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(Communicated by L. Losonczi)

Abstract. A comparison of integral and discrete Ostrowski’s inequalities in the plane is con-
sidered. An integral inequality is described by Legendre’s elliptic integrals. A natural discrete
analogue of the inequality is also given. The main point is to find a suitable decomposition of
the radius in polar coordinates.

1. Introduction

Our aim in this note is to give a comparison of integral and discrete Ostrowski’s
inequalities in the plane R

2 . We restrict ourselves to two-dimensional case; higher-
dimensional case can also be considered. We are motivated to give our results by Os-
trowski [5] as well as by Pólya [6] together with the comment on it made by R. P. Boas
[7, p. 489]. For a related result, see the discrete analogue of Northcott’s inequality. See
Fan-Taussky-Todd [3]. It should be mentioned that “Integral Geometry” has some rele-
vance to our subject. See Santaló [8, Section I. 4. 2], where we can find some examples
of the mean distances between two points of a convex set. See also Tricot [9, Section
8. 2], where the measure of families of straight lines is discussed.

The original inequalities are as follows [5, (3)–(6)]: For a differentiable real-
valued function f (x) satisfying the condition that

∫ 1

0
f (x)dx = 0 and | f ′(x)| � 1 (0 < x < 1), (1)

we have

| f (x)| �
(

x− 1
2

)2

+
1
4

(0 < x < 1); (2)

for n real numbers a1,a2, . . . ,an satisfying the condition that

n

∑
i=1

ai = 0 and |ai −ai+1| � 1 (i = 1,2, . . . ,n−1), (3)
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we have ∣∣∣ak

n

∣∣∣� (k
n
− 1

2
− 1

2n

)2

+
1
4

(
1− 1

n2

)
(k = 1,2, . . . ,n). (4)

Many extensions of the integral inequality (1)–(2) have been recently given. See
Duoandikoetxea [1], Mitrinović-Pečarić-Fink [4, Chapter XV] and papers by e.g. G.
A. Anastassiou, S. S. Dragomir and J. E. Pečarić. We aim at offering a new and fresh
insight into the inequality. As far as we know, the results of this note have not appeared
in any literature up to now.

The organization is as follows. In Section 2, we begin with notations and defi-
nitions. Our theorems are collected in Section 3. Theorems 3.1 and 3.2 correspond
to the inequalities (1)–(2) and (3)–(4), respectively. Our main Theorem 3.3 gives a
comparison of Theorems 3.1 and 3.2. The main point is the following: If the general
point x in the plane R

2 is denoted by its polar coordinate x = (r,θ ) , then a suitable
decomposition of the r -space gives us annuli of equal areas. Proofs are given in Sec-
tion 4. Supplementary theorems, which seem to be interesting in themselves, though
elementary, are given in Section 5 without proof.

2. Notations and definitions

Let R
2 be two-dimensional real Euclidean space. For a general point x = (x1,x2)∈

R
2 , |x| = (x2

1 + x2
2)

1/2 is the Euclidean norm of x in R
2 . Let Z

2 and (N∪{0})2 be
the lattice of all points l = (l1, l2) ∈ R

2 , where the components l1 and l2 are integers
and nonnegative integers, respectively. For a ∈ R

2 and R > 0, the ball B(a,R) and
the cube Q(a,R) are defined by B(a,R) = {x ∈ R

2; |x− a| < R} and Q(a,R) = {x ∈
R

2; |x1−a1|+ |x2−a2|< R} , respectively. We write B = B(0,1) and Q = Q(0,1) . For
N ∈ N , a set of lattice points L(N) is given by L(N) = {(l1, l2) ∈ Z

2; |l1|+ |l2| � N} .
For N ∈ N , let IN be the index set defined by IN = {(i, j) ∈ (N∪{0})2;1 � i �

N, 0 � j � 2N−1 or i = j = 0} . For (i, j)∈ IN , let Pi, j be a point in the ball B(0,N1/2)
with its polar coordinate (r,θ ) = (i1/2,π j/N) . The Euclidean distance between Pi, j

and Pp,q is denoted by f (i, j; p,q;N) :

f (i, j; p,q;N) := [i+ p−2(ip)1/2cos(π | j−q|/N)]1/2. (5)

The mean value over all (i, j) ∈ IN of the distances between Pi, j and Pp,q is denoted by
F(p,q;N) :

F(p,q;N) := (2N2 +1)−1 ∑
(i, j)∈IN

f (i, j; p,q;N). (6)

For k ∈ (0,1) , we denote as usual by K(k) and E(k) Legendre’s complete elliptic
integrals of the first and second kinds, respectively. Namely,

K(k) =
∫ π/2

0

(
1− k2 sin2 θ

)−1/2
dθ , E(k) =

∫ π/2

0

(
1− k2 sin2 θ

)1/2
dθ , 0 < k < 1.
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3. Theorems

