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(Communicated by I. Perić)

Abstract. Motivated by some recent results, in this article we derive several Hilbert-type inequal-
ities with a differential operator, regarding a general homogeneous kernel. Moreover, we show
that the constants appearing on the right-hand sides of these inequalities are the best possible.
The general results are then applied to some particular examples of homogeneous kernels and
compared with previously known from the literature.

1. Introduction

Although classical, the famous Hilbert inequality (see [6]) is still of interest to
numerous authors. Recently, Azar [2], obtained a new form of this inequality including
a differential operator. In order to state that result and summarize our further discussion,
we start by giving some notation. We denote by Dn

+ , n � 0, a differential operator
defined by Dn

+ f (x) = f (n)(x) , where f (n) stands for the n -th derivative of a function
f : R+ → R . In addition, throughout this article, Λn

+ denotes the set of non-negative
measurable functions f : R+ → R such that f (n) exists a.e. on R+ , f (n)(x) > 0, a.e.
on R+ , and f (k)(0) = 0, k = 0,1,2, . . . ,n−1.

Now, the above mentioned form of the Hilbert inequality obtained in [2] reads as
follows: Let p and q be non-negative mutually conjugate parameters, i.e. 1

p + 1
q = 1,

p > 1, let λ > nmax{p,q} , and let A =
Γ( λ

p −n)Γ( λ
q −n)

Γ(λ ) , where Γ is a usual Gamma
function. Then the inequality

∫
R+

∫
R+

f (x)g(y)
(x+ y)λ dxdy

<A

[∫
R+

xp(n+1)−λ−1(
Dn

+ f (x)
)p

dx

] 1
p
[∫

R+
yq(n+1)−λ−1(

Dn
+g(y)

)q
dy

] 1
q

(1)

holds for all f ,g ∈ Λn
+ , provided that the integrals on its right-hand side converge. In

addition, the constant A is the best possible in the sense that it can not be replaced
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with a smaller constant so that (1) still holds for all f ,g ∈ Λn
+ . The above inequality

may be regarded as a generalization of a classical Hilbert inequality since for n = 0,
p = q = 2, and λ = 1, we obtain the non-weighted inequality with the previously
known sharp constant A = π (for more details, see [6]).

The main objective of this paper is to extend inequality (1) to hold for a general
homogeneous function. Recall that a function Kλ : R

2
+ → R is said to be homogeneous

of degree −λ , λ > 0, if Kλ (tx,ty) = t−λ Kλ (x,y) for every x,y,t ∈ R+ . In addition,
for such homogeneous function we define the constant k(α) as

k(α) =
∫

R+
Kλ (1,t)tαdt,

provided that the above integral converges for −1 < α < λ −1.
In this regard, Perić and Vuković [10], obtained the following pair of equivalent

Hilbert-type inequalities: Assume that 1
p + 1

q = 1, p > 1, Kλ : R
2
+ → R is a homoge-

neous function of degree −λ , λ > 0, and let α1,α2 ∈ (−1,λ −1) be real parameters
such that α1 + α2 = λ −2. Then the inequalities∫

R+

∫
R+

Kλ (x,y) f (x)g(y)dxdy

<k(α2)
[∫

R+
x−pα1−1 f p(x)dx

] 1
p
[∫

R+
y−qα2−1gq(y)dy

] 1
q

(2)

and [∫
R+

y(p−1)(1+qα2)
(∫

R+
Kλ (x,y) f (x)dx

)p

dy

] 1
p

<k(α2)
[∫

R+
x−pα1−1 f p(x)dx

] 1
p

(3)

hold for all measurable, a.e. positive functions f and g , provided that the integrals
on the right-hand sides of these relations converge. In addition, the constant k(α2)
is the best possible in both inequalities (see also [8]). The equivalence means that
one inequality implies the other and vice versa (for more details, see [7] and [10]).
Inequalities (2) and (3) will be an important tool in our extension of relation (1) to a
homogeneous case.

