
Mathematical
Inequalities

& Applications

Volume 18, Number 1 (2015), 97–110 doi:10.7153/mia-18-06

THE MAXIMAL OPERATOR OF MARCINKIEWICZ–FEJÉR MEANS

WITH RESPECT TO WALSH–KACZMARZ–FOURIER SERIES

KÁROLY NAGY

(Communicated by Z. Ditzian)

Abstract. In the paper [4, Theorem 1] Gát, Goginava and the author proved that the maximal op-
erator σκ,∗ of Marcinkiewicz-Fejér means of Walsh-Kaczmarz-Fourier series, is bounded from
the dyadic Hardy space Hp into the space Lp for p > 2/3 . Moreover, Goginava and the author
showed that σκ,∗ is not bounded from the Hardy space H2/3 to the space L2/3 [6, Theorem 1].

The main aim of this paper is to show that the maximal operator σ̃κ,∗ f := supn∈P

|σκ
n f |

log3/2(n+1)
, is

bounded from the Hardy space H2/3 into the space L2/3. Moreover, we prove that the order of

deviant behavior of the n th Walsh-Kacmarz-Marcinkiewicz-Fejér mean is exactly log3/2(n+1)
in the endpoint p = 2/3 .

1. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [1, 11, Chapter
1]. Let P denote the set of positive integers, N := P∪ {0}. Denote Z2 the discrete
cyclic group of order 2, that is Z2 = {0,1}, where the group operation is the modulo
2 addition and every subset is open. The Haar measure on Z2 is given such that the
measure of a singleton is 1/2. Let G be the complete direct product of the countable
infinite copies of the compact groups Z2. The elements of G are sequences of the form
x = (x0,x1, ...,xk, ...) with coordinates xk ∈ {0,1}(k ∈ N) . The group operation on G
is the coordinate-wise addition, the measure (denoted by μ ) is the product measure and
the topology is the product topology. The compact Abelian group G is called the Walsh
group. A base for the neighbourhoods of G can be given in the following way:

I0 (x) := G, In (x) := In (x0, ...,xn−1) := {y ∈ G : y = (x0, ...,xn−1,yn,yn+1, ...)} ,

(x ∈ G,n ∈ N) . These sets are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote
the null element of G, and In := In (0) (n ∈ N) . Set en := (0, ...,0,1,0, ...)∈G, the n th
coordinate of which is 1 and the rest are zeros (n ∈ N) .

For k ∈ N and x ∈ G denote

rk (x) := (−1)xk
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the k th Rademacher function. If n ∈ N , then n =
∞
∑
i=0

ni2i can be written, where ni ∈
{0,1} (i ∈ N) , i. e. n is expressed in the number system of base 2. Denote the order
of n by |n| := max{ j ∈ N :n j �= 0} , that is 2|n| � n < 2|n|+1.

The Walsh-Paley system is defined as the product system of Rademacher func-
tions:

wn (x) :=
∞

∏
k=0

(rk (x))nk = r|n| (x) (−1)

|n|−1
∑

k=0
nkxk

(x ∈ G,n ∈ P) .

The Walsh-Kaczmarz functions are defined by κ0 = 1 and for n � 1

κn(x) := r|n|(x)
|n|−1

∏
k=0

(r|n|−1−k(x))
nk = r|n|(x)(−1)∑|n|−1

k=0 nkx|n|−1−k .

The set of Walsh-Kaczmarz functions and the set of Walsh-Paley functions is the same
in dyadic blocks. Namely,

{κn : 2k � n < 2k+1} = {wn : 2k � n < 2k+1}

for all k ∈ P and κ0 = w0.
V. A. Skvortsov (see [14, page 142]) gave a relation between the Walsh-Kaczmarz

functions and the Walsh-Paley functions by the help of the transformation τA : G → G
defined by

τA(x) := (xA−1,xA−2, ...,x1,x0,xA,xA+1, ...)

for A ∈ N. By the definition of τA , we have

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N,x ∈ G).

