15).

Integrating A(x, t) with respect to t ∈ (0,1) , we get from (5.9) and (5.10):∫
(0,1)

A(x, t)dt �
∫

Q′

{∫
(0,1)

Q(x− y,t)
C(x,t)

dt

}
R

(
2FH|v(y)− v(x)|

|x− y|
)

dy, (5.17)

where H = 1
2

(
3
2

)n
√

n−1
3 , so that 2FH = 5n

2

(
3
2

)n
√

n−1
3 = I .

Now we will estimate the term in bracket {} on right hand side in (5.17). By
formulae (5.8) we have for any z ∈ R

n−1

∫
(0,1)

Q(z,t)
C(x,t)

dt = |z|
∫

(0,1)

1
tn

χ{ z
t ∈ 3

2 Q′} ·
1

C(x,t)
dt (5.18)

(5.10)
� 1

|z|n−2

(
|z|n−1

∫ 1

0

1
tn

χ{ z
t ∈ 3

2 Q′}1dt

)
e√

n−1

(
4
3

)n
(4.1)= a0 · ωρ≡1(z)

|z|n−2 ,
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where a0 = e√
n−1

(
4
3

)n
.

Therefore∫
x∈Q′

∫
(0,1)

1
2
A(x,t)dtdx � a0

2

∫
x∈Q′

∫
y∈Q′

R

(
I|v(y)− v(x)|

|x− y|
)

ωρ≡1(x− y)
|x− y|n−2 dydx

(5.19)
and a0

2 = L . This gives (4.4) in case ρ ≡ 1.

(b) The case of general ρ .
We multiply both sides of the pointwise inequality (5.9) by a weight ρ and integrate
the inequality over (0,1) first, then over Q′ . We get:∫

Q′

∫ 1

0
R(|∇ṽ|)ρ(t)dtdx �1

2

∫
Q′

∫ 1

0
A(x,t)ρ(t)dtdx

+
1
2

∫
Q′

∫ 1

0
R(J|v(x)|)ρ(t)dtdx,

=
1
2

∫
Q′

∫ 1

0
A(x,t)ρ(t)dtdx

+
1
2

∫
Q′

R(J|v(x)|)
∫ 1

0
ρ(t)dt dx =: I1 +I2.

We will estimate the terms: I1 and I2 separately. Obviously, as
∫ 1
0 ρ(t)dt =

C(ρ) < ∞ , we get

I2 � C(ρ)
2

∫
Q′

R(J|v(x)|)dx.

To deal with I1 , we deduce that:∫
Q′

∫ 1

0
A(x, t)ρ(t)dtdx �∫

Q′

∫
Q′

{∫ 1

0

Q(x− y,t)
C(x,t)

ρ(t)dt

}
R

(
I|v(y)− v(x)|

|x− y|
)

dydx,

and by obvious modification of (5.18), we have∫ 1

0

Q(x− y,t)
C(x,t)

ρ(t)dt � a0 · ωρ(x− y)
|x− y|n−2 .

Therefore,

I1 =
1
2

∫
Q′

∫ 1

0
A(x,t)ρ(t)dtdx �

L
∫

x∈Q′

∫
y∈Q′

R

(
I|v(y)− v(x)|

|x− y|
)

ωρ(x− y)
|x− y|n−2 dydx.

This ends the proof of (4.4).
Last part of the statement as well as the proof of part (iii) follows by similar argu-
ments as that used to finish the proof of part (i). �
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REMARK 5.7. More exact computations in case ρ ≡ 1 can be provided. Namely,
we have ωρ≡1(z) = |z|n−1 ∫

(0,1)
1
tn χ{ z

t ∈ 3
2 Q′}dt and

{z :
z
t
∈ 3

2
Q′} ⊆

n−1⋂
i=1

{z : t � 4
3
|zi|} ⊆ {z : t �

4
3 |z|√
n−1

}.