Moreover, in contrast to the technique of proving in [2], our generalization will
be established by virtue of another famous inequality, that is, the Hardy inequality. In
1928, Hardy [5], proved an estimate for the integration operator (or the Hardy operator)

H f (x) =
∫ x

0
f (t)dt,

from which the first weighted modification of the Hardy inequality followed, namely
the inequality ∫

R+
x−r (H f (x))p dx <

(
p

r−1

)p ∫
R+

xp−r f p(x)dx, (4)
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valid with p > 1, r > 1, 0 <
∫
R+

xp−r f p(x)dx < ∞ , where the constant
( p

r−1

)p is the
best possible (for more details, see [6], Theorem 330, and [9]).

The paper is divided into three sections as follows: After this Introduction, in Sec-
tion 2 we derive extensions of inequalities (2) and (3), in view of relation (1). More-
over, we also derive dual forms of these inequalities, based on the application of a dual
Hardy inequality. It is interesting that the constants appearing in these inequalities are
also expressed in terms of the Gamma function. In addition, we show that these con-
stants remain the best possible. Furthermore, in Section 3 we consider our main results
in some particular settings and compare them with some previously known from the
literature.

Techniques that will be used in the proofs are mainly based on classical real anal-
ysis. Moreover, by Γ(·) we denote the usual Gamma function defined by

Γ(a) =
∫ ∞

0
ta−1e−t dt, a > 0.

Finally, if nothing else is explicitly stated, all integrals in this paper are assumed to
converge.

2. Main results

In this section, we give our main results, especially the extension of inequality (1)
for the case of an arbitrary homogeneous kernel. The corresponding inequalities will
be given in both equivalent forms, as (2) and (3).

In contrast to the proof of inequality (1) (see [2]), the following inequalities will
be carried out by virtue of the Hardy inequality (4). Moreover, we shall also derive
appropriate complementary relations, based on the application of the so-called dual
Hardy inequality.

It is interesting that the constants appearing in our extended inequalities are also
expressed in terms of the Gamma function. Therefore, it is necessary to introduce the
concept of rising and falling factorial powers.

The rising factorial power xn , where n is a non-negative integer, also known as a
Pochhammer symbol, is defined by

xn = x(x+1)(x+2) · · ·(x+n−1),

while the falling factorial power xn is given by

xn = x(x−1)(x−2) · · ·(x−n+1).

The rising and falling factorial powers may be expressed in terms of the usual Gamma
function, i.e.

xn =
Γ(x+n)

Γ(x)
and xn =

Γ(x+1)
Γ(x−n+1)

.

It should be noticed here that the above relations hold for complex arguments of the
Gamma function which are not negative integers (for more details, see e.g. [1] or [4]).

Now, we are ready to state and prove our main result which is an extension of
inequality (1).
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THEOREM 1. Let 1
p + 1

q = 1 , p > 1 , and let α1 , α2 be real parameters such that
α1,α2 ∈ (n− 1,λ − 1) and α1 + α2 = λ − 2 , where n is a fixed non-negative integer
and λ > n. If Kλ : R

2
+ → R is a non-negative measurable homogeneous function of

degree −λ , then the inequalities∫
R+

∫
R+

Kλ (x,y) f (x)g(y)dxdy

<M

[∫
R+

xp(n−α1)−1 (
Dn

+ f (x)
)p

dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
+g(y)

)q
dy

] 1
q

(5)

and [∫
R+

y(p−1)(1+qα2)
(∫

R+
Kλ (x,y) f (x)dx

)p

dy

] 1
p

<m

[∫
R+

xp(n−α1)−1 (
Dn

+ f (x)
)p

dx

] 1
p

(6)

hold for all non-negative functions f ,g ∈ Λn
+.