The Dirichlet kernels and the Fejér kernels are defined by

Dα
n :=

n−1

∑
k=0

αk, Kα
n (x) :=

1
n

n−1

∑
k=0

Dα
k (x),

where αn = wn (for all n ∈ P) or κn (for all n ∈ P), Dα
0 := 0. The 2n th Dirichlet

kernels have a closed form (see e.g. [11, page 7])

Dw
2n(x) = Dκ

2n(x) = D2n(x) =

{
0, if x �∈ In,

2n, if x ∈ In.
(1)

The σ -algebra generated by the 2-dimensional cube of measure 2−2k will be de-

noted by Fk (k ∈ N) . Denote by f =
(

f (n),n ∈ N

)
the one-parameter martingale with

respect to (Fn,n ∈ N) (for details see, e. g. [17, 18, Chapter 1]). The maximal function

of a martingale f is defined by f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ . For 0 < p < ∞ the Hardy martingale

space Hp(G2) consists of all martingales for which ‖ f‖Hp
:= ‖ f ∗‖p < ∞.
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The Kronecker product (αn,m : n,m ∈ N) of two Walsh-(Kaczmarz) system is said
to be the two-dimensional Walsh-(Kaczmarz) system. That is,

αn,m(x1,x2) = αn(x1)αm(x2).

If f ∈ L
(
G2
)
, then the number f̂ α (n,m) :=

∫
G2

fαn,m (n,m ∈ N) is said to be

the (n,m) th Walsh-(Kaczmarz)-Fourier coefficient of f . We can extend this definition
to martingales in the usual way (see Weisz [17, 18, Chapter 1]). Denote by Sα

n,m the
(n,m) th rectangular partial sum of the Walsh-(Kaczmarz)-Fourier series of a martingale
f . Namely,

Sα
n,m( f ;x1,x2) :=

n−1

∑
k=0

m−1

∑
i=0

f̂ α (k, i)αk,i(x1,x2).

The Marcinkiewicz-Fejér means of a martingale f are defined by

σα
n

(
f ;x1,x2) :=

1
n

n−1

∑
k=0

Sα
k,k( f ;x1,x2).

The two-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are de-
fined by

Dα
k,l(x

1,x2) := Dα
k (x1)Dα

l (x2), Kα
n (x1,x2) :=

1
n

n−1

∑
k=0

Dα
k,k(x

1,x2).

The n th Marcinkiewicz-Fejér kernel has got a decomposition

nKκ
n

(
x1,x2) = 1+

|n|−1

∑
j=0

2 jD2 j ,2 j

(
x1,x2)+ |n|−1

∑
j=0

2 jD2 j

(
x1)r j

(
x2)Kw

2 j

(
τ j
(
x2))

+
|n|−1

∑
j=0

2 jD2 j

(
x2)r j

(
x1)Kw

2 j

(
τ j
(
x1))

+
|n|−1

∑
j=0

2 jr j
(
x1 + x2)Kw

2 j

(
τ j
(
x1) ,τ j

(
x2)) (2)

+(n−2|n|)(D2|n|,2|n|(x
1,x2)+D2|n|(x

1)r|n|(x2)Kw
n−2|n|(τ|n|(x

2))

+D2|n|(x
2)r|n|(x1)Kw

n−2|n|(τ|n|(x
1))

+r|n|(x1 + x2)Kw
n−2|n|(τ|n|(x

1),τ|n|(x2)))

for
(
x1,x2

) ∈ G2 (see [9, Lemma 2.1]).
For the martingale f we consider the maximal operators

σκ ,∗ f (x1,x2) = sup
n∈P

|σκ
n ( f ;x1,x2)|, σ̃ κ ,∗ f (x1,x2) = sup

n∈P

|σκ
n ( f ;x1,x2)|

log3/2(n+1)
.



100 KÁROLY NAGY

In 1948 Šneider [15, page 184] introduced the Walsh-Kaczmarz system and showed
that the inequality

limsup
n→∞

Dκ
n (x)

logn
� C > 0

holds a.e. In 1974 Schipp [12, Corollary 3] and Young [16, page 354] proved that the
Walsh-Kaczmarz system is a convergence system. Skvortsov in 1981 [14, Theorem
2] showed that the Fejér means with respect to the Walsh-Kaczmarz system converge
uniformly to f for any continuous functions f . Gát [2, Theorem 1] proved for any
integrable functions, that the Fejér means with respect to the Walsh-Kaczmarz system
converge almost everywhere to the function. He showed that the maximal operator
σκ ,∗ of Walsh-Kaczmarz-Fejér means is of weak type (1,1) and of type (p, p) for all
1 < p � ∞ . Gát’s result was generalized by Simon [13, Theorem 1], who showed that
the maximal operator σκ ,∗ is of type (Hp,Lp) for p > 1/2.

