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THE MAXIMAL OPERATOR OF MARCINKIEWICZ-FEJER MEANS
WITH RESPECT TO WALSH-KACZMARZ-FOURIER SERIES

KAROLY NAGY

(Communicated by Z. Ditzian)

Abstract. In the paper [4, Theorem 1] Gat, Goginava and the author proved that the maximal op-
erator 0** of Marcinkiewicz-Fejér means of Walsh-Kaczmarz-Fourier series, is bounded from
the dyadic Hardy space H,, into the space L, for p > 2/3. Moreover, Goginava and the author
showed that 6** is not bounded from the Hardy space H, /3 to the space Ly 3 [6, Theorem 1].
The main aim of this paper is to show that the maximal operator 6% f := sup,,.p % ,is
n
bounded from the Hardy space H,/; into the space Ly/3. Moreover, we prove that the order of

deviant behavior of the nth Walsh-Kacmarz-Marcinkiewicz-Fejér mean is exactly log3/ 2(n+ 1)
in the endpoint p =2/3.

1. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [1, 11, Chapter
1]. Let P denote the set of positive integers, N:=P U {0}. Denote Z, the discrete
cyclic group of order 2, that is Z, = {0,1}, where the group operation is the modulo
2 addition and every subset is open. The Haar measure on Z; is given such that the
measure of a singleton is 1/2. Let G be the complete direct product of the countable
infinite copies of the compact groups Z;. The elements of G are sequences of the form
X = (X0,X1,...,Xg, ...) With coordinates x; € {0,1} (k € N). The group operation on G
is the coordinate-wise addition, the measure (denoted by u ) is the product measure and
the topology is the product topology. The compact Abelian group G is called the Walsh
group. A base for the neighbourhoods of G can be given in the following way:

I(x) =G, ©L(x):=15x0,.s%—1):={YEG: Y= (X0seesXn—1, Vs Ynt1s--) } »

(x € G,n € N). These sets are called dyadic intervals. Let 0 = (0:i € N) € G denote
the null element of G, and I, :=1,(0) (n € N). Set ¢,,:=(0,...,0,1,0,...) € G, the nth
coordinate of which is 1 and the rest are zeros (n € N).

For k € N and x € G denote

e (x) == (—1)%
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the kth Rademacher function. If n € N, then n = Y, n;2' can be written, where n; €
i=0
{0,1} (i€ N),i.e. n isexpressed in the number system of base 2. Denote the order
of n by |n| ;= max{j € N:n; # 0}, thatis 21"l <n < 2I"+1.
The Walsh-Paley system is defined as the product system of Rademacher func-
tions:
|n|—1
> X
wn () i= T (e ()™ = 7y () (=150 (xeGneP),

k=0

oo

The Walsh-Kaczmarz functions are defined by xy = 1 and for n > 1

|n|—1 i
830) 1= 7 (8) T Clago ()™ = g (x) (— )00 850

The set of Walsh-Kaczmarz functions and the set of Walsh-Paley functions is the same
in dyadic blocks. Namely,

{Kp: 28 <n< 2Ky = {w, 1 28 <m< 2P

for all k € P and ko = wy.

V. A. Skvortsov (see [ 14, page 142]) gave a relation between the Walsh-Kaczmarz
functions and the Walsh-Paley functions by the help of the transformation 74 : G — G
defined by

TA(X) = (XA—lrxA—za <oy X1, X0, XA, XA+ 15 )

for A € N. By the definition of 74, we have
K (%) = 71y ()W, ol (T (¥))  (n € N,x € G).
The Dirichlet kernels and the Fejér kernels are defined by

n—1 ln—l
D=3 on Ki(x) 1= % D),
k=0 k=0

where oy, = w, (for all n € P) or k, (for all n € P), D% := 0. The 2"th Dirichlet
kernels have a closed form (see e.g. [11, page 7])

DY (x) = D3 (x) = Das(x) =

{o, ifx &1, 0

2 ifx €,

The o -algebra generated by the 2-dimensional cube of measure 272 will be de-
noted by F; (k€ N). Denote by f = < f e N) the one-parameter martingale with
respect to (Fy,,n € N) (for details see, e. g. [17, 18, Chapter 1]). The maximal function

of a martingale f is defined by f* = sup ) f (”)) . For 0 < p < oo the Hardy martingale
neN

space H,(G?) consists of all martingales for which ||fHHp =, <ee
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The Kronecker product (04, 5, : n,m € N) of two Walsh-(Kaczmarz) system is said
to be the two-dimensional Walsh-(Kaczmarz) system. That is,

O (1, 3%) = 04 (x" ) 0o (62).

