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ON THE FUNCTIONAL BLASCHKE–SANTALÓ INEQUALITY

YOUJIANG LIN AND GANGSONG LENG

(Communicated by A. Prekopa)

Abstract. In this paper, using functional Steiner symmetrizations, we show that Meyer and Pa-
jor’s proof of the Blaschke-Santaló inequality can be extended to the functional setting.

1. Introduction

For a convex body K ⊂ R
n and a point z ∈ R

n , the polar body Kz of K with
respect to z is the convex set defined by Kz = {y ∈ R

n : 〈y− z,x− z〉 � 1 for every x ∈
K} . The Santaló point s(K) of K is a point for which Vn(Ks(K)) = minz∈int(K)Vn(Kz) ,
where Vn(K) denotes the volume of set K . The Blaschke-Santaló inequality [4, 18, 19]
states that Vn(K)Vn(Ks(K)) � Vn(Bn

2)
2 , where Bn

2 is the Euclidean ball.
For a log-concave function f : R

n → [0,∞) and a point z ∈ R
n , its polar with

respect to z is defined by f z(y) = infx∈Rn
e−〈x−z,y−z〉

f (x) . The Santaló point s( f ) of f is the

point z0 satisfying
∫

f z0 = infz∈Rn
∫

f z .
The functional Blaschke-Santaló inequality of log-concave functions is the ana-

logue of Blaschke-Santaló inequality of convex bodies.

THEOREM 1.1. (Artstein, Klartag, Milman) Let f : R
n → [0,+∞) be a log-

concave function such that 0 <
∫

f < ∞ . Then,
∫
Rn f

∫
Rn f s( f ) � (2π)n with equality

holds exactly for Gaussians.

When f is even, the functional Blaschke-Santaló inequality follows from an ear-
lier inequality of Ball [2]; and in [9], Fradelizi and Meyer proved something more
general (see also [11]). Lutwak and Zhang [13] and Lutwak et al. [14] gave other very
different forms of the Blaschke-Santaló inequality. In this paper, we give a more gen-
eral result than Theorem 1.1, which becomes into a special case of λ = 1/2 in Theorem
1.2.
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THEOREM 1.2. Let f : R
n → [0,+∞) be a log-concave function such that 0 <∫

f < ∞ . Let H be an affine hyperplane and let H+ and H− denote two closed half-
spaces bounded by H . If λ ∈ (0,1) satisfies λ

∫
Rn f =

∫
H+

f . Then there exists z ∈ H
such that ∫

Rn
f
∫

Rn
f z � 1

4λ (1−λ )
(2π)n. (1.1)

In [12], Lehec proved a very general functional version for non-negative Borel
functions, Theorem 1.2 is a particular case of result of Lehec. Lehec’s proof is by
induction on the dimension, and the proof is by functional Steiner symmetrizations.
In fact, Mayer and Pajor [15] have proved the Blaschke-Santaló inequality for convex
bodies, here we show that Meyer and Pajor’s proof of the Blaschke-Santaló inequality
can be extended to the functional setting. It has recently come to our attention that in
a remark of [9], Fradelizi and Meyer expressed the same idea to prove the functional
Blaschke-Santaló inequality.

2. Notations and background materials

Let | · | denote the Euclidean norm. Let intA denote the interior of A ⊂ R
n . Let

clA denote the closure of A . Let dimA denote the dimension of A . A set C ⊂ R
n is

called a convex cone if C is convex and nonempty and if x ∈C , λ � 0 implies λx ∈C .
We define C∗ := {x ∈ R

n : 〈x,y〉 � 0 for all y ∈C} and call this the dual cone of C .
For a non-empty convex set K ⊂ R

n and an affine hyperplane H with unit normal
vector u , the Steiner symmetrization SHK of K with respect to H is defined as SHK :=
{x′ + 1

2 (t1− t2)u : x′ ∈ PH(K), ti ∈ IK(x′) for i = 1,2} , where PH(K) := {x′ ∈ H : x′ +
tu ∈ K for some t ∈ R} is the projection of K onto H and IK(x′) := {t ∈ R : x′ + tu ∈
K} .