In the endpoint case p = 1/2 Goginava [5, Theorem 2] proved that the maximal
operator σκ ,∗ is not of type (H1/2,L1/2) and Weisz [19, Theorem 5, page 162] showed
that the maximal operator is of weak type (H1/2,L1/2) .

In the paper [7, Theorem 3.1, Theorem 3.2] Goginava and the author proved that
the maximal operator σ̃ κ ,∗ defined by

σ̃ κ ,∗ := sup
n∈P

|σκ
n f |

log2(n+1)

is bounded from the Hardy space H1/2 to the space L1/2. It was also proved that for
any non-decreasing function ϕ : P → [1,∞) satisfying the condition

lim
n→∞

log2(n+1)
ϕ(n)

= +∞ (3)

then the maximal operator supn∈P

|σ κ
n f |

ϕ(n) is not bounded from the Hardy space H1/2

to the space L1/2 . In other words the order of deviant behaviour of the n th Walsh-
Kaczmarz-Fejér mean is exactly log2(n+1) in our special sense.

In 1939 for the two-dimensional trigonometric Fourier partial sums S j, j ( f ) Mar-
cinkiewicz [8] has proved for f ∈ L logL([0,2π ]2) that the means

σn f =
1
n

n

∑
j=1

S j, j ( f )

converge a.e. to f as n → ∞ . Zhizhiashvili [21, page 1116] improved this result for
f ∈ L([0,2π ]2). We mention that the result of Marcinkiewicz and Zhizhiashvili and the
boundedness of the maximal operator from Hp to Lp (2/3 < p < ∞) was proved by
Weisz for Walsh-Fourier series [20, Theorem 3].

In [4, Theorem 1] it was proved that the maximal operator

σκ ,∗ f := sup
n∈P

|σκ
n f | = sup

n∈P

1
n

∣∣∣∣∣n−1

∑
j=0

Sκ
j, j f

∣∣∣∣∣
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is bounded from the Hardy space Hp to the space Lp for p > 2/3.
In the paper [6, Theorem 1] Goginava and the author showed that, σκ ,∗ f is not

bounded from the Hardy space H2/3 to the space L2/3 .
The main aim of this paper is to investigate that what does happen in the endpoint

p = 2/3. We show that the maximal operator σ̃ κ ,∗ f := supn∈P

|σ κ
n f |

log3/2(n+1)
, is bounded

from the Hardy space H2/3 into the space L2/3. Moreover, we prove that for any non-
decreasing function ϕ : P → [1,∞) satisfying the analogue of condition (3), that is

lim
n→∞

log3/2(n+1)
ϕ(n)

= +∞ (4)

then the maximal operator supA∈P

|σ κ
n f |

ϕ(n) is not bounded from the Hardy space H2/3

to the space L2/3 . That is, the order of deviant behaviour of the n th Walsh-Kacmarz-

Marcinkiewicz-Fejér mean is exactly log3/2(n+1) in the endpoint case p = 2/3. Ana-
logue of this result for Walsh-Marcinkiewicz-Fejér mean is given in [10, Theorem 1,
Theorem 2].

2. Auxiliary propositions and main results

First, we formulate our main theorems.

THEOREM 1. The maximal operator σ̃ κ ,∗ is bounded from the Hardy space H2/3
to the space L2/3.

THEOREM 2. Let ϕ : P → [1,∞) be a non-decreasing function satisfying the con-
dition (4). Then the maximal operator

sup
n∈P

|σκ
n f |

ϕ(n)

is not bounded from the Hardy space H2/3 to the space L2/3.

To prove our Theorem 1 we need the following Lemmas [3, page 480–482], [4,
Lemma 8, 9, 10]:

LEMMA 1. (Gát, Goginava, Nagy ([3], page 481)) Let x ∈ IN(x0, ...,xl−1,xl = 1,
0, ...,0) and j > N . Then∫

IN
Kw

2 j (τ j(x+ t))dμ(t) � c
2l 1IN (0,...,0,xl=1,0,...,0)(x).