In addition, the constants M = k(α2)
Γ(α1−n+1)Γ(α2−n+1)

Γ(α1+1)Γ(α2+1) and m = k(α2)
Γ(α1−n+1)

Γ(α1+1)
are the best possible in the corresponding inequalities.

Proof. Obviously, if n = 0 inequalities (5) and (6) become respectively (2) and
(3). Now, our first step is to rewrite the right-hand side of inequality (2) in a form that
is more suitable for the application of the Hardy inequality. Namely, since

H (D+ f )(x) =
∫ x

0
f ′(t)dt = f (x)− f (0) = f (x),

we have that

k(α2)
[∫

R+
x−pα1−1 f p(x)dx

] 1
p
[∫

R+
y−qα2−1gq(y)dy

] 1
q

=k(α2)
[∫

R+
x−(pα1+1)(H (D+ f )(x))pdx

] 1
p

×
[∫

R+
y−(qα2+1)(H (D+g)(y))qdy

] 1
q

.

(7)

Moreover, due to the weighted Hardy inequality (4), it follows that[∫
R+

x−(pα1+1)(H (D+ f )(x))pdx

] 1
p

<
1

α1

[∫
R+

xp(1−α1)−1(D+ f (x))pdx

] 1
p

and [∫
R+

y−(qα2+1)(H (D+g)(y))qdy

] 1
q

<
1

α2

[∫
R+

yq(1−α2)−1(D+g(y))qdy

] 1
q

.
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In addition, applying the Hardy inequality to the right-hand sides of the last two in-
equalities n−1 times, yields relations

[∫
R+

x−(pα1+1)(H (D+ f )(x))pdx

] 1
p

<
1

α1
n

[∫
R+

xp(n−α1)−1(Dn
+ f (x))pdx

] 1
p

(8)

and

[∫
R+

y−(qα2+1)(H (D+g)(y))qdy

] 1
q

<
1

α2
n

[∫
R+

yq(n−α2)−1(Dn
+g(y))qdy

] 1
q

. (9)

Finally, since α1
n = Γ(α1+1)

Γ(α1−n+1) and α2
n = Γ(α2+1)

Γ(α2−n+1) , the inequality (5) holds due to
(2), (7), (8), and (9). In the same way the inequality (6) holds by virtue of (3) and (8).

The next step is to prove that the constants M and m , appearing on the right-hand
sides of the inequalities (5) and (6), are the best possible. For this reason, suppose that
there exists a positive constant C smaller than M such that the inequality

∫
R+

∫
R+

Kλ (x,y) f (x)g(y)dxdy

<C

[∫
R+

xp(n−α1)−1 (
Dn

+ f (x)
)p

dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
+g(y)

)q
dy

] 1
q

(10)

holds for all non-negative functions f ,g : R+ → R fulfilling conditions as in the state-
ment of the Theorem.

Considering the above inequality with functions f̃ , g̃ : R+ → R defined by

f̃ (x) =

⎧⎨
⎩

0, 0 < x < 1
Γ
(
1+α1− ε

p−n
)

Γ
(
1+α1− ε

p

) xα1− ε
p , x � 1

,

g̃(y) =

⎧⎨
⎩

0, 0 < y < 1
Γ
(
1+α2− ε

q−n
)

Γ
(
1+α2− ε

q

) yα2− ε
q , y � 1

,

where ε > 0 is a sufficiently small number, the well-known Fubini theorem and the
change of variables t = y

x imply that
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∫
R+

∫
R+

Kλ (x,y) f̃ (x)g̃(y)dxdy

=ϕ(ε)
∫ ∞

1

∫ ∞

1
Kλ (x,y)xα1− ε

p yα2− ε
q dxdy

=ϕ(ε)
∫ ∞

1
x−ε−1

∫ ∞

1
x

Kλ (1,t)tα2− ε
q dtdx

=
ϕ(ε)

ε

∫ ∞

1
Kλ (1,t)tα2− ε

q dt + ϕ(ε)
∫ ∞

1
x−ε−1

∫ 1

1
x

Kλ (1,t)tα2− ε
q dtdx

=
ϕ(ε)

