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ON BONNESEN–STYLE ISOPERIMETRIC

INEQUALITIES FOR n–SIMPLICES

WEN WANG AND SHIGUO YANG

(Communicated by H. Martini)

Abstract. In this paper, we derive some Bonnesen-style inequalities referring to n -dimensional
simplices in the sprit of isoperimetric problems. These inequalities combine various metric quan-
tities of simplices and yield, in several cases, characterizations of regular simplices. Also related
reverse Bonnesen-style inequalities are derived.

1. Introduction

As a well known result, for a simple closed curve C (in the Euclidian plane) of
length L enclosing a domain of area A , then the inequality

L2 −4πA � 0 (1.1)

holds, with equality if and only if this curve is a Euclidean circle. The quantity L2−4πA
is called the isoperimetric deficit of C .

As an extension, Bonnesen proves [1] that if C is convex and there exists a circular
annulus of thickness d containing C , then

L2 −4πA � 4πd2. (1.2)

In fact, Fuglede [2] shows that convexity is not a necessary condition.
There is a related isoperimetric inequality known as Bonnesen inequality [3]:

L2−4πA � π2(R− r)2, (1.3)

where R is the circumradius and r is the inradius of the curve C . Note that if the right
side of (1.3) equals zero, then R = r . This means that C is a circle and L2 −4πA = 0.

More generally, inequalities of the form

L2−4πA � K (1.4)
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are called Bonnesen-style isoperimetric inequalities if equality is only attained for the
Euclidean circle [3]. See [2–10] for more detailed references.

When the simple closed curve C is a triangle (in the Euclidean plane) of area S
and with side lengths a1 , a2 , a3 , the following inequality is known:

P2 � 3
√

3S, (1.5)

where P = 1
2(a1 +a2 +a3) . Equality holds if and only if this triangle is regular.

Inequality (1.5) can be regarded as isoperimetric inequality for triangles.
Let En denote the n -dimensional Euclidean space. Let A1,A2, · · · ,An+1 denote

the vertices of an n-simplex Ωn in the Euclidian space En (i.e., Ωn is the n -dimensional
convex hull of {A1,A2, · · · ,An+1} ), and Fi the (n − 1)-dimensional volume of the
facet fi = {A1, · · · ,Ai−1,Ai+1, · · · ,An+1} opposite to the vertex Pi ( i = 1,2, · · · ,n+1).
Putting F = ∑n+1

i=1 Fi , thus F yields the surface area of the simplex Ωn . We denote by
ai j (i, j = 1,2, · · · ,n+1) the edge lengths of Ωn (sometimes, we set a1,a2, · · · ,a 1

2 n(n+1)
in some order). The sum of all ai j (1 � i < j � n+1) is denoted by L , and L is called
the total edge length of Ωn . And if all edge lengths are equal, the simplex is called
regular.

The known Veljan-Korchmaros inequality [11] involving the volume and the edge
lengths of Ωn reads as follows:

∏
1�i< j�n+1

a
2

n+1
i j �

(
2nn!2

n+1

) 1
2

V, (1.6)

with equality if and only if the simplex Ωn is regular.
By applying the arithmetic-geometric mean inequality to (1.6), we obtain

L2(n+1) � n2(n+1)(n+1)
(n+1)(2n−1)

n

2n+1 (n! ·V)
2(n+1)

n (1.7)

or

L2 � n2(n+1)
2n−1

n

2
(n! ·V)

2
n , (1.7′)

with equality if and only if Ωn is regular.
The inequality (1.7) or (1.7’) may be called isoperimetric inequality of an n-

simplex. The deficit value between the right-hand side and left-hand side of inequality
(1.7) or (1.7’) can be regarded as the isopermetric deficit for the n -simplex Ωn :

Δ1 = L2(n+1)− n2(n+1)(n+1)
(n+1)(2n−1)

n

2n+1 (n! ·V)
2(n+1)

n (1.8)

or

Δ′
1 = L2 − n2(n+1)

2n−1
n

2
(n! ·V)

2
n . (1.8′)
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In addition, the volume V and the facet areas of the simplex Ωn satisfies the fol-
lowing inequality:

(V )
2
n � [(n−1)!]