LEMMA 2. (Gát, Goginava, Nagy ([4], Lemma 8)) Let n < 2A+1 , A > N and x ∈
IN(x0, ...,xm = 1,0, ...,0,xl = 1,0, ...,0), l = 0, ...,N−1 , m = −1,0, ..., l. Then∫

IN

n |Kw
n (τA (x+ t))|dμ(t) � c

2A

2m+l ,
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where

IN (x0, ...,xm = 1,0, ...,0,xl = 1,0, ...,0)
:= IN (0, ...,0,xl = 1,0, ...,0) , for m = −1.

LEMMA 3. (Gát, Goginava, Nagy ([3], page 480)) Let x1 ∈ IN(x1
0, ...,x

1
s−1,x

1
s = 1,

0, ...,0) and x2 ∈ IN(x2
0, ...,x

2
l−1,x

2
l = 1,0, ...,0) for 0 � s � l < N. Then for j > N we

have ∫
IN×IN

Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))
dμ(t1, t2)

� c
l

∑
m=s

2−l−m1IN(x1
0,,...,x1

s−1,x
1
s =1,0,...,0,x2

m=1,0,...,0,x2
l =1,0,...,0)(x

2).

LEMMA 4. (Gát, Goginava, Nagy ([3], page 482)) Let
(
x1,x2

) ∈ IN × IN(x2
0, ...,

x2
l−1,x

2
l = 1,0, ...,0), l = 0, ...,N−1 . Then for j > N we have∫

IN×IN

Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))
dμ(t1, t2)

� c
l

∑
s=0

2−l−s1IN(0,...,0,x2
s =1,0,...,0,x2

l =1,0...,0)
(
x2) .

LEMMA 5. (Gát, Goginava, Nagy ([4], Lemma 9)) Let (x1,x2) ∈ IN(x1
0, ...,x

1
m1 =

1,0, ...,0)× IN(x2
0, ...,x

2
m2 = 1,0, ...,0), m1 � m2 , A > N and n < 2A+1. Then∫

IN×IN

n
∣∣Kw

n

(
τA
(
x1 + t1

)
,τA
(
x2 + t2

))∣∣dμ(t1,t2)

� c

⎧⎨⎩m1−1

∑
r=0

m2

∑
q2=m1

2A

2m2+q2+r
1

IN

(
x2
0,...,x2

r ,x
1
r+1,...,x1

m1−1
,x2

m1 ,0,...,0,x2
q2=1,0,...,0,x2

m2=1,0,...,0

)(x2)

+
m2−1

∑
r=m1

2A

2m1+m2+r

m2

∑
q2=r

1
IN

(
x2
0,...,x2

r ,0,...,0,x2
q2=1,0...,0,x2

m2=1,0,...,0

)(x2)⎫⎬⎭ .

LEMMA 6. (Gát, Goginava, Nagy ([4], Lemma 10)) Let (x1,x2) ∈ IN(0, ...,0) ×
IN(x2

0, ...,x
2
m2 = 1,0, ...,0), A > N and n < 2A+1. Then∫

IN×IN

n
∣∣Kw

n

(
τA
(
x1 + t1

)
,τA
(
x2 + t2

))∣∣dt1dt2

� c

⎧⎨⎩ m2

∑
r=0

2A

2m2+r

m2

∑
q2=r

1
IN

(
x2
0,...,x

2
r ,0,...,0,x2

q2=1,0...,0,x2
m2=1,0,...,0

) (x2)⎫⎬⎭ .
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A bounded measurable function a is a p -atom, if there exists a dyadic two-
dimensional cube I2 , such that

a)
∫
I2 adμ = 0,

b) ‖a‖∞ � μ(I2)−1/p ,

c) suppa ⊆ I2 .

The operator T is said to be p -quasi-local, if there exists a constant cp such that∫
I2
|Ta|pdμ � cp < ∞ (5)

for every p -atom a , where the dyadic cube I2 is the support of the p -atom a .

LEMMA 7. (Weisz ([18], Theorem 1.34)) Suppose that the operator T is sub-linear
and p-quasi-local for any 0 < p � 1 . If T is bounded from L∞ to L∞ , then

‖T f‖p � cp‖ f‖Hp for all f ∈ Hp.