ε

∫ ∞

1
Kλ (1,t)tα2− ε

q dt + ϕ(ε)
∫ 1

0
Kλ (1,t)tα2− ε

q

∫ ∞

1
t

x−ε−1dxdt

=
ϕ(ε)

ε

(∫ ∞

1
Kλ (1,t)tα2− ε

q dt +
∫ 1

0
Kλ (1,t)tα2+ ε

p dt

)
,

(11)

where ϕ(ε) =
Γ
(
1+α1− ε

p−n
)

Γ
(
1+α2− ε

q−n
)

Γ
(
1+α1− ε

p

)
Γ
(
1+α2− ε

q

) . On the other hand, since the n -th derivative

of the function xα1− ε
p is equal to

Γ
(
1+α1− ε

p

)
Γ
(
1+α1− ε

p−n
)xα1− ε

p−n , it follows that

Dn
+ f̃ (x) =

{
0, 0 < x < 1

xα1− ε
p−n, x > 1

, Dn
+g̃(y) =

{
0, 0 < y < 1

yα2− ε
q−n, y > 1

,

and the right-hand side of (10) reduces to

C

[∫
R+

xp(n−α1)−1
(
Dn

+ f̃ (x)
)p

dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
+g̃(y)

)q
dy

] 1
q

=
C
ε

. (12)

Now, multiplying both sides of relation (10) by ε , and taking into account relations
(11) and (12), we have that

ϕ(ε)
(∫ ∞

1
Kλ (1,t)tα2− ε

q dt +
∫ 1

0
Kλ (1,t)tα2+ ε

p dt

)
< C.

Finally, as ε → 0, it follows that M �C , which is in contrast to our hypothesis. There-
fore, the constant M is the best possible in (5).

It remains to show that m is the best constant in (6). Similarly to above discussion,
suppose that there exists a positive constant c smaller than m such that inequality

[∫
R+

y(p−1)(1+qα2)
(∫

R+
Kλ (x,y) f (x)dx

)p

dy

] 1
p

<c

[∫
R+

xp(n−α1)−1 (
Dn

+ f (x)
)p

dx

] 1
p



HILBERT-TYPE INEQUALITIES INVOLVING DIFFERENTIAL OPERATORS 117

holds for all non-negative functions f : R+ → R as in the statement of Theorem. Then,
utilizing the well-known Hölder inequality and relation (9), we have

∫
R+

∫
R+

Kλ (x,y) f (x)g(y)dxdy

=
∫

R+

[
y

qα2+1
q

∫
R+

Kλ (x,y) f (x)dx

]
· [y−

qα2+1
q g(y)]dy

�
[∫

R+
y(p−1)(1+qα2)

(∫
R+

Kλ (x,y) f (x)dx

)p

dy

] 1
p
[∫

R+
y−qα2−1gq(y)dy

] 1
q

<c
Γ(α2−n+1)

Γ(α2 +1)

[∫
R+

xp(n−α1)−1 (
Dn

+ f (x)
)p

dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
+g(y)

)q
dy

] 1
q

,

which results that the constant M is not the best possible in (5), since cΓ(α2−n+1)
Γ(α2+1) <

mΓ(α2−n+1)
Γ(α2+1) = M . With this contradiction, the proof is completed. �

REMARK 1. Since for n = 0 inequalities (5) and (6) reduce respectively to (2)
and (3), Theorem 1 may be regarded as an extension of relations (2) and (3). However,
if n � 1, the relations (5) and (6) are less precise than (2) and (3), since the right-hand
sides of (2) and (3) interpolate between the left-hand side and the right-hand side of
inequalities (5) and (6).