Let R = R∪ {−∞,∞} . For a given function f : R
n → R and for α ∈ R we

use the abbreviation { f = α} := {x ∈ R
n : f (x) = α} , and { f � α} , { f < α} etc.

are defined similarly. A function f : R
n → R is called proper if { f = −∞} = /0 and

{ f = ∞} 
= R
n . A function φ is called convex if φ is proper and φ(αx+(1−α)y) �

αφ(x)+ (1−α)φ(y) for all x,y ∈ R
n and for any 0 � λ � 1. A function f is called

log-concave if f = e−φ , where φ is a convex function. A function f : R
n →R∪{+∞}

is called coercive if lim|x|→+∞ f (x) = +∞ . A function f is called symmetric about H
if for any x′ ∈ H and t ∈ R , f (x′ + tu) = f (x′ − tu) . A function f : R

n → R is called
unconditional about z if f (x1 − z1, . . . ,xn − zn) = f (|x1 − z1|, . . . , |xn − zn|) for every
(x1, . . . ,xn) ∈ R

n . If z = 0, then f is called unconditional.
The effective domain of convex function φ is the nonempty set domφ := {φ < ∞} .

The support of function f is the set supp f := { f 
= 0} . For log-concave function
f = e−φ , it is clear that supp f = domφ . The nonempty set epiφ := {(x,r) ∈ R

n ×R :
r � φ(x)} denote the epigraph of convex function φ .

For an affine subspace G of R
n , let G⊥ denote the orthogonal complement of G ,

we have G⊥ = {x ∈ R
n : 〈x,y− y′〉 = 0 for every y,y′ ∈ G} . The Santaló point sG( f )

of f about G is a point satisfying
∫

f sG( f ) = infz∈G
∫

f z . Let f be a log-concave
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function such that 0 <
∫

f < ∞ , and let H+ and H− be two half-spaces bounded by
an affine hyperplane H ; let 0 < λ < 1; we shall say that H is λ -separating for f if∫
H+

f
∫
H− f = λ (1−λ )(

∫
Rn f )2 and when λ = 1/2, we shall say that H is medial for

f . For a function φ : R
n → R , its Legendre transform about z is defined by L zφ(y) =

supx∈Rn [〈x− z,y− z〉−φ(x)] . If f (x) = e−φ(x) , where φ(x) is a convex function, then
f z(y) = e−L zφ(y) . Since L z(L zφ) = φ for a convex function φ , ( f z)z = f . If z = 0,
we shall use the simpler notation L for L 0 .

Given two functions f ,g : R
n → [0,∞) , their Asplund product is defined by ( f �

g)(x) = supx1+x2=x f (x1)g(x2) . The λ -homothety of a function f is defined as (λ ·
f )(x) = f λ ( x

λ ) . Then, the classical Prékopa inequality (see Prékopa [16, 17]) can be
stated as follows: Given f ,g : R

n → [0,+∞) and 0 < λ < 1,
∫
(λ · f )� ((1−λ ) ·g) �

(
∫

f )λ (
∫

g)1−λ . The following lemma, as a particular case of a result due to Ball [3],
was proved by Meyer and Pajor in [15].

LEMMA 2.1. [15] Let f0 , f1 , f2 : R
+ → R

+ be three functions such that 0 <∫+∞
0 fi < ∞, i = 0,1,2 , they are continuous and suppose that f0

(
2xy
x+y

)
� f1(x)

y
x+y f2(y)

x
x+y

for every x,y > 0 . Then one has

1∫ +∞
0 f0(t)dt

� 1
2

(
1∫+∞

0 f1(t)dt
+

1∫+∞
0 f2(t)dt

)
.

3. The functional Steiner symmetrization

The familiar definition of Steiner symmetrization for a nonnegative measurable
function f can be stated as following (see [5, 6, 7, 8]):

DEFINITION 3.1. For a measurable function f : R
n → [0,+∞) and an affine hy-

perplane H ⊂ R
n , let m denote the Lebesgue measure, if m({ f > t}) < +∞ for all

t > 0, then its Steiner symmetrization is defined as

SH f (x) =
∫ ∞

0
XSH{ f>t}(x)dt, (3.1)

where XA denotes the characteristic function of set A .

Next, we give a approach of defining Steiner symmetrization for coercive con-
vex functions by the Steiner symmetrization of epigraphs. A similar functional steiner
symmetrization is defined in a remark of AKM’s paper [1] and studied in an article by
Lehec [10]. The idea of our definition is same as the given definition in a remark at the
end of an article by Fradelizi and Meyer [9].