2
n−1

(n+1)
1
n

n
1

n−1

(
n+1

∏
i=1

Fi

)2(n2−1)

, (1.9)

with equality if and only if Ωn is regular (see [12, 13]).
Applying the arithmetic-geometric mean inequality to (1.9), we obtain

F2(n2−1) �
[

n · (n+1)
1
n

(n−1)!2
(n! ·V)

2(n−1)
n

]n2−1

, (1.10)

or

F
2

n−1 �
[

n · (n+1)
1
n

(n−1)!2

] 1
n−1

(n! ·V)
2
n , (1.10′)

with equality if and only if Ωn is regular.
The inequality (1.10) or (1.10’) may be also called isoperimetric inequality for an

n -simplex. The deficit value between the right-hand side and left-hand side of inequal-
ity (1.10) or (1.10’) can be regarded as the other isopermetric deficit for the n -simplex
Ωn :

Δ2 = F2(n2−1)−
[

n · (n+1)
1
n

(n−1)!2
(n! ·V)

2(n−1)
n

]n2−1

, (1.11)

or

Δ′
2 = F

2
n−1 −

[
n · (n+1)

1
n

(n−1)!2

] 1
n−1

(n! ·V)
2
n . (1.11′)

2. The Bonnesen-style inequalities for simplices

In this section, we present two forms of the Bonnesen-style inequalities involving
the total edge length and the surface area of a simplex.

THEOREM 2.1. For an n-simplex Ωn , we have

Δ1 � 1
2
(n+1)2nRn

(nr
R

) 2(n2−1)
n

n(n+1)
2

∑
i=1

(
ai −

√
2(n+1)

n
R

)2

, (2.1)

with equality if and only if Ωn is regular.
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THEOREM 2.2. For an n-simplex Ωn , we have

Δ2 � n(n2−1)(n+4)(n+1)(n+1)(n2−1)

2(n!)2(n2−1)
R2n(n2−n−1)

×
(nr

R

) 2(n2−n−1)(n2−1)
n

n(n+1)
2

∑
i=1

(
ai −

√
2(n+1)

n
R

)2

, (2.2)

with equality if and only if Ωn is regular.

COROLLARY 2.3. Let ABC be a triangle of area S , and with side lengths a1 , a2 ,
a3 , then

P6−233
9
2 S3 � 34

27 R2
(

2r
R

)3 3

∑
i=1

(ai −
√

3R)2. (2.3)

Equality is attained if and only if the triangle is regular, where P = 1
2(a1 +a2 +a3) .

COROLLARY 2.4. For a tetrahedron ABCD, we have

L8−2123
32
3 V

8
3 � 211R3

(
3r
R

) 16
3 6

∑
i=1

(ai−
√

8
3
R)2, (2.4)

F16− 316

2
8
3

V
32
3 � 340247 ·R30

(
3r
R

) 80
3 6

∑
i=1

(ai −
√

8
3
R)2. (2.5)

Equality is attained if and only if the tetrahedron is regular, where again F is the
surface area of ABCD.

To prove the above theorems, we need two lemmas.

LEMMA 2.5. ([11]) For an n-simplex Ωn , we have

1
2 n(n+1)

∑
i=1

a2
i � (n+1)2R2, (2.6)

⎛
⎝ 1

2 n(n+1)

∏
i=1

ai

⎞
⎠

4
n

� 2n+1n!2

n
V 2 ·R2, (2.7)

(
n+1

∏
i=1

Fi

)n−1

� n
3n2−4

2

(n+1)
(n+1)(n−2)

2 n!n
V n2−n−1 ·R, (2.8)

R �
[

n! ·n n
2

(n+1)
n+1
2

]
V

1
n . (2.9)

Equalities are attained if and only if Ωn is regular.
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LEMMA 2.6. ([12]) For an n-simplex Ωn , we have

V � (n+1)
n+1
2 n

n2−2
2n

n!
R

1
n r

n2−1
n . (2.10)

Equality is attained if and only if Ωn is regular.