Observe that the Theorem 1 covers the case when the degree of homogeneity of the
kernel, i.e. −λ is less than −n , for a fixed non-negative integer n . Our next intention
is to derive the corresponding relations that cover the case 0 < λ � 1. Such result is in
some way complementary to Theorem 1 and it may be derived by virtue of the weighted
dual Hardy inequality.

The dual Hardy inequality, accompanied with the dual integration operator or the
dual Hardy operator

H ∗ f (x) =
∫ ∞

x
f (t)dt,

asserts that ∫
R+

x−r (H ∗ f (x))p dx <

(
p

1− r

)p ∫
R+

xp−r f p(x)dx, (13)

holds for p > 1 and r < 1, provided that 0 <
∫
R+

xp−r f p(x)dx < ∞ .
In order to state the next result, we define a differential operator Dn± by

Dn
± f (x) = (−1)n f (n)(x),

where n is a non-negative integer. Moreover, the following theorem holds for all non-
negative functions f : R+ → R such that the n -th derivative f (n) exists a.e. on R+ ,
Dn± f (x) > 0, a.e. on R+ , and limx→∞ f (k)(x) = 0 for k = 0,1,2, . . . ,n−1. This set of
functions will be denoted by Λn± .
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THEOREM 2. Let 1
p + 1

q = 1 , p > 1 , and let α1 , α2 be real parameters such that

α1,α2 ∈ (−1,λ − 1) and α1 + α2 = λ − 2 , where 0 < λ � 1 . If Kλ : R
2
+ → R is a

non-negative homogeneous function of degree −λ , then the inequalities∫
R+

∫
R+

Kλ (x,y) f (x)g(y)dxdy

<M∗
[∫

R+
xp(n−α1)−1 (

Dn
± f (x)

)p
dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
±g(y)

)q
dy

] 1
q

(14)

and

[∫
R+

y(p−1)(1+qα2)
(∫

R+
Kλ (x,y) f (x)dx

)p

dy

] 1
p

<m∗
[∫

R+
xp(n−α1)−1 (

Dn
± f (x)

)p
dx

] 1
p

(15)

hold for all non-negative functions f ,g ∈ Λn± , where n is a fixed non-negative integer.

In addition, the constants M∗ = k(α2)
Γ(−α1)Γ(−α2)

Γ(n−α1)Γ(n−α2)
and m∗ = k(α2)

Γ(−α1)
Γ(n−α1)

, appear-
ing in (14) and (15), are the best possible.

Proof. We follow the lines as in the proof of Theorem 1, this time accompanied
with the dual Hardy inequality (13). In this setting, the right-hand side of inequality (2)
may be rewritten as

k(α2)
[∫

R+
x−pα1−1 f p(x)dx

] 1
p
[∫

R+
y−qα2−1gq(y)dy

] 1
q

=k(α2)
[∫

R+
x−(pα1+1)(H ∗(D± f )(x))pdx

] 1
p

×
[∫

R+
y−(qα2+1)(H ∗(D±g)(y))qdy

] 1
q

,

(16)

since

H ∗(D± f )(x) = −
∫ ∞

x
f ′(t)dt = f (x).

Moreover, by applying the dual Hardy inequality to the expressions on right-hand side
of relation (16) n times, it follows that

[∫
R+

x−(pα1+1)(H ∗(D± f )(x))pdx

] 1
p

<
1

(−α1)
n

[∫
R+

xp(n−α1)−1(Dn
± f (x))pdx

] 1
p

(17)
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and [∫
R+

y−(qα2+1)(H ∗(D±g)(y))qdy

] 1
q

<
1

(−α2)
n

[∫
R+

yq(n−α2)−1(Dn
±g(y))qdy

] 1
q

.

(18)

Now, since (−α1)n = Γ(n−α1)
Γ(−α1)

and (−α2)n = Γ(n−α2)
Γ(−α2)

, the inequality (14) holds due to
(2), (16), (17), and (18). In addition, inequality (15) holds by virtue of (3) and (17).