3. Proofs of the theorems

First, we prove Theorem 1.

Proof of Theorem 1. By the help of Lemma 7 we prove that the operator σ̃ κ ,∗
is of type (H2/3,L2/3) . The boundedness from the space L∞ to the space L∞ follows
from the inequality

‖Kκ
n ‖1 � c

for all n ∈ N (see [4, Corollary 3]). The proof will be complete, if we show that the
maximal operator σ̃ κ ,∗ is 2/3-quasi-local (see inequality (5)).

Let a be an arbitrary 2/3-atom with suppa = I2 , and μ(I2) = 2−2N . Without loss
of generality, we may assume that I2 := IN × IN .

It is simple to see that σκ
n a = 0 if n � 2N . Therefore, we suppose that n > 2N .

We write that∫
I2N

|σ̃ κ ,∗a|2/3dμ =
∫

IN×IN
|σ̃ κ ,∗a|2/3dμ +

∫
IN×IN

|σ̃ κ ,∗a|2/3dμ +
∫
IN×IN

|σ̃ κ ,∗a|2/3dμ

=: I1 + I2 + I3.

By equality (2) and the property a) of an 2/3-atom for any (x1,x2) ∈ I2
N we have

that

nσκ
n a(x1,x2) =

∫
I2N

a(t1,t2)

( |n|−1

∑
j=N+1

2 jD2 j

(
x1 + t1

)
r j
(
x2 + t2

)
Kw

2 j

(
τ j
(
x2 + t2

))
+

|n|−1

∑
j=N+1

2 jD2 j

(
x2 + t2

)
r j
(
x1 + t1

)
Kw

2 j

(
τ j
(
x1 + t1

))
+

|n|−1

∑
j=N+1

2 jr j
(
x1 + t1 + x2 + t2

)
Kw

2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))
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+(n−2|n|)D2|n|(x
1 + t1)r|n|(x2 + t2)Kw

n−2|n|(τ|n|(x
2 + t2))

+ (n−2|n|)D2|n|(x
2 + t2)r|n|(x1 + t1)Kw

n−2|n|(τ|n|(x
1 + t1))

+ (n−2|n|)r|n|(x1 + t1 + x2 + t2)Kw
n−2|n|(τ|n|(x

1 + t1),τ|n|(x2 + t2))

⎞⎠dμ(t1,t2)

=: L1
na(x1,x2)+L2

na(x1,x2)+L3
na(x1,x2)+L4

na(x1,x2)+L5
na(x1,x2)+L6

na(x1,x2).

First, we discuss the integral I3 . On the set IN × IN we have that L1
na = L2

na =
L4

na = L5
na = 0. Thus, we write that

σκ
n a(x1,x2) =

L3
na(x1,x2)

n
+

L6
na(x1,x2)

n
.

For a 2/3-atom a we have that

‖a‖∞ � 23N . (6)

This yields

I3 � c22N

N

∫
IN×IN

(
sup
n>2N

1
n

|n|−1

∑
j=N+1

2 j
∫

I2N

∣∣Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))∣∣dμ(t1,t2)

+ sup
n>2N

n−2|n|

n

∫
I2N

∣∣∣Kw
n−2|n|

(
τ|n|
(
x1 + t1

)
,τ|n|

(
x2 + t2

))∣∣∣dμ(t1,t2)

)2/3

dμ(x1,x2)

Now, we decompose the set IN in the following way

IN =
N−1⋃
s=0

Js
N , (7)

where Js
N := IN(x0,x1, ...,xs−1,xs = 1,0, ...,0). By this, we get that

I3 � c22N

N

N−1

∑
l=0

l

∑
s=0

∫
Js
N×Jl

N

(
sup
n>2N

1
n

|n|−1

∑
j=N+1

2 j
∫

I2N

∣∣Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))∣∣dμ(t1,t2)

+ sup
n>2N

n−2|n|

n

∫
I2N

∣∣∣Kw
n−2|n|

(
τ|n|
(
x1 + t1

)
,τ|n|

(
x2 + t2

))∣∣∣dμ(t1,t2)

)2/3

dμ(x1,x2)