The proof of Theorem 2.1. Applying (2.6), we get by suitable calculation

1
2 n(n+1)

∑
i=1

(
ai−

√
2(n+1)

n
R

)2

=

1
2 n(n+1)

∑
i=1

a2
i +(n+1)2R2−2

√
2(n+1)

n
R

1
2 n(n+1)

∑
i=1

ai

�(n+1)2R2 +(n+1)2R2−2

√
2(n+1)

n
R

1
2 n(n+1)

∑
i=1

ai. (2.11)

By (2.11), (2.9), and the arithmetic-geometric means inequality we get

R2 � 1
(n+1)2

√
2(n+1)

n
R

1
2 n(n+1)

∑
i=1

ai +
1

2(n+1)2

1
2 n(n+1)

∑
i=1

(
ai −

√
2(n+1)

n
R

)2

� 1
(n+1)2

√
2(n+1)

n

[
n! ·n n

2

(n+1)
n+1
2

] 1
n

V
1
n · n(n+1)

2

1
2 n(n+1)

∏
i=1

a
2

n(n+1)
i

+
1

2(n+1)2

1
2 n(n+1)

∑
i=1

(
ai −

√
2(n+1)

n
R

)2

. (2.12)

By (2.12) and (1.6) we get

R2 � (n!)
2
n n

(n+1)
n+1
n

V
2
n +

1
2(n+1)2

1
2 n(n+1)

∑
i=1

(
ai−

√
2(n+1)

n
R

)2

. (2.13)

Using the arithmetic-geometric means inequality, (2.7) and (2.13) we find that

L2(n+1) =

⎛
⎝ n(n+1)

2

∑
i=1

ai

⎞
⎠

2(n+1)

�
(

n(n+1)
2

)2(n+1)
⎛
⎝ n(n+1)

2

∏
i=1

ai

⎞
⎠

4
n

�
(

n(n+1)
2

)2(n+1) 2n+1n!2

n
V 2 ·R2

�
(

n(n+1)
2

)2(n+1) 2n+1n!2

n
V 2

×
⎧⎨
⎩ (n!)

2
n n

(n+1)
n+1
n

V
2
n +

1
2(n+1)2

n(n+1)
2

∑
i=1

(
ai−

√
2(n+1)

n
R

)2
⎫⎬
⎭
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=
n2(n+1)(n+1)

(n+1)(2n−1)
n

2n+1 (n! ·V)
2(n+1)

n

+
n2n+1(n+1)2n

2n+2 (n! ·V)2

n(n+1)
2

∑
i=1

(
ai−

√
2(n+1)

n
R

)2

. (2.14)

From (2.14) and (2.10) we obtain

L2(n+1) � n2(n+1)(n+1)
(n+1)(2n−1)

n

2n+1 (n! ·V)
2(n+1)

n +
1
2
(n+1)2nRn

(nr
R

) 2(n2−1)
n

×
n(n+1)

2

∑
i=1

(
ai −

√
2(n+1)

n
R

)2

. (2.15)

Thus equality (2.1) is true. From Lemma 2.5 and Lemma 2.6, it is easy to see that
equality holds in (2.1) if and only if Ωn is regular. The proof is complete. �

The proof of Theorem 2.2. Similar to the proof of Theorem 2.1, by the arithmetic-
geometric mean inequality, the inequalities (2.8), (2.13) and (2.10) it follows that

F2(n2−1) =

(
n+1

∑
i=1

Fi

)2(n2−1)

� (n+1)2(n2−1)

(
n+1

∏
i=1

Fi

)2(n−1)

� (n+1)2(n2−1)

⎡
⎣ n

3n2−4
2

(n+1)
(n+1)(n−2)

2 n!n

⎤
⎦

2

V 2(n2−n−1) ·R2

�
[

n · (n+1)
1
n

(n−1)!2
(n! ·V)

2(n−1)
n

]n2−1

+

⎡
⎣n

3n2−4
2 (n+1)

n(n+1)
2

n!n

⎤
⎦

2

V 2(n2−n−1)

× 1
2(n+1)2

n(n+1)
2

∑
i=1

(
ai−

√
2(n+1)

n
R

)2

�
[

n · (n+1)
1
n

(n−1)!2
(n! ·V)

2(n−1)
n

]n2−1

+
n(n2−1)(n+4)(n+1)(n+1)(n2−1)

2(n!)2(n2−1)
R2n(n2−n−1)

×
(nr

R

) 2(n2−n−1)(n2−1)
n

n(n+1)
2

∑
i=1

(
ai−

√
2(n+1)

n
R

)2

. (2.16)

Thus equality (2.2) is true. From Lemma 2.5 and Lemma 2.6, it is easy to see that
equality holds in (2.2) if and only if Ωn is regular. The proof is complete. �
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3. An upper bound on the isoperimetric deficit of simplices

Besides asking for the lower bound on the isoperimetric deficit, there is another
question: is there an invariant C of geometric significance such that

L2−4πA � C?