In order to show that M∗ is the best constant in (14), we suppose that there exists
a positive constant C∗ smaller than M∗ such that the inequality∫

R+

∫
R+

Kλ (x,y) f (x)g(y)dxdy

<C∗
[∫

R+
xp(n−α1)−1 (

Dn
± f (x)

)p
dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
±g(y)

)q
dy

] 1
q

(19)

holds for all non-negative functions f ,g ∈ Λn± .
Similarly to the proof of Theorem 1, we consider the above inequality with the

appropriate choice of functions f and g . It is easy to see that the functions f̃ ∗, g̃∗ :
R+ → R , defined by

f̃ ∗(x) =

⎧⎨
⎩

0, 0 < x < 1
Γ
(
−α1+ ε

p

)
Γ
(
n−α1+ ε

p

)xα1− ε
p , x � 1

,

g̃∗(y) =

⎧⎨
⎩

0, 0 < y < 1
Γ
(
−α2+ ε

q

)
Γ
(
n−α2+ ε

q

)yα2− ε
q , y � 1

,

ε > 0, belong to Λn± . With regard to functions f̃ ∗, g̃∗ , the left-hand side of (19) may
be rewritten as ∫

R+

∫
R+

Kλ (x,y) f̃ ∗(x)g̃∗(y)dxdy

=
ϕ∗(ε)

ε

(∫ ∞

1
Kλ (1,t)tα2− ε

q dt +
∫ 1

0
Kλ (1,t)tα2+ ε

p dt

)
,

(20)

where ϕ∗(ε) =
Γ
(
−α1+ ε

p

)
Γ
(
−α2+ ε

q

)
Γ
(
n−α1+ ε

p

)
Γ
(
n−α2+ ε

q

) . Clearly, this follows immediately from relation

(11).
On the other hand, since the n -th derivative of the function xα1− ε

p is equal to

(−1)n
Γ
(
n−α1+ ε

p

)
Γ
(
−α1+ ε

p

) xα1− ε
p−n , it follows that

Dn
± f̃ ∗(x) =

{
0, 0 < x < 1

xα1− ε
p−n, x > 1

, Dn
±g̃∗(y) =

{
0, 0 < y < 1

yα2− ε
q−n, y > 1

,
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which means that the right-hand side of inequality (19) reads

C∗
[∫

R+
xp(n−α1)−1

(
Dn

± f̃ ∗(x)
)p

dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
±g̃∗(y)

)q
dy

] 1
q

=
C∗

ε
.

(21)

Consequently, comparing (19), (20), and (21), it follows that

ϕ∗(ε)
(∫ ∞

1
Kλ (1,t)tα2− ε

q dt +
∫ 1

0
Kλ (1,t)tα2+ ε

p dt

)
< C∗.

Therefore, as ε → 0, it follows that M∗ � C∗ , which contradicts with our assumption.
This means that the constant M∗ is the best possible in (14).

To conclude the proof, we suppose that, contrary to our claim, there exists a con-
stant 0 < c∗ < m∗ such that the inequality

[∫
R+

y(p−1)(1+qα2)
(∫

R+
Kλ (x,y) f (x)dx

)p

dy

] 1
p

<c∗
[∫

R+
xp(n−α1)−1 (

Dn
+ f (x)

)p
dx

] 1
p

holds for all non-negative functions f ∈ Λn± , as in the statement of Theorem. In addi-
tion, employing the Hölder inequality as well as relation (18), we have∫

R+

∫
R+

Kλ (x,y) f (x)g(y)dxdy

=
∫

R+

[
y

qα2+1
q

∫
R+

Kλ (x,y) f (x)dx

]
· [y−

qα2+1
q g(y)]dy

�
[∫

R+
y(p−1)(1+qα2)

(∫
R+

Kλ (x,y) f (x)dx

)p

dy

] 1
p
[∫

R+
y−qα2−1gq(y)dy

] 1
q

<c∗
Γ(−α2)

Γ(n−α2)

[∫
R+

xp(n−α1)−1 (
Dn

± f (x)
)p

dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
±g(y)

)q
dy

] 1
q

.