If € L(G?), then the number f* (n,m) := [ fOum (n,meN) is said to be
2

the (n,m)th Walsh-(Kaczmarz)-Fourier coefficient of f. We can extend this definition
to martingales in the usual way (see Weisz [17, 18, Chapter 1]). Denote by Sy, the
(n,m) th rectangular partial sum of the Walsh-(Kaczmarz)-Fourier series of a martingale
f. Namely,

n—1lm—1

nmfxx 22]‘ (k,i)og i (x" 7).

k=0 i=
The Marcinkiewicz-Fejér means of a martingale f are defined by

(fxx ESkkfx x)

The two-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are de-
fined by

1"= 1

Dkl(x %) = DY (x"\Df (?), KZ(x',x%): ZDkkx X%).

The nth Marcinkiewicz-Fejér kernel has got a decomposition

[n|—1 [n|—1
nKyf (2 0%) = 14+ 3, 27Dy 55 (x1,2%) + X, 27Dy () 1y () K3 (15 (%))
j=0 j=0
n[—1
+ Z 2jD2j (xz) r (xl) sz (TJ (xl))
Jj=0
[n]—1
+ Z 27rj (2 +22) Ky (77 (') 75 (%)) 2

+(n—2| (Dt ot (x1,3%) + Doy (1) 11 (2K (70 ()
+D2\n\(x2)r|n|(xl) " (T (1)
Ay (8 )KL (T (1), 7 (7))

for (xl,xz) € G? (see [9, Lemma 2.1]).
For the martingale f we consider the maximal operators

- o (fix!, )]
o™ f(x!,x?) = sup|of (fix,4%)], G (! x%) = sup|
( ) ne]P| " ( )‘ ( ) nelP 10g3/2(n+ 1)
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In 1948 Sneider [ 15, page 184] introduced the Walsh-Kaczmarz system and showed

that the inequality

K
limsup D"—(x> =>C>0
n—e lOgn

holds a.e. In 1974 Schipp [12, Corollary 3] and Young [16, page 354] proved that the
Walsh-Kaczmarz system is a convergence system. Skvortsov in 1981 [14, Theorem
2] showed that the Fejér means with respect to the Walsh-Kaczmarz system converge
uniformly to f for any continuous functions f. Gét [2, Theorem 1] proved for any
integrable functions, that the Fejér means with respect to the Walsh-Kaczmarz system
converge almost everywhere to the function. He showed that the maximal operator
0"* of Walsh-Kaczmarz-Fejér means is of weak type (1,1) and of type (p,p) for all
1 < p < eo. Gat’s result was generalized by Simon [13, Theorem 1], who showed that
the maximal operator ¢** is of type (H,,L,) for p > 1/2.

In the endpoint case p = 1/2 Goginava [5, Theorem 2] proved that the maximal
operator 6 is not of type (Hy/2,L;/2) and Weisz [19, Theorem 5, page 162] showed
that the maximal operator is of weak type (H|/2,L1/2)-

In the paper [7, Theorem 3.1, Theorem 3.2] Goginava and the author proved that
the maximal operator G** defined by

O—K‘
6)(,* [ Sup | n f|

nep log? (n+1)
is bounded from the Hardy space H|/, to the space L;/,. It was also proved that for
any non-decreasing function @ : P — [1,e0) satisfying the condition

lim —————= = 4o (3)
== g(n)
then the maximal operator sup,.p ‘g’("(nf | is not bounded from the Hardy space H, ),
to the space L;/,. In other words the order of deviant behaviour of the nth Walsh-

Kaczmarz-Fejér mean is exactly log?(n+ 1) in our special sense.
In 1939 for the two-dimensional trigonometric Fourier partial sums S; ; (f) Mar-
cinkiewicz [8] has proved for f € LlogL([0,27]?) that the means

l n
ouf =~ 2.8;;(f)
n &

converge a.e. to f as n — oco. Zhizhiashvili [21, page 1116] improved this result for
f € L([0,27]?). We mention that the result of Marcinkiewicz and Zhizhiashvili and the
boundedness of the maximal operator from H, to L, (2/3 < p < e) was proved by
Weisz for Walsh-Fourier series [20, Theorem 3].

