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Abstract. In this paper we characterize the validity of the inequalities

‖g‖p,(a,b),λ � c‖u(x)‖g‖∞,(x,b),μ ‖q,(a,b),ν

and
‖g‖p,(a,b),λ � c‖u(x)‖g‖∞,(a,x),μ ‖q,(a,b),ν

for all non-negative Borel measurable functions g on the interval (a,b) ⊆ R , where 0 < p �
+∞ , 0 < q � +∞ , λ , μ and ν are non-negative Borel measures on (a,b) , and u is a weight
function on (a,b) .

1. Introduction

In [1], authors make a comprehensive study of general inequalities of the form

‖gw‖p,(a,b),μ � c
∥∥u(x)‖g‖1,(x,b),μ

∥∥
q,(a,b),ν , g ∈ B+(I) (1.1)

and
‖gw‖p,(a,b),μ � c

∥∥u(x)‖g‖1,(a,x),μ
∥∥

q,(a,b),ν , g ∈ B+(I), (1.2)

involving non-negative Borel measures μ , ν and λ , with complete proofs and esti-
mates for the best constants c , provided that 0 < p � 1 and 0 < q � +∞ . In addition
to the extra generality and the filling gaps in previous works on these inequalities, the
approach used in [1] unifies the continuous and discrete problems, so that the integral
and series inequalities follow as particular cases. The general inequalities involving
three Borel measures λ , μ and ν

‖g‖p,(a,b),λ � c
∥∥u(x)‖g‖1,(x,b),μ

∥∥
q,(a,b),ν , g ∈ B+(I) (1.3)

and
‖g‖p,(a,b),λ � c

∥∥u(x)‖g‖1,(a,x),μ
∥∥

q,(a,b),ν , g ∈ B+(I), (1.4)

are reduced to either to (1.1) or (1.2).
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The object of this paper is to characterize the inequalities

‖gw‖p,(a,b),μ � c‖u(x)‖g‖∞,(x,b),μ‖q,(a,b),ν (1.5)

and
‖gw‖p,(a,b),μ � c‖u(x)‖g‖∞,(a,x),μ‖q,(a,b),ν (1.6)

for all non-negative Borel measurable functions g on the interval (a,b) ⊆ R , where
0 < p � +∞ , 0 < q � +∞ , μ and ν are non-negative Borel measures on (a,b) . Note
that we do not need the restriction 0 < p � 1, which is important when one consider
the reverse Hardy inequalities. The general inequalities (involving three non-negative
Borel measures λ , μ and ν ) are reduced either to (1.5) or (1.6).

The main results of the present paper are Theorems 3.4 and 4.1. Our method is
based on a discretization techniques for function norms developed in [1].

The paper is organized as follows. We start with notation and preliminary results in
Section 2. Necessary and sufficient conditions for the validity of inequalities (1.5) and
(1.6) can be found in Sections 3 and 4, respectively. Finally, in Section 5 we show that
the results from Sections 3 and 4 can be used to characterize the validity of inequalities
mentioned at the Abstract of this paper.

2. Notation and preliminaries

Throughout the paper, we always denote by c a positive constant, which is inde-
pendent of main parameters but it may vary from line to line. However a constant with
subscript such as c1 does not change in different occurrences. By a � b (b � a ), we
mean that a � cb , where c > 0 depends on inessential parameters. If a � b and b � a ,
we write a ≈ b and say that a and b are equivalent. We use the abbreviation LHS(∗)
(RHS(∗)) for the left (right) hand side of the relation (∗) .

We adopt the following usual conventions.

CONVENTION 2.1. (i) We put 1/(±∞) = 0, 0 · (±∞) = 0, 0/0 = 0.
(ii) We denote by

p′ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p
1−p if 0 < p < 1,

+∞ if p = 1,
p

p−1 if 1 < p < +∞,

1 if p = +∞.

(iii) If g is a monotone function on I := (a,b) ⊆ R , then by g(a) and g(b) we
mean the limits limx→a+ g(x) and limx→b− g(x) , respectively.

Let μ be a non-negative Borel measure on I . We denote by B+(I) the set of all
non-negative Borel measurable functions on I . If E is a nonempty Borel measurable
subset of I and f is a Borel measurable function on E , then we put

‖ f‖p,E,μ :=
(∫

E
| f (y)|pdμ

)1/p

, if 0 < p < +∞,
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‖ f‖∞,E,μ := sup{α : μ({y ∈ E : | f (y)| � α}) > 0}.
In this paper, u , v and w will denote weights, that is, non-negative Borel measur-

able functions on I .
Let /0 	= Z ⊆ Z := Z∪{−∞,+∞} , 0 < q � +∞ and {wk} = {wk}k∈Z be a se-

quence of positive numbers. We denote by �q({wk},Z ) the following discrete ana-
logue of a weighted Lebesgue space: if 0 < q < +∞ , then

�q({wk},Z ) =
{
{ak}k∈Z : ‖{ak}‖�q({wk},Z ) :=

(
∑

k∈Z

|akwk|q
)1/q

< +∞
}

,

and

�∞({wk},Z ) =
{
{ak}k∈Z : ‖{ak}‖�∞({wk},Z ) := sup

k∈Z
|akwk| < +∞

}
.