Now, according to our assumption, it follows that c∗ Γ(−α2)
Γ(n−α2)

< m∗ Γ(−α2)
Γ(n−α2)

= M∗ , which
means that M∗ is not the best constant in (14). This is a clear contradiction of our
assumption and the proof is completed. �

REMARK 2. It should be noticed here that Theorem 2 may also be regarded as an
extension of inequalities (2) and (3). Similarly to Remark 1, the relations (14) and (15),
for n � 1, are less precise than (2) and (3), since the right-hand sides of (2) and (3)
interpolate between the left-hand side and the right-hand side of inequalities (14) and
(15).
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3. Applications

In this section, we discuss our main results with regard to some particular choices
of kernels and parameters α1 and α2 .

3.1. First example

Our first example refers to the homogeneous kernel Kλ (x,y) = (x+ y)−λ , λ > 0.
Obviously, this function is homogeneous with degree −λ , and in this case the constant
k(α2) , appearing in inequalities (5), (6), (14), and (15) may be expressed in terms of
the usual Beta function (see e.g. [1]). More precisely, we have

k(α2) =
∫

R+
(1+ t)−λ tα2dt = B(1+ α2,λ −1−α2) = B(α1 +1,α2 +1),

since α1 +α2 = λ −2. Moreover, employing the well-known relationship between the
Beta and the Gamma function, i.e. the formula B(x,y) = Γ(x)Γ(y)

Γ(x+y) , the constants M and
m appearing in (5) and (6) (denoted here by M1 and m1 , respectively) reduce to

M1 =
Γ(α1 −n+1)Γ(α2 −n+1)

Γ(λ )

m1 =
Γ(α1 −n+1)Γ(α2 +1)

Γ(λ )
,

where α1,α2 ∈ (n−1,λ −1) and λ > n . Now, considering the parameters α1 = λ
p −1

and α2 = λ
q − 1, where λ > nmax{p,q} , the above constants reduce respectively to

A =
Γ
(

λ
p −n

)
Γ
(

λ
q −n

)
Γ(λ ) and a =

Γ
(

λ
p −n

)
Γ
(

λ
q

)
Γ(λ ) . The constant A provides inequality (1)

from the Introduction, while its equivalent form asserts that

[∫
R+

ypλ−λ−1
(∫

R+

f (x)
(x+ y)λ dx

)p

dy

] 1
p

<a

[∫
R+

xp(n+1)−λ−1(
Dn

+ f (x)
)p

dx

] 1
p

(22)

holds for all non-negative functions f ∈ Λn
+ .

On the other hand, the constants M∗ and m∗ appearing in dual inequalities (14)
and (15) (denoted here by M∗

1 and m∗
1 , respectively) accompanied with the kernel

Kλ (x,y) = (x+ y)−λ , become

M∗
1 =

π2

sin(α1π)sin(α2π)
· 1

Γ(λ )Γ(n−α1)Γ(n−α2)

m∗
1 = − π

sin(α1π)
· Γ(α2 +1)

Γ(λ )Γ(n−α1)
, α1,α2 ∈ (−1,λ −1),0 < λ � 1,
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after applying the Euler reflection formula Γ(x)Γ(1− x) = π
sinxπ . In addition, with

parameters α1 = λ
p −1 and α2 = λ

q −1, and this time with condition λ < min{p,q} ,
Theorem 2 yields dual forms of inequalities (1) and (22).