In [4, Theorem 1] it was proved that the maximal operator

o f —SuPIG /] —SUP
nep It
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is bounded from the Hardy space H,, to the space L, for p >2/3.

In the paper [6, Theorem 1] Goginava and the author showed that, 6" f is not
bounded from the Hardy space H, /3 to the space Ly/3.

The main aim of this paper is to investigate that what does happen in the endpoint

p =2/3. We show that the maximal operator 6**f := sup,,.p mgl%, is bounded

(ﬁ+1)
from the Hardy space H, 3 into the space L,/3. Moreover, we prove that for any non-

decreasing function ¢ : P — [1,0) satisfying the analogue of condition (3), that is

| 3/2 1
lim w
e @(n)
then the maximal operator sup,cp ‘(‘;’%‘ is not bounded from the Hardy space H, /3
to the space L, /3. That is, the order of deviant behaviour of the nth Walsh-Kacmarz-

— oo “

Marcinkiewicz-Fejér mean is exactly 10g3/ 2(n +1) in the endpoint case p =2/3. Ana-
logue of this result for Walsh-Marcinkiewicz-Fejér mean is given in [10, Theorem 1,
Theorem 2].

2. Auxiliary propositions and main results
First, we formulate our main theorems.

THEOREM 1. The maximal operator 6** is bounded from the Hardy space Hy 3
to the space Ly 3.

THEOREM 2. Let @ : P — [1,00) be a non-decreasing function satisfying the con-
dition (4). Then the maximal operator

wplot]
neP @ (I’l)

is not bounded from the Hardy space Hy3 to the space Ly 3.

To prove our Theorem 1 we need the following Lemmas [3, page 480-482], [4,
Lemma 8, 9, 10]:

LEMMA 1. (Gét, Goginava, Nagy ([3], page 481)) Let x € Iy(x0,...,xj—1,% = 1,
0,...,0) and j > N. Then

C
| K3t 0 < 5o, 0m10..0()
LEMMA 2. (Gét, Goginava, Nagy ([4], Lemma 8)) Let n <24t! A > N and x €
In(x0, ... xm = 1,0,...,0,x, = 1,0,...,0), [ =0,....N—1, m=—1,0,....1. Then
2A
[l (a0l du(0) < e,

Iy
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where
IN (xo,...,xm = 1,0,...,O,xl = 1,0,...,0)
= 1Iy(0,...,0,x;, = 1,0,...,0), form= —1.

LEMMA 3. (Git, Goginava, Nagy ([3], page 480)) Let x! EIN(xO, ; l,x =1,
0,...,0) and x* GIN(xO,...,xlz_l,xl =1,0,...,0) for 0 < s <I<N. Thenfor j >N we
have

| RS (5 ) (24 2) due! )

Iy xIy

- 2
022 mlIN Dol | A1=1,0,.. 0,x,2n=1,0,...,0,)([2:1,0,...,0)(x )-

LEMMA 4. (Gdt, Goginava, Nagy ([3], page 482)) Let (x',x*) € Iy x Iy(x3, ...,

Xlz,l,x% =1,0,...,0), I =0,....N— 1. Then for j > N we have

/ K (7 (" 1Y) 7 (o +12)) du (et )

Iy xIy

!
s 2
< 6202 sIIN(0.,....,0.,;@:1.,0.,....,0.,x,2=1.,0...,0) (x ) :
5=

LEMMA 5. (Git, Goginava, Nagy ([4], Lemma 9)) Let (x',x%) € Iy(xp,....x} | =
1,0,...,0) X In(x5, ...,x2, = 1,0,...,0), m' <m?, A>N and n < 2**'. Then

[ onlk (o (1) 7 (2 %)) | )

Iy xIy
m' =1 m? 2A )
sc ZE) 212m2+42+r1, (x(w 7 x}H,...,xrlnLl,xil,o,...,o,xzzzl,o,...,o,xiﬂzl,o,._,7o> (x%)
m?—1 2A m?