THEOREM 3.1. Let f be a differentiable real-valued function in B = B(0,1) such
that

∫
B f (y)dy = 0 and | f ′(x)| � 1 for every x ∈ B. Then we have, for x ∈ B,

| f (x)| � 4
9π
[(

7+ |x|2)E(|x|)−4
(
1−|x|2)K(|x|)] . (7)

By using the rotationally invariant set of points Pi, j , (i, j) ∈ IN , and the functions
f (i, j; p,q;N) and F(p,q;N) defined in Section 2, we can have a natural discrete ana-
logue of integral Ostrowski’s inequality. If the lattice Z

2 was used, then difficulties
occurring in “lattice-point problems” or Gauss’s “circle problem” would be unavoid-
able. See also Remark 5.4. Our main result is the following Theorem 3.3, which gives
a comparison of Theorems 3.1 and 3.2.

THEOREM 3.2. Let f (i, j; p,q;N) and F(p,q;N) be defined by (5) and (6), re-
spectively. If 2N2 + 1 real numbers ai, j , where (i, j) ∈ IN , satisfy the conditions that
∑(i, j)∈IN ai, j = 0 and that |ai, j −ap,q| � f (i, j; p,q;N) for every (i, j) and (p,q) ∈ IN ,
then we have that |ap,q| � F(p,q;N) for every (p,q) ∈ IN .

THEOREM 3.3. Let F(p,q;N) be defined by (6). Then we have the following
estimate (8) for F(p,q;N):∣∣∣∣∣N−1/2F(p,q;N)− 4

9π

[(
7+

p
N

)
E

(( p
N

)1/2
)
−4
(
1− p

N

)
K

(( p
N

)1/2
)]∣∣∣∣∣

� CN−1, (p,q) ∈ IN ,

(8)

where C is a positive constant independent of p,q and N .

4. Proofs

Proof of Theorem 3.1. Fix an x ∈ B\{(0,0)} with f (x) � 0. Because | f ′(y)| � 1
for every y ∈ B , the mean value theorem yields that f (y) � f (x)−|y− x| . Therefore,
0 =

∫
B f (y)dy � π f (x)− ∫B |y− x|dy , i.e. f (x) � π−1 ∫

B |y− x|dy . We shall show that∫
B |y− x|dy = πA(|x|) , where A(|x|) is the right side of (7):

A(|x|) =
4
9π
[
(7+ |x|2)E(|x|)−4(1−|x|2)K(|x|)] , x ∈ B(0,1). (9)

Let θ be the angle between the vectors x and y− x . Then the polar coordinate of
the point y is given by y = x + (rcosθ ,r sinθ ) , where 0 � θ < 2π and 0 � r <
r(θ ) := −|x|cosθ +(1−|x|2 sin2 θ )1/2 . This range of r is determined by the equation
r(θ )2 +2r(θ )|x|cosθ + |x|2 = 1. Then we have that

∫
B |y−x|dy = (1/3)

∫ 2π
0 r(θ )3 dθ .
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Therefore,

∫
B
|y− x|dy =

4
3

∫ π/2

0

(
1−|x|2 sin2 θ

)3/2
dθ

+ 4 |x|2
∫ π/2

0
cos2 θ

(
1−|x|2 sin2 θ

)1/2
dθ

=
4
3
(1−|x|2)

∫ π/2

0

(
1−|x|2 sin2 θ

)1/2
dθ

+
(

4
3

+4

)
|x|2

∫ π/2

0
cos2 θ

(
1−|x|2 sin2 θ

)1/2
dθ ,

the right side of which is equal to πA(|x|) , as is seen from the following formula [2,
p. 301, (21), (22) and (25)]: For k ∈ (0,1) , we have

∫ π/2

0
cos2 θ

(
1− k2 sin2 θ

)1/2
dθ =

1
3k2

[(
k2 +1

)
E(k)− (1− k2)K(k)

]
.

The case where x = (0,0) can be treated separately. The case where f (x) � 0 can also
be treated similarly. �

REMARK 4.1. The function A(|x|) , x ∈ B(0,1) , corresponds to the function (x−
1/2)2 +1/4, x∈ (0,1) , of the inequality (1)–(2). By using the power series expansions
for K(k) and E(k) obtained from [2, p. 313, (5)–(8)], we can express A(|x|) as

A(|x|) =
2
3

[
1+

3
4
|x|2 −3

∞

∑
n=2

(
(2n−5)!!

(2n)!!

)2

(2n−3)|x|2n

]
,

where (2n)!!= 2n(2n−2) · · ·4 ·2, (2n−1)!!= (2n−1)(2n−3) · · ·3 ·1, 0!!= (−1)!!=
1.