We have for p(z) = min{
4
3 |z|√
n−1

,1} :

ωρ≡1(z) � |z|n−1
∫ 1

p(z)

1
tn

dt = |z|n−1 1
−n+1

t−n+1|1p(z) = |z|n−1 1
n−1

(
p(z)−(n−1)−1

)
� |z|n−1 1

n−1

( |z|√
n−1

4
3

)−(n−1)

= (
√

n−1)n−3
(

3
4

)n−1

≡Const.

Therefore when ρ ≡ 1 we arrive at the following inequality, which is the special variant
of (4.4):∫

Q′

∫ 1

0
R(|∇ṽ|)ρ(t)dtdx � L̃

∫
x∈Q′

∫
y∈Q′

R

(
I|v(y)− v(x)|

|x− y|
)

1
|x− y|n−2 dydx (5.20)

+
C(ρ)

2

∫
Q′

R(J|v(x)|)dx,

where I = 5n
2

(
3
2

)n
√

n−1
3 , J =

(
3
2d

)n−1 n+7
2 , L̃ = 1

2

(
4
3

)n e√
n−1

(
√

n−1)n−3
(

3
4

)n−1
=

(
√

n−1)n−4 2e
3 , and ∇ṽ denotes full gradient of ṽ .

6. Proof of Theorem 4.2

In this section we prove Theorem 4.2.

Proof of Theorem 4.2. We will use the notation Qa,b := aQ′ × (0,b) where a,b >
0. The proof follows by several simple steps. Some of their proofs are omitted.

Step 1. We observe that for any integrable function w defined on Q′ × {0} , we
have ∫

Q′×{0}
w(x)dσ(x) =

∫
Q′

w(x′,0)dx′. (6.1)

This follows from the fact that I(x′) = (x′,0) defines the map for Q′×{0} and |DI|= 1
(where DI is the jacobian matrix of the change of variables).

Step 2. Let d′ ∈ (0,1) be a given number. We observe that when x = (x′,t) ∈
Q1−d′,d′ ⊆ Q then t = dist(x,∂Q) . In particular

ρ(t) = ρ (dist(x,∂Q)) when x = (x′,t) ∈ Q1−d′,d′ ⊆ Q.

Step 3. Let

w(x′, t) = u(·,0)∗φt(x) :=
{∫

Rn−1 u(y′,0)φt(x′ − y′)dy′ when t > 0,
u(x,0) when t = 0.

(6.2)
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We observe that w restricted to Q1, d
3

is supported in Q1− d
2 , d

3
⊆ Q1, d

3
.

Indeed, when x = (x′,t) ∈ Q1, d
3
\Q1− d

2 , d
3
, we have x′ ∈ Q′ \ (1− d

2 )Q′ , conse-

quently dist{x′,(1−d)Q′}� d
2 . Therefore for every y′ ∈ (1−d)Q′ we have |x′ −y′|�

d
2 . In particular for every such y′ and t � d

3 we have |x′−y′|
t � 3

2 , and so φt(x′ −y′) = 0.
As v(y′) = u(y′,0) is supported in (1−d)Q′ , we get for such (x′,t)∫

Rn−1
u(y′,0)φt(x′ − y′)dy′ =

∫
(1−d)Q′

u(y′,0)φt(x′ − y′)dy′ = 0.

Therefore w(x′, t) = 0.

Step 4. We define extension operator Ext(u) by expression

ũ = Ext(u)(x′,t) := φ̃ (t) ·w(x′, t),

where w is the same as in (6.2), φ̃(t) =
{− 3

d t +1 when t ∈ (0, d
3 )

0 when t � d
3

.

We will show that ũ satisfies the required properties. For that, we introduce the
notation v(z) = u(z,0) , z ∈ Q′ ,

M(λ ) :=
∫

∂Q

∫
∂Q

R

(
λ
|u(x)−u(y)|

|x− y|
) ω̃d

ρ (x,y)
|x− y|n−2 dσ(y)dσ(x)

Step 1
=

∫
x∈Q′

∫
y∈Q′

R

(
λ
|v(x)− v(y)|

|x− y|
) ωρχ

(0, d3 )
(x− y)

|x− y|n−2 dydx,

N(λ ) :=
∫

∂Q
R(λ |u(x)|)dσ(x) =

∫
Q′

R(λ |v(x′)|)dx′.