COROLLARY 1. Let 1
p + 1

q = 1 , p > 1 , and let λ < min{p,q} . Then the inequal-
ities

∫
R+

∫
R+

f (x)g(y)
(x+ y)λ dxdy

<A∗
[∫

R+
xp(n+1)−λ−1(

Dn
± f (x)

)p
dx

] 1
p
[∫

R+
yq(n+1)−λ−1(

Dn
±g(y)

)q
dy

] 1
q

(23)

and

[∫
R+

ypλ−λ−1
(∫

R+

f (x)
(x+ y)λ dx

)p

dy

] 1
p

<a∗
[∫

R+
xp(n+1)−λ−1(

Dn
± f (x)

)p
dx

] 1
p

(24)

hold for all non-negative functions f ,g ∈ Λn± , where n is a non-negative integer.

Moreover, the constants A∗ = π2

sin( λπ
p )sin( λπ

q )
· 1

Γ(λ )Γ(n+1− λ
p )Γ(n+1− λ

q )
and a∗ = π

sin( λπ
p )

·
Γ( λ

q )

Γ(λ )Γ(n+1− λ
p )

appearing in (23) and (24) are the best possible.

3.2. Second example

For the function Kλ given on R
2
+ by Kλ (x,y) = max{x,y}−λ , λ > 0, we have

k(α2) =
∫

R+
max{1,t}−λ tα2 =

λ
(α2 +1)(λ −α2−1)

=
λ

(α1 +1)(α2 +1)
, α1,α2 ∈ (−1,λ −1),

since α1 + α2 = λ −2.
This time, the constants M and m on the right-hand sides of (5) and (6) (denoted

here by M2 and m2 , respectively) read

M2 = λ · Γ(α1 −n+1)Γ(α2 −n+1)
Γ(α1 +2)Γ(α2 +2)

m2 =
λ

α2 +1
· Γ(α1 −n+1)

Γ(α1 +2)
, α1,α2 ∈ (n−1,λ −1),λ > n,
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since Γ(x + 1) = xΓ(x) . In this setting, dual inequalities (14) and (15) include the
constants

M∗
2 =

λ
(α1 +1)(α2 +1)

· Γ(−α1)Γ(−α2)
Γ(n−α1)Γ(n−α2)

m∗
2 =

λ
(α1 +1)(α2 +1)

· Γ(−α1)
Γ(n−α1)

, α1,α2 ∈ (−1,λ −1), 0 < λ � 1.

3.3. Third example

To conclude the paper, we also consider the kernel Kλ defined on R
2
+ by Kλ (x,y)=

logy−logy
y−x . Evidently, it is homogeneous of degree −1, k(α2) converges for all α2 ∈

(−1,0) and

k(α2) =
∫

R+

logt
t−1

tα2dt =
π2

sin2 α2π

(for more details, see [1] and [3]). Since Theorem 1 refers to homogeneous kernels Kλ
with λ > n , it can not be applied to the above kernel for the case when n � 1. On the
other hand, the corresponding dual result follows directly from Theorem 2:

COROLLARY 2. Let 1
p + 1

q = 1 , p > 1 , and let α1,α2 ∈ (−1,0) be real parame-
ters such that α1 + α2 = −1 . Then the inequalities

∫
R+

∫
R+

logy− logy
y− x

f (x)g(y)dxdy

<M∗
3

[∫
R+

xp(n−α1)−1 (
Dn

± f (x)
)p

dx

] 1
p
[∫

R+
yq(n−α2)−1 (

Dn
±g(y)

)q
dy

] 1
q

(25)

and

[∫
R+

y(p−1)(1+qα2)
(∫

R+
f (x)dx

)p

dy

] 1
p

<m∗
3

[∫
R+

xp(n−α1)−1 (
Dn

± f (x)
)p

dx

] 1
p

(26)

hold for all non-negative functions f ,g ∈ Λn± , where n is a non-negative integer. In

addition, the constants M∗
3 = − π3

sin3 α2π · 1
Γ(n−α1)Γ(n−α2)

and m∗
3 = π2

sin2 α2π · Γ(−α1)
Γ(n−α1)

are

the best possible.
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[6] G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA, Inequalities, 2nd edition, Cambridge University Press,

Cambridge, 1967.
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