REMARK 4.2. If we replace B(0,1) and | f ′(x)| � 1 in Theorem 3.1 by B(a,R)
and | f ′(x)|� m , respectively, then a similar inequality corresponding to [5, (1) and (2)]
is obtained by “dilation and translation” argument.

REMARK 4.3. A part of the comments on [6] made by Boas [7, p. 489] runs as
follows: “ . . . theorems on functions deviating least from zero in the Chebyshev sense:
the one-variable one says that if f (a) = f (b) = 0 and

∫ b
a f (x)dx = L , then the deviation

of f ′ from 0 is greater than 4L/(b−a)2 . . . .”

REMARK 4.4. The discrete analogue of Northcott’s inequality is as follows [3]:
For n + 1 real numbers a1,a2, . . . ,an+1 satisfying the conditions that ∑n

i=1 ai = 0,
max1�i�n |ai| = 1, and that an+1 = a1 , we have that the minimum of max1�i�n |ai −
ai+1| is 4/n if n is even, and 4n/(n2−1) if n is odd.
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The proof of Theorem 3.2 is analogous to that of the inequality (3)–(4) and is
omitted.

Proof of Theorem 3.3. Because of the rotational symmetry of the set of all points
Pi, j , we may assume that q = 0, and write

F(p,0;N) =
2

2N2 +1
g(p)+

1
2N2 +1

h(p), 0 � p � N, (10)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(p) :=
N

∑
i=1

N−1

∑
j=1

[
i+ p−2(ip)1/2cos(π j/N)

]1/2
,

h(p) :=
N

∑
i=0

(
i1/2 + p1/2

)
+

N

∑
i=1

∣∣∣i1/2− p1/2
∣∣∣ .

Since, for fixed i and p , the sequence {i+ p−2(ip)1/2 cos(π j/N); j = 0,1, . . . ,N} is
monotonically increasing in j , we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(p) �
∫ N

1

(
N−1

∑
i=1

[
i+ p−2(ip)1/2cos(πv/N)

]1/2
+2N1/2

)
dv,

g(p) �
∫ N−1

0

N

∑
i=1

[
i+ p−2(ip)1/2cos(πv/N)

]1/2
dv.

Furthermore, for fixed v and p , there exists some i0 (0 � i0 � N) such that the se-
quence {i+ p− 2(ip)1/2cos(πv/N) ; i = 0,1, . . . ,N} is monotonically decreasing in i
(0 � i � i0) and monotonically increasing in i (i0 +1 � i � N) . Therefore, we obtain
the following estimates:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
g(p) �

∫ N

1

(∫ N

0

[
u+ p−2(up)1/2cos(πv/N)

]1/2
du+2N1/2

)
dv,

g(p) �
∫ N−1

0

(∫ N

1

[
u+ p−2(up)1/2cos(πv/N)

]1/2
du

)
dv.

Making the substitution u = r2 and v = Nθ/π , we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(p) � 2N
π

∫ π

N−1π

∫ N1/2

0

(
r2 + p−2rp1/2cosθ

)1/2
rdrdθ + 2N3/2,

g(p) � 2N
π

∫ (1−N−1)π

0

∫ N1/2

1

(
r2 + p−2rp1/2 cosθ

)1/2
rdrdθ .

(11)

It is easy to see that the following estimates hold for h(p) :

C2N
3/2 � h(p) � C1N

3/2, 0 � p � N, (12)
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where C1 and C2 are positive constants independent of N and p . Consequently, from
(10)–(12), we have

F(p,0;N) � (C1 +4)N3/2

2N2 +1

+
2N

π(2N2 +1)

∫ (2−N−1)π

N−1π

∫ N1/2

0

(
r2 + p−2rp1/2 cosθ

)1/2
rdrdθ ;

(13)

F(p,0;N) � C2N3/2

2N2 +1

+
2N

π(2N2 +1)

∫ (1−N−1)π

(−1+N−1)π

∫ N1/2

1

(
r2 + p−2rp1/2cosθ

)1/2
rdrdθ .

(14)

From (13), we have

F(p,0;N) � 2N
π(2N2 +1)

∫∫
B(0,N1/2)

∣∣∣x− (p1/2,0)
∣∣∣ dx+C3N

−1/2,

where C3 is a positive constant independent of N and p . Let p �= 0, N . The case
where p = 0 or N can be treated separately. By setting k = (p/N)1/2 , we apply the
same ideas as in the proof of Theorem 3.1 to obtain

F(p,0;N) � 2N
π(2N2 +1)

N3/2πA(k)+C3N
−1/2 � N1/2A(k)+C3N

−1/2,

where A(k) , 0 < k < 1, is the function defined by (9).
In order to obtain the estimate for F(p,0;N) from below, we note the following

estimates (15) and (16):∫ 2π

0

∫ 1

0

(
r2 + p−2rp1/2cosθ

)1/2
rdrdθ � π(N1/2 +1) ; (15)

∫ (1+N−1)π

(1−N−1)π

∫ N1/2

0

(
r2 + p−2rp1/2cosθ

)1/2
rdrdθ � 2πN1/2. (16)

From (14)–(16), we have

F(p,0;N) � 2N
π(2N2 +1)

∫∫
B(0,N1/2)

∣∣∣x− (p1/2,0)
∣∣∣ dx−C4N

−1/2,

where C4 is a positive constant independent of N and p . By setting k = (p/N)1/2 for
p �= 0, N , we arrive at the following estimate in exactly the same way:

F(p,0;N) � 2N
π(2N2 +1)

N3/2πA(k)−C4N
−1/2 � N1/2(1−N−2)A(k)−C4N

−1/2.