2

+Y 31 x

_Zl om'+m+r 22_‘ IN<x0, 0,002, =100, = 10....,0)( )
r=m q*=r

LEMMA 6. (Gét, Goginava, Nagy ([4], Lemma 10)) Let (x',x?) € Iy(0,...,0) x

IN(xG, X2 = 1,0,...,0), A> N and n <21, Then

/ n|KY (14 (<" +11) 14 (2 +2)) | de'ar?
IN><IN
m? 2A m

2
s¢ Z pmi+r Z l1 <2 xz,o,...,o,xzz=1,0...,0,x22=1,0,...,0) (x )
r q m

=0 g=r WN{Xg

2
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A bounded measurable function a is a p-atom, if there exists a dyadic two-
dimensional cube 2, such that

a) [padu=0,
b) [lalle < p(r) 7,
¢) suppa C I*.

The operator T is said to be p-quasi-local, if there exists a constant ¢, such that
A\Ta\pdugcp<w Q)
I
for every p-atom a, where the dyadic cube I? is the support of the p-atom a.

LEMMA 7. (Weisz ([18], Theorem 1.34)) Suppose that the operator T is sub-linear
and p-quasi-local for any 0 < p < 1. If T is bounded from Lo to Lo, then

1T fllp < Cp”fHHp forall f € H).

3. Proofs of the theorems

First, we prove Theorem 1.

Proof of Theorem 1. By the help of Lemma 7 we prove that the operator &**
is of type (Hy/3,L,/3). The boundedness from the space L. to the space L. follows
from the inequality

1Kyl <c

for all n € N (see [4, Corollary 3]). The proof will be complete, if we show that the
maximal operator 6** is 2/3-quasi-local (see inequality (5)).

Let a be an arbitrary 2/3-atom with suppa = I?, and u(1?) = 272N, Without loss
of generality, we may assume that =1y xly.

It is simple to see that 6:¥a = 0 if n < 2. Therefore, we suppose that n > 2V

We write that

/_|6K,*a|2/3d“:/ 7|6K7*a‘2/3du+/7 ‘6K7*a|2/3d“_|_ [ 7|5K’*a\2/3dll
z IyxIy IvxIy Iy xIy
=L+bL+15.

By equality (2) and the property a) of an 2/3-atom for any (x!,x?) € g we have
that

ln|—1
nofa(x!,x*) = /12 a(t',r?) ( S 27Dy (xM 1) r (P +12) Ky (17 (P +17))

N Jj=N+1
|n|—1
+ z 2/D,; (x2—|—t2) rj (xl —|—t1) Ky (7 (xl —|—tl))
Jj=N+1
In| -1

+ Y 20 (Mt ) K (1 () g (P 1)
J=N+1
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+ (n = 2Dy (! + 1)y (P + )R (7 (67 1))

+(n—2"\Dy (7 + )y (6 R (7 (6 1))

+ (n =2 r (e PR (T (1Y), T (P 22) | du(et )

= Lla(x',x*) + La(x', ) + La(x', x%) + Lia(x',x*) + La(x', x*) + Loa(x',x?).

First, we discuss the integral I;. On the set Iy x Iy we have that La = L2a =
Lta=L)a=0. Thus, we write that

132) = Lya(x' x2)+L2a(xl7x2).

ora(x',x
n n
For a 2/3-atom a we have that
lafl. < 2. (©)
This yields
c2?V 1! 2, 2 12
BN fo | 3,7 ) ) e
n> J=N+ Iy

n>2N n

_olnl 2/3
+ sup n—2 /12 K;:ﬂn‘ (T|n| ()Cl —|—t1) » Tin| (x2+t2))‘du(tl,t2)> du(xl,xz)
N