We start with the computation of

I1 :=
∫

Q
R(|ũ|)ρ(dist(x,∂Q))dx.

As R(0) = 0, we note that R(|ũ|) is supported in (1− d
2 )Q′ × (0, d

3 ) ⊆ (1− d
3 )Q′ ×

(0, d
3 ) = Q1−d′,d′ where d′ = d

3 (Step 3). On the other hand, according to Step 2 we
have ρ (dist(x,∂Q)) = ρ(t) when x = (x′,t) ∈ Q1−d′,d′ . This gives

I1 =
∫

x′∈(1− d
3 )Q′

∫ d
3

0
R
(
φ̃(t)|w(x′,t)|)ρ(t)dx′dt

�
∫

x′∈Q′

∫ 1

0
R
(|w(x′,t)|)(ρχ(0, d

3 ))(t)dx′dt

Theorem 4.1,part(i)
� D(ρ)

∫
Q′

R(|v(x′)|)dx′ = D(ρ)N(1).

Therefore first inequality in (4.6) follows. To deal with

I2 :=
∫

Q
R(|∇ũ|)ρ(dist(x,∂Q))dx,
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we note that

∇ũ(x′, t) = φ̃ (t)∇w(x′,t)+ φ̃(t)(0, . . . ,0,−3
d

χ(0, d
3 )(t) ·w(x′, t)).

Hence

|∇ũ(x′,t)| � |∇w(x′,t)|+ 3
d
|w(x′, t)|χ(0, d

3 )(t).

Consequently,

I2 =
∫

x′∈(1− d
3 )Q′

∫ d
3

0
R
(|∇ũ(x′,t)|)ρ(t)dt � 1

2

∫
x′∈(1− d

3 )Q′

∫ d
3

0
R
(
2|∇w(x′, t)|)ρ(t)dt

+
1
2

∫
x′∈(1− d

3 )Q′

∫ d
3

0
R

(
6
d
|w(x′,t)|

)
ρ(t)dt =: A1 +A2.

Moreover, using Theorem 4.1, part (ii), one easily obtains

A1 � 1
2

∫
x′∈Q′

∫ 1

0
R
(
2|∇w(x′,t)|)(ρχ(0, d

3 ))(t)dt�1
2

{
LM(2I)+

D(ρ)
2

N(2J)
}

,

while by Theorem 4.1, part (i)

A2�
1
2
D(ρ)N(

6
d

) � 1
2
D(ρ)N(2J)

as N(·) is nondecreasing. From there second inequality in (4.6) follows. �

7. Admissible weights in Theorems 4.1 and 4.2

The expression (4.1) defines the transform ωρ of the given weight ρ defined on
interval. Below we compute several examples which illustrate results of Theorems 4.1
and 4.2.

EXAMPLE 7.1. (a) Considering ρ ≡ 1 we get ωρ �Const (see Remark 5.7) and
so we retrieve the classical unweighted result.

(b) Let ρ(t) = tα , −1 < α < n−1. An easy computation shows that:

|z|n−1
∫ 1

0

1
tn

χ{ z
t ∈ 3

2 Q′}t
αdt � |z|n−1

∫ 1

min{ 4
3
√

n−1
|z|,1}

tα−ndt

� |z|n−1 1
n−1−α

(
4

3
√

n−1
|z|
)α−(n−1)

=
1

n−1−α

(
4

3
√

n−1

)α−(n−1)

|z|α

∼ |z|α .
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Therefore statements hold with ω(z) ∼ |z|α .

This result can be compared with an old result by Lizorkin [31], Theorem 3 and
by Vasarin [44]. Namely, it was shown in [31] that in case when Ω ⊆ Rn has C2 -
boundary, −1 � α < p−1 and R(λ ) = λ p , there exist trace embedding operator
Tr : W 1,p

(dist(x,∂Ω))α (Ω) → YR,R
|x−y|α (∂Ω) and this operator is a surjection. The case

0 � α < 1 was studied by Vasarin [44], while the special case p = 2 was obtained
earlier by Nikolski [39] (not involving Slobodetskii type space directly).