This is a long standing unsolved problem in geometry. Results for special convex do-
mains can be found in [7] and [13, pp. 119–121].

In this section, we derive an upper bound on the isoperimetric deficit of an n -
simplex.

DEFINITION 3.1. The (minimal) width of an n -simplex Ωn is the minimum dis-
tance between a pair of parallel supporting hyperplanes of Ωn and denoted by ω(Ωn) ;
see [14].

G. T. Sallee posed the following problem: Which n -simplex, inscribed in the unit
ball of En , has largest width? R. Alexander [14] showed (see also [15, pp. 233–244])
that

ω(Ωn) � αn ·R, (3.1)

where αn =
[

(n+1)2

n·(n+1−z)·z
] 1

2
, z =

[
n+1
2

]
,and equality holds if and only if Ωn is regular.

Let O and R denote the circumcenter and the circumradius of an n -simplex, and
I and r be its incenter and inradius, respectively. Further on, we write G for the
barycenter of such a simplex.

We refer to [16] for the n -dimensional version of the Euler inequality

R � nr, (3.2)

with equality if and only if the respective simplex Ωn is regular.
In 1985, Klamkin [17] improved this result and obtained that

R2 � n2r2 + |OI|2, (3.3)

with equality if and only if the simplex Ωn is regular.
In 1995, S. G. Yang [18] generalized results from the [16] and [17].
Let A1,A2, · · · ,An+1 denote the vertices of an n -simplex Ωn in En with barycenter

G , let D be an arbitrary point in En , and Ri = |DAi| (i = 1,2, ...,n+1) . Let P be an
arbitrary interior point of Ωn , and let ri denote the distance from P to the i th facet fi
of Ωn . Then we have

1
n+1

n+1

∑
i=1

R2
i � n2

(
n+1

∏
i=1

r2
i

) 1
n+1

+ |DG|2. (3.4)

Equality holds if and only if the simplex Ωn is regular. Various further geometric
inequalities for an n -simplex are established in [16–20].

Our main results are the following theorems and corollaries.
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THEOREM 3.1. For an n-simplex Ωn , we have

Δ′
1 � n(n+1)3

2α2
n

(α2
nR2−ω2(Ωn)), (3.5)

Δ′
2 � f (n)

α2
n

(α2
nR2 −ω2(Ωn)), (3.6)

with equality if and only if Ωn is regular, where f (n) = (n+1)
n+1
n−1

n
n−2
n−1 (n−1)!

2
n−1

.

COROLLARY 3.2. Let ABC be a triangle of area S , with side lengths a1 , a2 , a3

and of width ω(�) . Then

9
4
R2−ω2(�) � 4

27
(P2 −3

√
3S). (3.7)

Equality is attained if and only if the triangle is regular, where P = 1
2(a1 +a2 +a3) .

COROLLARY 3.3. For a tetrahedron ABCD we have

4
3
R2−ω2(Ω3) � 1

96
(L2 −72 3

√
9V

2
3 ), (3.8)

4
3
R2−ω2(Ω3) �

√
3

8
(S−8 6

√
243V

2
3 ). (3.9)

Equality is attained if and only if the tetrahedron is regular.

THEOREM 3.4. For an n-simplex Ωn , we have

Δ′
1 � n(n+1)3

2

⎡
⎣ 1

n+1

n+1

∑
i=1

R2
i −|DG|2−n2

(
n+1

∏
i=1

r2
i

) 1
n+1
⎤
⎦ , (3.10)

Δ′
2 � g(n)

⎡
⎣ 1

n+1

n+1

∑
i=1

R2
i −|DG|2−n2

(
n+1

∏
i=1

r2
i

) 1
n+1
⎤
⎦ , (3.11)

with equality if and only if Ωn is regular, where g(n) = (n+1)
n

n−1

n
n−2
n−1 (n−1)!