DEFINITION 3.2. For a coercive convex function φ and an affine hyperplane H ⊂
R

n , we define the Steiner symmetrization SHφ of φ with respect to H as a function
satisfying

epi(SHφ) = SH̃(cl epiφ), (3.2)
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where H̃ = {(x′,s) ∈ R
n+1 : x′ ∈ H} is an affine hyperplane in R

n+1 .

REMARK 1.
(i) By Definition 3.2, for an integrable log-concave function f = e−φ , the Steiner

symmetrization of f can be defined as SH f := e−(SHφ) . If we define SH f by Definition
3.1, then SH f still satisfies (3.2). Thus, for integrable log-concave functions, the two
definitions are essentially same.

(ii) By Definition 3.2, for a given x′ ∈ H and any s ∈ R , we have

V1
({(SHφ)(x′ + tu) < s})= V1

({φ(x′ + tu) < s}) .
By the Fubini’s theorem, we have∫

R

(SH f )(x′ + tu)dt =
∫

R

f (x′ + tu)dt. (3.3)

Similarly,
∫
Rn SH f =

∫
Rn f is also established.

PROPOSITION 3.3. For a coercive convex function φ and an affine hyperplane
H ⊂ R

n with outer unit normal vector u, then SHφ has the following properties.
(i) SHφ is a closed coercive convex function and symmetric about H .
(ii) Let H1 and H2 be two orthogonal hyperplanes in R

n , then SH2(SH1φ) is
symmetric about both H1 and H2 .

(iii) For any given x′ ∈ H and t ∈ R , let φ1(t) := φ(x′ + tu) and (Sφ1)(t) :=
(SHφ)(x′ + tu) , then (Sφ1)(t) satisfies one of the following three cases. 1). (Sφ1)(t) =
φ1(t1) = φ1(t1−2t) for some t1 ∈ R . 2). (Sφ1)(t) = φ1(t0−2t) � limt→t0 , t<t0 φ1(t) for
some t0 ∈ R . 3). (Sφ1)(t) = φ1(t0 +2t) � limt→t0 , t>t0 φ1(t) for some t0 ∈ R .

Proof. (i) By the fact that φ is convex if and only if epiφ is convex, since φ is
convex, epiφ is a convex subset of R

n+1 . Since the closure of a convex set is convex,
and the Steiner symmetrization of a convex set is also convex, by (3.2), epi(SHφ) is a
convex subset of R

n+1 . Therefore, SHφ is a convex function. By Definition 3.2, it is
clear that SHφ is closed, coercive and symmetric with respect to H .

(ii) Since epi(SH2(SH1φ)) is symmetric about both H̃1 and H̃2 , where H̃i = {(x′,s)
∈ R

n+1 : x′ ∈ Hi} ( i = 1,2), SH2(SH1φ) is symmetric about both H1 and H2 .
(iii) If domφ1 = R , by (3.2) in Definition 3.2, we have

epi(Sφ1) = SH̃(cl epiφ1). (3.4)

Thus there exists some t1 ∈ R satisfying

(Sφ1)(t) = φ1(t1) = φ1(t1 −2t). (3.5)

If domφ1 
= R , then there exist eight cases for domφ1 : 1) [α,β ] ; 2) (α,β ) ; 3)
(α,β ] ; 4) [α,β ) ; 5) (−∞,β ] ; 6) (−∞,β ) ; 7) [α,+∞) ; 8) (α,+∞) . Here, we only
prove our conclusion for domφ1 = (α,β ) . By the same method we can prove our
conclusion for other cases.
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For domφ1 = (α,β ) , by Definition 3.2, it is clear that (Sφ1)(t) = +∞ for |t| �
β−α

2 . If |t| < β−α
2 , let limx→α , x>α φ1(x) = b1, limx→β , x<β φ1(x) = b2 , then we con-

sider the following four cases. (a) If b1 = b2 = +∞ , then by (3.4), there exists some
t1 ∈R satisfying (3.5). (b) If b1 < +∞, b2 = +∞ , then there exists γ ∈ (α,β ) such that
φ1(γ) = b1 . Then by (3.4), for |t| < γ−α

2 , (3.5) is established, for |t| � γ−α
2 , we have

(Sφ1)(t) = φ1(α + 2t) � b1 . (c) If b1 = +∞, b2 < +∞ , then there exists γ ∈ (α,β )
such that φ1(γ) = b2 . Then by (3.4), for |t| < β−γ