(c) If ρ(t) = tα (
ln
(
2+ 1

t

))β
, −1 < α < n− 1,β > 0. By similar computations as

before, we get:

|z|n−1
∫ 1

C1|z|
tα−n

(
ln

(
2+

1
t

))β
dt

�
(

ln

(
2+

1
C1|z|

))β
|z|n−1

∫ 1

min{ 4
3
√

n−1
|z|,1}

tα−n dt

� 1
n−1−α

(
4

3
√

n−1

)α−(n−1)

|z|α
(

ln

(
2+

1
4

3
√

n−1
|z|

))β

∼ |z|α
(

ln

(
2+

1
|z|

))β
.

Considering β = 0 we retrieve previous result.

(d) When ρ(t) is an arbitrary nonincreasing integrable function, we get

ωρ(z) � |z|n−1
∫ 1

min{C1|z|,1}
t−nρ(t)dt � ρ(C1|z|) · |z|n−1

∫ 1

min{ 4
3
√

n−1
|z|,1}

t−n dt

� E ·ρ(C1|z|),

where C1 = 4
3
√

n−1
, E = (

√
n−1)n−3

(
3
4

)n−1
.

(e) when ρ(t) is an arbitrary integrable nonincreasing function and satisfies the Δ 1
2
-

condition: ρ( 1
2 t) � Dρ(t) , with D independent on t , we get for C1 < 1

ρ(C1|z|) � F ·ρ(|z|),

where F = D−[log2(C1)] . In particular Theorem 4.1 holds with ωρ(z) substituted by

G ·ρ(|z|) where G = D
−[log2( 4

3
√

n−1
)](
√

n−1)n−3
(

3
4

)n−1
when n > 2 and E = 3

4
when n = 2.

As a corollary, we obtain the following statement which seems to be of separate
interest.
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THEOREM 7.2. Let R be the given convex function, Q=Q′×(0,1) , Q′=(− 1
2 , 1

2 )n−1 ,
d ∈ (0,1) , ρ ∈ L1((0, d

3 )) is an arbitrary nonincreasing weight function and satisfies
the Δ1/2 -condition: ρ( 1

2 t) � Dρ(t) (with D independent on t ), ω(x,y) := ρ(|x− y|)
and let us consider the subspace of YR,R

ω,L (∂Q) depending on d

YR,R
ω,L,d(∂Q) := {v ∈ YR,R

ω,L (∂Q) : suppv ⊆ (1−d)Q′ × {0}}.

Then there exists a linear extension operator:

Ext : YR,R
ρ(|x−y|),L,d(Q

′ × {0}) �→W 1,R
ρ(dist(·,∂Q)),L(Q)

such that for ũ := Ext(u) we have

∫
Q

R(|ũ|)ρ(dist(x,∂Q))dx � D(ρ)
∫

∂Q
R(|u(x)|)dσ(x),∫

Q
R(|∇ũ|)ρ(dist(x,∂Q))dx � K̃

∫
∂Q

∫
∂Q

R

(
Ĩ|u(x)−u(y)|

|x− y|
)

ρ(|x− y|)
|x− y|n−2 dσ(y)dσ(x)

+
3D(ρ)

4

∫
∂Q

R(J̃|u(x)|)dσ(x),

where Ĩ = 5n
(3

2

)n
√

n−1
3 , J̃ =

( 3
2d

)n−1 (n+7) , D(ρ) =
∫ d

3
0 ρ(t)dt ,

K̃ = D
−[log2(

4
3
√

n−1
)](
√

n−1)n−4 e
3 when n > 2 and K̃ = e

4 when n = 2 .

In particular, when R is an Orlicz function, then there exists a constant B̃3 =
B̃3(n,ρ ,d) such that

‖Ext(u)‖
W1,R

ρ(dist(·,∂Q))(Q) � B̃3‖u‖YR,R
ρ(|x−y|)(Q

′),

for every u ∈ YR,R
ρ(|x−y|),d,L(Q

′ × {0}) supported in (1−d)Q′ × {0} .
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