Because A(k) is bounded for 0 < k < 1, we have

F(p,0;N) � N1/2A(k)−C5N
−1/2,

where C5 is a positive constant independent of N and p . �
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5. Supplements: Ostrowski’s inequality in the cube

Supplementary theorems, which seem to be interesting in themselves, though el-
ementary, are given below without proof; in particular, the calculation of the integral∫
Q |y− x|dy requires a lot of perseverance.

In order to state integral Ostrowski’s inequalities in the cube Q = Q(0,1) , we
define the functions AQ,1 and AQ,2 as follows: AQ,1(x) := |x|2 − (|x1|3 + |x2|3)/3+
+2/3, x ∈ Q(0,1) , and

AQ,2(x) :=
1
12

[
∑

λ ,μ,ν∈{0,1}
xλ ,μx1−λ ,ν

(
x2

λ ,μ + x2
1−λ ,ν

)1/2

+ ∑
λ ,μ,ν∈{0,1}

x3
λ ,μ log

∣∣∣∣x1−λ ,ν +
(
x2

λ ,μ + x2
1−λ ,ν

)1/2
∣∣∣∣

−2 ∑
λ ,μ∈{0,1}

x3
λ ,μ log

∣∣xλ ,μ
∣∣], x ∈ Q(0,1),

where we set xλ ,μ = 2−1/2
[
1+(−1)μ(x1 +(−1)λx2)

]
for x = (x1,x2)∈R

2 and λ ,μ ∈
{0,1} .

THEOREM 5.1. Let f be a differentiable real-valued function in Q = Q(0,1)
such that

∫
Q f (y)dy = 0 and max{|∂ f /∂x1| , |∂ f /∂x2|} � 1 in Q. Then we have

that | f (x)| � AQ,1(x) for every x ∈ Q.

THEOREM 5.2. Let f be a differentiable real-valued function in Q = Q(0,1)
such that

∫
Q f (y)dy = 0 and | f ′(x)| � 1 for every x ∈ Q. Then we have that | f (x)| �

AQ,2(x) for every x ∈ Q.

We define the double sequence { fL(p,q;N);(p,q)∈L(N)} , where L(N)= {(l1, l2)
∈ Z

2; |l1|+ |l2| � N} , and then state a discrete analogue of Theorem 5.1 as follows:

fL(p,q;N) := (2N+1)
(
p2+q2)− 2

3

(∣∣p3− p
∣∣+ ∣∣q3−q

∣∣)+ 2
3
N(N +1)(2N +1).

THEOREM 5.3. Suppose that 2N2 + 2N + 1 real numbers ai, j , where (i, j) ∈
L(N) , satisfy the following conditions (i) and (ii):

(i) ∑(i, j)∈L(N) ai, j = 0 ;

(ii)
∣∣ai, j −ap,q

∣∣� |i− p|+ | j−q| for every (i, j) and (p,q) ∈ L(N) .

Then we have that |ap,q| � fL(p,q;N)/(2N2 +2N +1) for every (p,q) ∈ L(N) .

The proofs are carried out by showing that
∫
Q(|y1−x1|+ |y2−x2|)dy = 2AQ,1(x) ,∫

Q |y− x|dy = 2AQ,2(x) , and that ∑(i, j)∈L(N)(|i− p|+ | j− q|) = fL(p,q;N) . We only
note the following: For every x = (x1,x2)∈Q , we have that fL(p,q;N)/N(2N2 +2N+
1) → AQ,1(x) as N → ∞ with max{|x1−N−1p|, |x2−N−1q|} < N−1 .
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REMARK 5.4. Let F1 and F2 be distance-functions, which play an important role
in the “Geometry of Numbers”. Then a general form of our problem is to get an esti-
mate for fF1,F2(y;N) := ∑x∈Z2,F1(x)�N F2(x− y) , where y ∈ Z

2 satisfies F1(y) � N . A

discrete analogue of Theorem 5.2, where F1 and F2 are defined by L1 and L2 norms,
respectively, is yet to be considered.

Acknowledgements. The authors express their sincere gratitude to the referees for
the improvement of the proof of Theorem 3.1.
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