2 , (3.5) is established, for |t| � γ−α
2 ,

we have (Sφ1)(t) = φ1(β −2t) � b2 . (d) If b1 < ∞, b2 < +∞ , we consider three cases.
If b1 = b2 , then (3.5) is established. If b1 > b2 , the proof is same as in (c). If b1 < b2 ,
the proof is same as in (b). This completes the proof. �

4. The proofs of theorems

In order to prove theorems stated in the introduction, we have to establish the
following six lemmas:

LEMMA 4.1. If f be a log-concave function such that 0 <
∫

f < ∞ , then the
function F defined by F(z) :=

∫
Rn f z(x)dx has the following properties. (i) F(z) is a

coercive convex function on R
n and is strictly convex on int domF ; (ii) If f (x) is even

about z0 , then F(z) is also even about z0 .

Proof. (i) Step 1. We shall prove F is coercive. Let f = e−φ , for any given z∈R
n

and r > 0, we have

F(z) =
∫

Rn
f z(x+ z)dx �

∫
rBn

2

f z(x+ z)dx =
∫

rBn
2

e−L φ(x)+〈x,z〉dx. (4.1)

Since f = e−φ is integrable, there is γ > 0 and h ∈ R such that

φ(x) � γ
n

∑
i=1

|xi|+h for any x ∈ R
n. (4.2)

Thus, for y∈ γBn
∞ , where Bn

∞ = {x∈R
n : |xi|� 1, i = 1, . . . ,n} , L φ(y) � supx∈Rn [〈y,x〉

−γ ∑n
i=1 |xi|−h] �−h . Let rBn

2 ⊂ 1
2 γBn

∞ , we have rBn
2 ⊂ int(domL φ) . Since function

g(x) : = e−L φ(x) is continuous on rBn
2 . Thus, there exists m > 0 such that g(x) � m

for any x ∈ rBn
2 . Therefore,∫

rBn
2

e−L φ(x)+〈x,z〉dx � m
∫

rBn
2

e〈x,z〉dx. (4.3)

For any z ∈ R
n and |z| � 1, let z′ = r

2
z
|z| , we get a closed half-space H+ = {x ∈

R
n : 〈x− z′,z〉 � 0} . For any x ∈ H+ , we have 〈x,z〉 � 〈z′,z〉 = r

2 |z| . Therefore,∫
rBn

2

e〈x,z〉dx �
∫

(rBn
2)∩H+

e
r|z|
2 dx = Vn((rBn

2)∩H+)e
r|z|
2 . (4.4)
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Since Vn((rBn
2)∩H+) is a positive constant independent of z , by (4.1), (4.3) and (4.4),

F(z) is coercive.
Step 2. We shall prove that F is convex and is strictly convex on int domF . First,

we prove F(z) is proper. It is clear that F(z) > −∞ for any z ∈ R
n . The following

claim shows that {F = ∞} 
= R
n .

CLAIM 1. For any z ∈ int supp f , F(z) < ∞ .

Proof of Claim 1. For any z ∈ int supp f , there is a closed ball z+ rBn
2 ⊂ supp f .

Since supp f = domφ , there is M ∈ R such that M = sup{φ(y) : y ∈ z+ rBn
2} . Thus,

we have

f z(x) � exp{− sup
y∈(z+rBn

2)
[〈x− z,y− z〉−φ(y)]}� eM · e−r|x−z|2 .

Therefore,
∫
Rn f z(x)dx � eM ∫

Rn e−r|x−z|2dx < ∞. �

For any z1,z2 ∈R
n and α ∈ (0,1) . Let f = e−φ , we have F(z)=

∫
Rn e−L φ(x)+〈x,z〉dx .

Since gx(z) := e−L φ(x)+〈x,z〉 is a convex function about z , we have

F(αz1 +(1−α)z2) � αF(z1)+ (1−α)F(z2). (4.5)

If z1,z2 ∈ int domF and z1 
= z2 , then inequality (4.5) is a strict inequality. Thus
F(z) is strictly convex on int domF .

(ii) Since f (x) is even about z0 , f (z0 + x) = f (z0 − x) for any x ∈ R
n . For any

z ∈ R
n , we have

F(z0 + z) =
∫

Rn
f z0+z(x)dx =

∫
Rn

f z0−z(−x+2z0)dx = F(z0 − z).