If wk = 1 for all k ∈ Z , we write simply �q(Z ) instead of �q({wk},Z ) . When
N, M ∈ Z , N � M and Z = {N,N +1, . . . ,M−1,M} , we will sometimes use notation
�q(N,M) instead of �q(Z ) .

We shall use the following inequality, which is a simple consequence of the dis-
crete Hölder inequality:

‖{akbk}‖�q(Z ) � ‖{ak}‖�r(Z )‖{bk}‖�p(Z ), (2.1)

where 1/r = (1/q−1/p)+ .1

DEFINITION 2.2. Let N,M ∈ Z , N < M . A positive almost non-increasing se-
quence {τk}M

k=N (that is, there exists K � 1 such that τn+1 � Kτn ) is called almost
geometrically decreasing if there are α ∈ (1,+∞) and L ∈ N such that

α τk � τk−L for all k ∈ {N +L, . . . ,M}.
A positive almost non-decreasing sequence {σk}M

k=N (that is, there exists K � 1 such
that σn � Kσn+1 ) is called almost geometrically increasing if there are α ∈ (1,+∞)
and L ∈ N such that

σk � ασk−L for all k ∈ {N +L, . . . ,M}.

REMARK 2.3. Definition 2.2 implies that if 0 < q < +∞ , then the following three
statements are equivalent:

(i) {τk}M
k=N is an almost geometrically decreasing sequence;

(ii) {τq
k }M

k=N is an almost geometrically decreasing sequence;
(iii) {τ−q

k }M
k=N is an almost geometrically increasing sequence.

We quote some known results. Proofs can be found in [5] and [6].

1For any a ∈ R denote by a+ = a when a > 0 and a+ = 0 when a � 0 .
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LEMMA 2.4. Let q∈ (0,+∞] , N,M ∈Z , N � M, Z = {N,N +1, . . . ,M−1,M}
and let {τk}M

k=N be an almost geometrically decreasing sequence. Then∥∥∥∥∥
{

τk

k

∑
m=N

am

}∥∥∥∥∥
�q(Z )

≈ ‖{τkak}‖�q(Z ) (2.2)

and ∥∥∥∥
{

τk sup
N�m�k

am

}∥∥∥∥
�q(Z )

≈ ‖{τkak}‖�q(Z ) (2.3)

for all non-negative sequences {ak}M
k=N .

Given two (quasi-) Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and if the
natural embedding of X in Y is continuous.

The following two lemmas are discrete version of the classical Landau resonance
theorems. Proofs can be found, for example, in [3].

PROPOSITION 2.5. ([3, Proposition 4.1]) Let 0 < p, q � +∞ , /0 	= Z ⊆ Z and
let {vk}k∈Z and {wk}k∈Z be two sequences of positive numbers. Assume that

�p({vk},Z ) ↪→ �q({wk},Z ). (2.4)

Then
‖{wkv

−1
k }‖�r(Z ) � c,

where 1/r = (1/q−1/p)+ and c stands for the norm of embedding (2.4).

Now we recall some basic facts on discretization of function norms from [1].

LEMMA 2.6. ([1, Lemma 3.1]) Let ϕ be a non-negative, non-decreasing, fi-
nite and right-continuous function on (a,b) . There is a strictly increasing sequence
{xk}M+1

k=N , −∞ � N � M � +∞ , with elements from the closure of the interval (a,b) ,
such that:

(i) if N > −∞ , then ϕ(xN) > 0 ; ϕ(x) = 0 for every x ∈ (a,xN); if M < +∞ , then
xM+1 = b;

(ii) ϕ(xk+1−) � 2ϕ(xk) if N � k � M;
(iii) 2ϕ(xk−) � ϕ(xk+1) if N < k < M.

DEFINITION 2.7. ([1, Definition 3.2]) Let ϕ be a non-negative, non-decreasing,
finite and right-continuous function on (a,b) . A strictly increasing sequence {xk}M+1

k=N ,
−∞ � N < M � +∞ , is said to be a discretizing sequence of the function ϕ if it satisfies
the conditions (i) – (iii) of Lemma 2.6.