+
c22N

N

N−1

∑
l=0

N−1

∑
s=l+1

∫
Js
N×Jl

N

(
sup
n>2N

1
n

|n|−1

∑
j=N+1

2 j
∫

I2N

∣∣Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))∣∣dμ(t1,t2)

+ sup
n>2N

n−2|n|

n

∫
I2N

∣∣∣Kw
n−2|n|

(
τ|n|
(
x1 + t1

)
,τ|n|

(
x2 + t2

))∣∣∣dμ(t1,t2)

)2/3

dμ(x1,x2)

=: I1
3 + I2

3 .
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We investigate I1
3 ( I2

3 can be discussed analogously). Using Lemma 3, Lemma 5
and the inequality (

∞

∑
k=0

ak

)p

�
∞

∑
k=0

ap
k (ak � 0, 0 < p � 1) (8)

we immediately get that

I1
3 � c22N

N

N−1

∑
l=0

l

∑
s=0

∫
Js
N×Jl

N

(
l

∑
m=s

2−l−m1IN(x1
0,,...,x1

s−1,x
1
s =1,0,...,0,x2

m=1,0,...,0,x2
l =1,0,...,0)(x

2)

+
s−1

∑
r=0

l

∑
q2=s

2−l−q2−r1IN (x2
0,...,x

2
r ,x1

r+1,...,x
1
s−1,x2

s ,0,...,0,x2
q2=1,0,...,0,x2

l =1,0,...,0)(x
2)

+
l−1

∑
r=s

2−s−l−r
l

∑
q2=r

1IN(x2
0,...,x2

r ,0,...,0,x2
q2=1,0,...,0,x2

l =1,0,...,0)(x
2)

)2/3

dμ(x1,x2)

� c22N

N

N−1

∑
l=0

l

∑
s=0

∫
Js
N×Jl

N

(
l

∑
m=s

2(−l−m)2/31IN(x1
0,,...,x

1
s−1,x1

s =1,0,...,0,x2
m=1,0,...,0,x2

l =1,0,...,0)(x
2)

+
s−1

∑
r=0

l

∑
q2=s

2(−l−q2−r)2/31IN (x2
0,...,x

2
r ,x

1
r+1,...,x1

s−1,x2
s ,0,...,0,x2

q2=1,0,...,0,x2
l =1,0,...,0)(x

2)

+
l−1

∑
r=s

2(−s−l−r)2/3
l

∑
q2=r

1IN (x2
0,...,x

2
r ,0,...,0,x2

q2=1,0,...,0,x2
l =1,0,...,0)(x

2)

)
dμ(x1,x2)

=: ∑
1

+∑
2

+∑
3

.

We discuss ∑
1
.

∑
1

� c22N

N

N−1

∑
l=0

l

∑
s=0

1

∑
x1
0=0

· · ·
1

∑
x1
s−1=0

l

∑
m=s

×

×
∫
IN (x1

0,...,x
1
s−1,x

1
s =1,0,...,0)×IN (x1

0,...,x
1
s−1,x1

s =1,0,...,0,x2
m=1,0,...,0,x2

l =1,0,...,0)
2

−2l−2m
3 dμ(x1,x2)

� c22N

N

N−1

∑
l=0

2−2l/3
l

∑
s=0

2s2−2s/32−2N � c
N

N

∑
l=0

2−2l/32l/3 � c.

Analogously,

∑
2

� c22N

N

N−1

∑
l=0

2−2l/3
l

∑
s=0

s−1

∑
r=0

2−2r/3
l

∑
q2=s

2−2q2/32−(N−s)2−(N−r)

� c
N

N−1

∑
l=0

2−2l/322l/3 � c
N

N � c.
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Now, ∑
3

follows.

∑
3

� c22N

N

N−1

∑
l=0

2−2l/3
l

∑
s=0

2−2s/3
l−1

∑
r=s

2−2r/3
l

∑
q2=r

2−(N−s)2−(N−r)

� c
N

N−1

∑
l=0

2−2l/322l/3 � c
N

N � c.

Second, we discuss the integral I1 (the discussion of I2 goes similarly). On the set
IN × IN we have that L2

na = L5
na = 0. That is,

σκ
n a(x1,x2) =

L1
na(x1,x2)

n
+

L3
na(x1,x2)

n
+

L4
na(x1,x2)

n
+

L6
na(x1,x2)

n
.