This completes the proof. �

REMARK 2. By Lemma 4.1, if f is even about z0 , then s( f ) = z0 .

LEMMA 4.2. Let f be a log-concave function such that 0 <
∫

f < ∞ , and let G⊂
R

n be an affine subspace satisfying G∩ int supp f 
= /0 . Then there exists a unique point
z0 ∈ G satisfying the following two equivalent claims. (i) F(z0) = min{F(z);z ∈ G} ,
where F(z) :=

∫
Rn f z(x)dx . (ii) gradF(z0) =

∫
Rn x f z0(x+ z0)dx ∈ G⊥ .

Proof. By Lemma 4.1, F is coercive and strictly convex on int domF , thus there is
a unique minimal point z0 = sG( f ) on G . Let f = e−φ , then F(z)=

∫
Rn e−L φ(x)+〈x,z〉dx .

By the dominated convergence theorem, we have gradF(z) =
∫
Rn xe−L φ(x)+〈x,z〉dx =∫

Rn x f z(x+ z)dx .
Next, we prove the equivalence of (i) and (ii). Let η1, . . . ,ηm (m < n) be an

orthonormal basis of G and let ηm+1, . . . ,ηn be an orthonormal basis of G⊥ . Let

z = ∑n
i=1 ziηi , since z0 = sG( f ) ∈ G , we have ∂F(z)

∂ zi

∣∣∣
z=z0

= limt→0
F(z0+tηi)−F(z0)

t =
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0, i = 1, . . . ,m . Hence, gradF(z0) ∈ G⊥ . On the other hand, if gradF(z0) ∈ G⊥ , then
∂F(z)

∂ zi

∣∣∣
z=z0

= 0, i = 1, . . . ,m . Since F(z) is strictly convex on G∩ int domF , z0 is the

unique minimal point on G . �

REMARK 3. In Lemma 4.2, if G = R
n , then the lemma shows that the Santaló

point s( f ) of f is the barycenter of the function f s( f ) .

LEMMA 4.3. Let f be a log-concave function such 0 <
∫

f < ∞ . Let G ⊂ R
n

be an affine subspace satisfying G∩ int supp f 
= /0 and z = sG( f ) . Let H be an affine
hyperplane such that G ⊂ H and let g be the function defined by gz = SH( f z) . Then
we have sG(g) = z = sG( f ) .

Proof. It may be supposed that z = sG( f ) = 0, H = {(x1, · · · ,xn) ∈ R
n : xn = 0}

and G = {(x1, · · · ,xn) ∈ R
n : xm+1 = · · · = xn = 0} for some m , 1 � m � n− 1. By

Lemma 4.2, we have
∫
Rn x f 0(x)dx ∈ G⊥ . Let f 0

x′(t) := f 0(x′ + tu) for any x′ ∈ H ,
where u is the unit normal vector of H . Thus,

∫
H xi
(∫

R
f 0
x′(t)dt

)
dx′ = 0 for 1 �

i � m . By g0 = SH( f 0) and (3.3), for every x′ ∈ H ,
∫
R

f 0
x′(t) =

∫
R

g0
x′(t) . Thus,∫

H xi
(∫

R
g0

x′(t)dt
)
dx′ = 0 for 1 � i � m , which conversely gives

∫
Rn xg0(x)dx ∈ G⊥ .

Thus, by Lemma 4.2 again, we obtain sG(g) = 0 = sG( f ) . �

LEMMA 4.4. For a log-concave function f such that 0 <
∫

f < ∞ , if f is sym-
metric about some affine hyperplane H , then, for any z ∈ H , f z is also symmetric
about H .

Proof. Let u be the unit normal vector of H . For any x′,y′ ∈H and s, t ∈R , since
f (x′ + su) = f (x′ − su) , we have

f z(y′ + tu) = inf
x′+su∈Rn

exp{−〈y′ + tu− z,x′+ su− z〉}
f (x′ + su)

= inf
x′+su∈Rn

exp{−〈y′ − z− tu,x′ − z− su〉}
f (x′ − su)

= f z(y′ − tu).