2
n−1

.

COROLLARY 3.5. For an n-simplex Ωn , we have

R2−|OG|2−n2r2 � 2
n(n+1)3 Δ′

1, (3.12)

R2−|OG|2−n2r2 � 2
g(n)

Δ′
2, (3.13)

with equality if and only if Ωn is regular.
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REMARK. Inequalities (3.5) and (3.6) are improvements of (3.1). Inequalities
(3.10) and (3.11) are improvements of (3.4). In addition, (3.12) and (3.13) are sharpen-
ings of Euler’s inequality (3.2).

To prove Theorem 3.2 and Theorem 3.5, we still need some lemmas.

LEMMA 3.6. ([19]) Let ω(Ωn) and V denote the width and the volume of the
n-simplex Ωn , respectively. Then

ω(Ω) � αn · n1/2(n!)1/n

(n+1)(n+1)/2n
V 1/n (3.14)

with equality if and only if Ωn is regular, where αn = n+1
n1/2[ n+1

2 ]1/2(n+1−[ n+1
2 ])1/2 , and [m]

stands for the largest integer part of the real number m.

LEMMA 3.7. ([18]) Let P be an arbitrary interior point of the simplex Ωn , ri

denote the distance from P to the i-th facet fi , and V denote the volume of Ωn . Then
we have

V � 1
n!

n
n
2 (n+1)

n+1
2

(
n+1

∏
i=1

ri

) n
n+1

, (3.15)

with equality if and only if Ωn is regular.

LEMMA 3.8. ([18]) For an n-simplex Ωn , we have

1
n+1

n+1

∑
i=1

R2
i =

n(n+1)
2

∑
i=1

a2
i j +(n+1)2|DG|2. (3.16)

Proof of Theorem 3.1. Combining (3.14) and (1.7), and applying the arithmetic-
geometric mean inequality and (2.6), we can deduce that

n(n+1)3

2
ω2

n � n(n+1)3

2
α2

nV
2
n

(n!)
2
n ·n

(n+1)
n+1
n

= α2
n
n2(n+1)

2n−1
n

2
(n! ·V)

2
n

� α2
nL2 � n(n+1)

2
α2

n ·
n(n+1)

2

∑
i=1

a2
i j

=
n(n+1)3

2
α2

n
1

(n+1)2

n(n+1)
2

∑
i=1

a2
i j

� n(n+1)3

2
α2

nR2.
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The chain of inequalities yields (3.5).
Now we prove inequality (3.6). Using (3.14), (3.10) and the power mean inequal-

ity, we get

(n+1)
n+1
n−1

n
n−2
n−1 · (n−1)!

2
n−1

ω2
n � (n+1)

n+1
n−1

n
n−2
n−1 · (n−1)!

2
n−1

α2
nV

2
n

(n!)
2
n ·n

(n+1)
n+1
n

= α2
n

[
n(n+1)

1
n

(n−1)!2

] 1
n−1

(n! ·V)
2
n

� α2
nF

2
n−1 � α2

n (n+1)
1

n−1 ·
(

n+1

∑
i=1

F2
i

) 1
n−1

=
(n+1)

n+1
n−1

n
n−2
n−1 · (n−1)!

2
n−1

α2
n

1
(n+1)2

n(n+1)
2

∑
i=1

a2
i j

� (n+1)
n+1
n−1

n
n−2
n−1 · (n−1)!

2
n−1

α2
nR2.

From the chain of inequalities we obtain (3.6). From (3.14) (1.7), (1.10) and (2.6), it is
easy to see that equalities in (3.5) and (3.6) hold if and only if the respective simplices
are regular. The proof is complete. �

Proof of Theorem 3.4. Combining (3.15) and (1.7) first, and applying then the the
power mean inequality, and (3.16), we can deduce that

n(n+1)3

2
n2

(
n+1

∏
i=1

r2
i

) 1
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From this chain of inequalities we get (3.10).
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By (3.15), (1.10), the power mean inequality and (3.16) we can deduce that
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From this we get (3.11), and the proof is complete. From (3.15), (3.16), (1.7), (1.10)
and (2.6), it is easy to see that equalities in (3.10) and (3.11) hold if and only if Ωn is
regular. �
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