Moreover, by inequality (6), decomposition (7), Lemma 1, 2, 4 and 6 we have that

I1 � c22N

N

N−1

∑
l=0

∫
IN×Jl

N

(
sup
n>2N

1
n

|n|−1

∑
j=N+1

2 j
∫

IN
Kw

2 j

(
τ j
(
x2 + t2

))
dμ(t2)

+ sup
n>2N

1
n

|n|−1

∑
j=N+1

2 j
∫

I2N

Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))
dμ(t1,t2)

+ sup
n>2N

n−2|n|

n

∫
IN
|Kw

n−2|n|
(
τ|n|
(
x2 + t2

)) |dμ(t2)

+ sup
n>2N

n−2|n|

n

∫
I2N

|Kw
n−2|n|

(
τ|n|
(
x1 + t1

)
,τ|n|

(
x2 + t2

)) |dμ(t1,t2)

)2/3

dμ(x1,x2)

� c22N

N

N−1

∑
l=0

∫
IN×Jl

N

(
sup
n>2N

1
n

|n|−1

∑
j=N+1

2 j−l1IN(0,...,0,x2
l =1,0,...,0)(x

2)

+ sup
n>2N

1
n

|n|−1

∑
j=N+1

2 j
l

∑
s=0

2−l−s1IN (0,...,0,x2
s =1,0,...,0,x2

l =1,0,...,0)(x
2)

+ sup
n>2N

1
n

l

∑
m=−1

2|n|

2l+m 1IN (x2
0,...,x

2
m−1,x

2
m=1,0,...,0,x2

l =1,0,...,0)(x
2)

+ sup
n>2N

1
n

l

∑
r=0

2|n|

2l+r

l

∑
q2=r

1IN(x2
0,...,x2

r ,0,...,0,x2
q2=1,0,...,0,x2

l =1,0,...,0)(x
2)

)2/3

dμ(x1,x2)

A simple consideration and inequality (8) yield that
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I1 � c2N

N

N−1

∑
l=0

2−2l/3
∫

Jl
N

1IN (0,...,0,x2
l =1,0,...,0)(x

2)dμ(x2)

+
c2N

N

N−1

∑
l=0

l

∑
s=0

2(−l−s)2/3
∫

Jl
N

1IN (0,...,0,x2
s =1,0,...,0,x2

l =1,0,...,0)(x
2)dμ(x2)

+
c2N

N

N−1

∑
l=0

l

∑
m=−1

2(−l−m)2/3
∫

Jl
N

1IN(x2
0,...,x2

m−1,x
2
m=1,0,...,0,x2

l =1,0,...,0)(x
2)dμ(x2)

+
c2N

N

N−1

∑
l=0

l

∑
r=0

2(−l−r)2/3
l

∑
q2=r

∫
Jl
N

1IN (x2
0,...,x

2
r ,0,...,0,x2

q2=1,0,...,0,x2
l =1,0,...,0)(x

2)dμ(x2)

=:
1

∑+
2

∑+
3

∑+
4

∑ .

Thus,
1

∑ � c2N

N

N−1

∑
l=0

2−2l/32−N � c
N

� c,

2

∑ � c2N

N

N−1

∑
l=0

l

∑
s=0

2(−l−s)2/32−N � c
N

� c,

3

∑ � c2N

N

N−1

∑
l=0

l

∑
m=−1

2(−l−m)2/32−(N−m) � c
N

N−1

∑
l=0

2−2l/32l/3 � c
N

� c

and

4

∑ � c2N

N

N−1

∑
l=0

l

∑
r=0

2(−l−r)2/3
l

∑
q2=r

2−(N−r) � c
N

N−1

∑
l=0

2−2l/3
l

∑
r=0

(l− r+1)2r/3 � c
N

� c.

This completes the proof of Theorem 1. �
Next, we prove Theorem 2. We use the counterexample function and the idea

given in [10, page 642], but we have to make the necessary changes. Let

fA(x1,x2) := (D2A+1(x1)−D2A(x1))(D2A+1(x2)−D2A(x2)).