This completes the proof. �

LEMMA 4.5. Let f be a log-concave function such that 0 <
∫

f < ∞ and let H
be an affine hyperplane satisfying H ∩ int supp f 
= /0 and z ∈ H ∩ int supp f ; let λ ,
0 < λ < 1 such that H is λ -separating for f z . Then∫

Rn
(SH f )z � 4λ (1−λ )

∫
Rn

f z.

Proof. It may be supposed that z = 0 and H = {(x1, . . . ,xn) : xn = 0} . For y′ ∈ H
and s ∈ R , let (y′,s) denote y′ + su , where u is a unit normal vector of H . For f 0 and
s ∈ R , we define a new function

f 0
(s)(y

′) := f 0(y′,s), for any y′ ∈ H.



152 YOUJIANG LIN AND GANGSONG LENG

Next we shall prove that for any y′ ∈ H and s,t > 0(
t

s+ t
· f 0

(s)

)
�

(
s

s+ t
· f 0

(−t)

)
(y′) � (SH f )0

( 2st
s+t )

(y′). (4.6)

CLAIM 2. For any x′ ∈ H and w ∈ R , if (SH f )(x′ +wu) > 0 , then there is some
w1 ∈ R such that (SH f )(x′ +wu) � f (x′ +w1u) and (SH f )(x′ +wu) � f (x′ +(w1 −
2w)u) .

Proof of Claim 2. Let f = e−φ , since (SH f )(x′+wu) > 0, then (SHφ)(x′+wu) <
+∞ . By Proposition 3.3(iii), there is w1 ∈ R such that (SHφ)(x′ +wu) � φ(x′ +w1u)
and (SHφ)(x′ + wu) � φ(x′ + (w1 − 2w)u) , here we assume φ(x′ + w1u) or φ(x′ +
(w1 − 2w)u) equals the limit in Proposition 3.3(iii), which doesn’t affect our proof.
Hence the claim follows. �

For any y′1 , y′2 ∈ H such that y′ = y′1 + y′2 , we have

(SH f )0
( 2st

s+t )
(y′) = inf

(x′ ,w)∈H×R

exp{−〈(y′, 2st
s+t ),(x

′,w)〉}
(SH f )(x′,w)

� inf
(x′ ,w)∈H×R

exp{−〈(y′, 2st
s+t ),(x

′,w)〉}
f (x′,w1)

t
s+t f (x′,w1 −2w)

s
s+t

� inf
(x′ ,w)∈H×R

exp{− t
s+t 〈( s+t

t y′1,s),(x
′,w1)〉}

f (x′,w1)
t

s+t

× inf
(x′,w)∈H×R

exp{− s
s+t 〈( s+t

s y′2,−t),(x′,w1 −2w)〉}
f (x′,w1 −2w)

s
s+t

� f 0
(

s+ t
t

y′1,s
) t

s+t

f 0
(

s+ t
s

y′2,−t

) s
s+t

,

where the first inequality is by Claim 2, and the second inequality is by inf(AB) �
(infA)(infB) , and last inequality is by the definition of the polar of functions. Since y′1
and y′2 are arbitrary, we get (4.6).

Let F0(w) =
∫
H(SH f )0

(w) , F1(s) =
∫
H f 0

(s) and F2(t) =
∫
H f 0

(−t) . By the Prékopa
inequality and (4.6), we have

F0(
2st
s+ t

) � F1(s)
t

s+t F2(t)
s

s+t for every s,t > 0.

Now, by Proposition 3.3(i) and Lemma 4.4, (SH f )0 is symmetric about H , we have∫+∞
0 F0 = 1

2

∫
Rn(SH f )0 and since H is λ -separating for f 0 , we have

(∫ +∞
0 F1

)(∫ +∞
0 F2

)
= λ (1− λ )

(∫
Rn f 0

)2
. Since F0 , F1 , F2 : [0,+∞) → R

+ satisfy the hypothesis of
Lemma 2.1, and by definitions of F1 and F2 , one has

∫+∞
0 F1 +

∫+∞
0 F2 =

∫
Rn f 0 , thus,

by Lemma 2.1

2∫
Rn(SH f )0 � 1

2

(
1∫ +∞

0 F1
+

1∫ +∞
0 F2

)
=

1
2λ (1−λ )

∫
Rn f 0 .
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This gives the desired inequality. �

LEMMA 4.6. If f is an integrable, unconditional, log-concave function, then∫
Rn f

∫
Rn f 0 � (2π)n .