Now, we decompose the set Iy in the following way

. N—1
Iv=J 7, (7)

s=0

where J3, := Iy(x0,x1, ...,Xs—1,% = 1,0,...,0). By this, we get that
szNN 1 1 . .
I < S (st S0 [ kg (a0t o () e
os 07N>y n>2Nnj =N+1 “Iy

n— 2l
+ sup /

n>2N n

22NN lN 1
/ N(sup - 22// K (77 (x' +11) 75 (2 +1%)) | du(e! 1)
Sy xJ

o\ I1+1 n>2N NGy Yy

2/3
K (T (5 1") 3 (2 42)) | du( )) du(x' %)

2/3
Ky (T (6 +21) ) (2 +t2))‘dﬂ(t1ﬁ2)> du (')

n— 2l
+ sup /2
n>2v N Iy

=0+0.
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We investigate 131 (132 can be discussed analogously). Using Lemma 3, Lemma 5
and the inequality

oo P oo
Yar| <Y df (@=0,0<p<l) (8)
k=0 k=0
we immediately get that
Il< 22NN11/ i lml (2)
3 o & Iy (el 21=1,0,...,042=10,...047=10,...0) \*

s—1

I—g*—r 2
+2 2 2" Ui (Btl ol 20,002, 1,000 =1,0,..,0) ()
r=0g2=5 9

2/3
—s—1— 2 1.2
22 e Z llN (22,0 0x2—10, L0,2=1,0,.. ,o)(x ) du(x',x%)

czzNN 1 1 s ,
m
< / ; 22 y Iy (el al=1,0,.. 0,x,2n=1,0,...,0,)([2:1,0,...,0)(x)

l 0 5=07 N <Iy\ m=s

s—1
—1—¢*—r)2/3 2
+Z Z 2 11N(x0, o2l el 62,0, 0x2—10, L0.2=10,.. ,0)(x )

r= 0q27\
< (—s—1—r)2/3 L 2 12
+y 2 22 L@, 0225710004310, () Jdu(x,x7)
r=s P=r
D RDREDY
T 2 3

(x!,2%)

X
/I‘N(x(l),....xg 17)clfl 0,...,0) X Iy (x, ....,xiil,x}*l 0,...,0,x2,=1,0,.. ,Oxl—l O....,O)
c2
Z 2~ 21/3 225‘ 2S/32—2N < 22—21/321/3 < c.
=0 5s=0 Z:O
Analogously,

z 22 21/3222 2r/3 22 2q2/32 (N=5)p—(N=r)

2 s=0r=0 P=s

< < i 2-2/3p21/3 ¢ ]%N <ec
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Now, Y follows.
3

Z 22 2[/322 2S/322 2r/3 22 (N—s) N—r)

3 Pr

< < i 2-2/32/3 ‘N <.

=z

Second, we discuss the integral I; (the discussion of I, goes similarly). On the set
Iy x Iy we have that L2a = L)a = 0. That is,

~ Lla(x'x?) n Lla(x',x?) n Lia(x',x?) n Loa(x',x?)
n n n n '

Moreover, by inequality (6), decomposition (7), Lemma 1, 2, 4 and 6 we have that

22N N-1 |n| 1 5
L < — / sup - 2’/ (1) x +17)) du(t”)
N IZE) IvxJy \ p>oN 1t j=N+1 Iy / ))

1 Izt

+sup & Y 2]/ (1 (1Y) 1 (P 2)) e

>N NGy

N

n—2‘” 2
+ sup / Ky (T (F+17)) du ()
n>2N
ol 2/3
n— w
+ sup R ‘Kn,z\n\ (T|n| ()Cl —|—t1) » Tin| (x2—|—t2)) |d,u(t1,t2)> du(xl,xz)
n>2N n Iy

22N N=1 n|—1

1 i1 2
< N Z/INXJ, (S“p_ Z 2/ 11,\,(0.,....,0.,x,2=1,0,...,0)(x)

1=0 n>2N N
|n|—1

1 I—s 2
+sup — D 2’22 Lo,..0:2=10,. 0.2=10,..., o)
n>2N Jj=N+1 s=0

1 L 2ol

2
v E Foi o

n>2N 1

2/3
2l 2 12
+ sup — 2 21+r 2 V(G 30,0002 =1,0....0, }:1,0,..,,0)()6 ) dp(x,x7)