A simple calculation yields

f̂ κ
A (i,k) =

{
1, if i,k = 2A, ...,2A+1−1,

0, otherwise,

and
Sκ

i, j( f ;x1,x2) =⎧⎪⎨⎪⎩
(Dκ

i (x1)−D2A(x1))(Dκ
j (x

2)−D2A(x2)), if i, j = 2A +1, ...,2A+1−1,

fA(x1,x2), if i, j � 2A+1,

0, otherwise.
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We have
f ∗A(x1,x2) = sup

n∈N

|S2n,2n( fA;x1,x2)| = | fA(x1,x2)|

and
‖ fA‖H2/3

= ‖ f ∗A‖2/3 = c2−A. (9)

Proof of Theorem 2. We can write the n th Walsh-Kaczmarz-Dirichlet kernel in
the following form:

Dκ
n (x) = D2|n|(x)+ r|n|(x)Dw

n−2|n|(τ|n|(x)).

Thus, we have for a non-decreasing function ϕ that

σ̃ κ ,∗ fA(x1,x2) = sup
n∈P

|σκ
n ( fA;x1,x2)|

ϕ(n)
� max

t:1�2t�2A

|σκ
2A+2t ( fA;x1,x2)|

ϕ(2A +2t)

� max
t:1�2t�2A

1
(2A +2t)ϕ(2A +2t)

∣∣∣∣∣2
A+2t−1

∑
k=0

Sκ
k,k( fA;x1,x2)

∣∣∣∣∣
= max

t:1�2t�2A

1
2A+1ϕ(2A+1)

∣∣∣∣∣2
A+2t−1

∑
k=2A+1

rA(x1)Dw
k−2A(τA(x1))rA(x2)Dw

k−2A(τA(x2))

∣∣∣∣∣
� 1

2A+1ϕ(2A+1)
max

t:1�2t�2A
2t |Kw

2t (τA(x1),τA(x2))|.

By this and inequality (9) we obtain

‖σ̃ κ ,∗ fA‖2/3

‖ fA‖H2/3

� c
2Aϕ(2A+1)2−A

⎛⎝∫
G2

max
t:1�2t�2A

(2t |Kw
2t (τA(x1),τA(x2))|)2/3dμ(x1,x2)

⎞⎠3/2

.

Now, we decompose the set G as the following disjoint union

G = IA ∪
A−1⋃
t=0

JA
t ,

where JA
t := {x ∈ G : xA−1, ...,xA−t = 0,xA−t−1 = 1} for A > t � 1 and JA

0 := {x ∈ G :
xA−1 = 1} . Notice that τA(JA

t ) = It\It+1. It is easy to show that, for (x1,x2) ∈ Is× Is

Kw
2s(x1,x2) =

(2s−1)(2s+1−1)
6

.

Therefore,∫
G×G

max
t:1�2t�2A

(2t |Kw
2t (τA(x1),τA(x2))|)2/3dμ(x1,x2)

�
A−1

∑
s=1

∫
JA
s ×JA

s

max
t:1�2t�2A

(2tKw
2t (τA(x1),τA(x2)))2/3dμ(x1,x2)
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�
A−1

∑
s=1

∫
(Is\Is+1)×(Is\Is+1)

(2sKw
2s(x1,x2))2/3dμ(x1,x2)

� c
A−1

∑
s=1

∫
(Is\Is+1)×(Is\Is+1)

(
23s)2/3

dμ(x1,x2)

� c(A−1).

That is,
‖σ̃ κ ,∗ fA‖2/3

‖ fA‖H2/3

� c(A+1)3/2

ϕ(2A+1)

for A big enough.
From now, the proof goes analogously as in the paper [10, page 644] we did. This

completes the proof of this theorem. �
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[13] P. SIMON, On the Cesàro summability with respect to the Walsh-Kaczmarz system, J. Approx. Theory
106 (2000), 249–261.

[14] V. A. SKVORTSOV, On Fourier series with respect to the Walsh-Kaczmarz system, Anal. Math. 7
(1981), 141–150.

[15] A. A. ŠNEIDER, On series with respect to the Walsh functions with monotone coefficients, Izv. Akad.
Nauk SSSR Ser. Math. 12 (1948), 179–192.

[16] W. S. YOUNG, On the a.e convergence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc. 44
(1974), 353–358.
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