Proof. Let f1 = f , f2 = f 0 and f3 = e−
|x|2
2 , then f1 , f2 and f3 are uncondi-

tional. Thus we have
∫
Rn f j = 2n ∫

Rn
+

f j, j = 1,2,3. For (y1, . . . ,yn) ∈ R
n , we define

gi(y1, . . . ,yn) = fi(ey1 , . . . ,eyn)e∑n
i=1 yi . We get

∫
R

n
+

f j =
∫
Rn g j , and for every s, t ∈ R

n ,

g1(s)g2(t) � g3
(

s+t
2

)2
. Hence

∫
Rn f

∫
Rn f 0 � (2π)n follows from Prékopa inequal-

ity. �

Proof of Theorem 1.2. We proceed by n successive Steiner symmetrizations until
we get an unconditional log-concave function. Let u1 ∈ Sn−1 , u1 orthogonal to H = H1

and let (ui)n
i=2 ⊂ Sn−1 such that (u1, . . . ,un) form an orthonormal basis for R

n . Let
z1 = sH1( f ) and define a log-concave function f1 by the identity f z1

1 = SH1( f z1) . Then∫
f z1
1 =

∫
f z1 . By Proposition 3.3(i) and Lemma 4.4, f1 is symmetric about H1 and by

Lemma 4.5, applied to f z1 , z = z1 and H = H1 , λ -separating for f = ( f z1)z1 , we get∫
Rn f1 � 4λ (1− λ )

∫
Rn f and thus

∫
f1
∫

f z1
1 � 4λ (1− λ )

∫
f
∫

f z1 . Choose now the
hyperplane H2 , orthogonal to u2 , and medial for f1 and define z2 = s(H1∩H2)( f1) .
By Lemma 4.3 we have z1 = sH1 ( f ) = sH1 ( f1) , we get

∫
f z2
1 = minz∈H1∩H2

∫
f z
1 �

minz∈H1

∫
f z
1 =

∫
f z1
1 . We define now a new log-concave function f2 by the identity

f z2
2 = SH2( f z2

1 ) . By Proposition 3.3(ii) and Lemma 4.4, f2 is symmetric about both H1

and H2 . Since H2 is medial for f1 , we get by Lemma 4.5 applied to f z2
1 , z = z2 and

H = H2 that
∫

f2 �
∫

f1 . Moreover, we have
∫

f z2
2 =

∫
SH2( f z2

1 ) =
∫

f z2
1 �

∫
f z1
1 . It

follows that
∫

f2
∫

f z2
2 �

∫
f1
∫

f z1
1 .

We continue this procedure by choosing hyperplanes H2, . . . ,Hn , points z2, . . . ,zn ,
and defining log-concave functions f2, . . . , fn such that for 2 � i � n , we have (i)
Hi is medial for fi−1 and orthogonal to ui ; (ii) zi = s(H1∩H2∩...∩Hi)( fi−1) ; (iii) f zi

i =
SHi( f zi

i−1) . From (ii) (iii) and Lemma 4.3, we have zi = s(H1∩...∩Hi)( fi−1)= s(H1∩...∩Hi)( fi) .
Choosing Hi+1 , zi+1 , fi+1 according to (i) (ii) (iii), we get thus

∫
f zi+1
i+1 =

∫
SHi+1( f zi+1

i )

=
∫

f zi+1
i �

∫
f
s(H1∩...∩Hi)

( fi)
i =

∫
f zi
i . Now, Lemma 4.5 applied to f zi+1

i , z = zi+1 and
Hi+1 , medial for fi = ( f zi+1

i )zi+1 , gives
∫

fi+1 �
∫

fi . Thus,
∫

fi
∫

f zi
i is an increas-

ing sequence, for 2 � i � n . Therefore, we have 4λ (1− λ )
∫

f
∫

f z1 �
∫

f1
∫

f z1
1 �

. . . �
∫

fn
∫

f zn
n . From Proposition 3.3(ii), fn is an unconditional function about zn

and zn ∈ H1 ∩H2 ∩ . . .∩Hn is a center of symmetry for fn . By Lemma 4.6, we have∫
f
∫

f z1 � (2π)n

4λ (1−λ ) , this concludes the proof. �
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[12] J. LEHEC, A direct proof of the functional Santaló inequality, C. R. Math. Acad. Sci. Paris, 347 (2009),

55–58.
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