A simple consideration and inequality (8) yield that
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22 23 l1,\,0 L0,2=1,0,.. )(xz)dﬂ(xz)

Jl
+£N1 2”2/3 1 2)du(x*
Z Z Iy(0,...,002=10,...,0.7=10,..., )(x) p(x)
CZNN ! —l-m)2/3 2 2
2 2 2 / / IN(xg,...,x}H,xz,,:l,o,...,o,xle,o,...,())(x )dp(x”)
1=0 m=—1
+£&E2“”2 o (P)du()
) N (2.0, O,x2—10 20,2=1,0,...,0) u
=0 r=0 P=r In
1 2 3 4
=D +> 2+
Thus,
1
2 2221/32N<_<c
N
2 _
2 < i 2 22(717.\')2/327N < < <e,
N =0 s=0 N
3 NN—1 1 N—1
2 < 2™ 2 2(1=m)2/3p—(N—m) < c Z 2-2/31/3 < c <c
N =0 m=—1 N =0 N
and
- _ 2V &y 2/3 /3
< — ) 2” 2” +1)2"7° < =<
2 N l=or§6 ;r 2 2 - N “

This completes the proof of Theorem 1. [J

Next, we prove Theorem 2. We use the counterexample function and the idea
given in [10, page 642], but we have to make the necessary changes. Let

Fal' ) i= (Dyair (x) — Do () (Dysi1 () — Dy (42)).

A simple calculation yields

~ 1, ifik=24 .. 2411,
fi (k) = .
0, otherwise,

and
Si'i/(f;xl,xz) =
(DF(x") = Dya (6)) (DX () = Dpa (%)), if i, j =24 +1,..,24H —1,
falx!,x?), ifi,j>24%1,

0, otherwise.



108 KAROLY NAGY

We have
Fi(',x%) = sup[San 0 (fasx! %) | = [ fa(x' o)
neN
and
1 £allonys = 11 £3 1123 = 274 9)

Proof of Theorem 2. We can write the nth Walsh-Kaczmarz-Dirichlet kernel in
the following form:

Dy (x) = Dyjay () + 11y (X)D_ (T (%))

Thus, we have for a non-decreasing function ¢ that

el 2
&5 fa (v, 22) :supw i[O (a3 X))
, nep (P(I’l) = 1120 <A (P(2A + 2t)
1 244211 L
>  max SK b x
112124 (2A +2t)(P(2A _|_2[) kg() k,k(fA )
1 244201 . 1 ) )
= max ——————— DY (T (AN rs (DY (T (x
112124 2A+1(p(2A+l) k:22A+1 A( ) k72/\( A( )) A( ) k,z/\( A( ))

1 t W 1 2
> 2A+1¢(2A+1)t:1212?22A2 Ky (Ta (x'), 7a (x7))].

By this and inequality (9) we obtain

3/2

6% fall2/3 c
HfA”Hm 7 2Ap(2A+T)2A Z:II<II22;1§2A(2t|K2V¥(TA(x1),TA(xz))|)2/3du(xl,x2)
| 112

Now, we decompose the set G as the following disjoint union
A-1
G=nuUJJ,
1=0

where JA ;= {x€G:x4_1,..;xas =0,x4_, 1 =1} for A>t>1and J) :={x€G:
xa_1 = 1}. Notice that 74 (J4) = L\l 1. It is easy to show that, for (x!',x*) € I, x I

@ -nE -1

Ky (x'x?) =
25 (X7, x%) 6

Therefore,

/G max (2'|K (2 (x'), 7 () )Y 2dp(x' 22)

xG 112124

A—1
>3 [ max REG), w0 du )

s I 11024
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A—1
>3
s=1 7 Us\Lsp 1) X (I\ L 41)
A—1
zc /
s=1 7 U\ L) X (I\ I 41)

>c(A-1).

@KS (2 du( )

(23s)2/3 du(xl,x2)

That is,

6% fall2/3 < c(A+1)3/2
Val, =~ o@D

for A big enough.

From now, the proof goes analogously as in the paper [10, page 644] we did. This

completes the proof of this theorem. [J
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