REMARK 2.8. ([1, Remark 3.3]) We shall use the following convention: if N =
−∞ , then we put xN = limk→−∞ xk . It is clear that if N =−∞ and xN > a , then ϕ(x)= 0
for all x ∈ (a,xN) (cf. condition (i) of Lemma 2.6).
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Let ϕ be a non-negative, non-decreasing, finite and right-continuous function on
(a,b) . Using a discretizing sequence {xk}M+1

k=N of ϕ , we define the sequence of intervals
{Jk}M

k=N as follows:

Ji = (xi,xi+1], if N � i < M, and JM = (xM,b) if M < ∞. (2.5)

THEOREM 2.9. ([1, Corollary 3.6 and Corollary 3.7]) Let 0 < q � +∞ . Suppose
that μ and ν are non-negative Borel measures on I = (a,b) . Let u ∈ B+(I) be such
that the function ‖u‖q,(a,t],ν < +∞ , t ∈ I . If {xk}M+1

k=N is a discretizing sequence of
ϕ(t) = ‖u‖q,(a,t+],ν := lims→t+ ‖u‖q,(a,s],ν , t ∈ I , then∥∥u(x)‖g‖∞,(x,b),μ

∥∥
q,I,ν ≈ ∥∥‖g‖∞,Jk,μ ‖u‖q,(a,xk+],ν

∥∥
�q(N,M) (2.6)

for all g ∈ B+(I) , where {Jk}M
k=N is defined by (2.5).

REMARK 2.10. Lemma 2.6 (iii), implies that {‖u‖q,(a,xk+],ν}M
k=N in Theorem 2.9

is an almost geometrically increasing sequence. (We can take α = L = 2 in Defini-
tion 2.2).

REMARK 2.11. Let q < +∞ . Then

‖u‖q,(a,x+],ν = ‖u‖q,(a,x],ν for all x ∈ I.

In this paper we shall need the Lebesgue-Stieltjes integral. To this end, we recall
some basic facts.

Let ϕ be non-decreasing and finite function on the interval I := (a,b) ⊆ R . We
assign to ϕ the function λ defined on subintervals of I by

λ ([α,β ]) = ϕ(β+)−ϕ(α−), (2.7)

λ ([α,β )) = ϕ(β−)−ϕ(α−), (2.8)

λ ((α,β ]) = ϕ(β+)−ϕ(α+), (2.9)

λ ((α,β )) = ϕ(β−)−ϕ(α+). (2.10)

The function λ is a non-negative, additive and regular function of intervals. Thus (cf.
[8], Chapter 10), it admits a unique extension to a non-negative Borel measure λ on I .
The Lebesgue-Stieltjes integral

∫
I f dϕ is defined as

∫
I f dλ .

If J ⊆ I , then the Lebesgue-Stieltjes integral
∫
J f dϕ is defined as

∫
J f dλ . We

shall also use the Lebesgue-Stieltjes integral
∫
J f dϕ when ϕ is a non-increasing and

finite on the interval I . In such a case we put∫
J

f dϕ := −
∫

J
f d(−ϕ).

If ϕ is a non-decreasing, finite and right-continuous function on I = (a,b) and
J is a subinterval of I of the form (α,β ) , [α,β ) or (α,β ] , then the formulae (2.10),
(2.8) and (2.9) imply that ∫

(α ,β )
dϕ = ϕ(β−)−ϕ(α), (2.11)
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∫
[α ,β )

dϕ = ϕ(β−)−ϕ(α−), (2.12)
∫

(α ,β ]
dϕ = ϕ(β )−ϕ(α). (2.13)

In this paper the role of the function ϕ will be played by a function h which will
be non-decreasing and right-continuous or non-increasing and left-continuous on I . At
the first case, the associated Borel measure λ will be determined by (cf. (2.9))

λ ((α,β ]) = h(β )−h(α) for any (α,β ] ⊂ I (2.14)

(since the Borel subsets of I can be generated by subintervals (α,β ] ⊂ I ).
Considering inequalities (1.5) and (1.6), in the case when 0 < p < q � +∞ and

1/r = 1/p−1/q , we shall write conditions characterizing the validity of inequalities in
a compact form involving

∫
(a,b) f dh . To this end, we adopt the following conventions

from [1].

CONVENTION 2.12. Let I = (a,b) ⊆ R , f : I → [0,∞] and h : I → [−∞,0] . As-
sume that h is non-decreasing and right-continuous on I . If h : I → (−∞,0] , then the
symbol

∫
I f dh means the usual Lebesgue-Stieltjes integral. However, if h = −∞ on

some subinterval (a,c) with c ∈ I , then we define
∫
I f dh only if f = 0 on (a,c] and

we put ∫
I
f dh =

∫
(c,b)

f dh.

CONVENTION 2.13. Let I = (a,b)⊆R , f : I → [0,∞] and h : I → [0,∞] . Assume
that h is non-decreasing and left-continuous on I . If h : I → [0,∞) , then the symbol∫
I f dh means the usual Lebesgue-Stieltjes integral. However, if h = +∞ on some

subinterval (c,b) with c ∈ I , then we define
∫
I f dh only if f = 0 on [c,b) and we put

∫
I
f dh =

∫
(a,c)

f dh.

3. Reverse Hardy-type inequalities for supremal operators

In this section we characterize inequality (1.5). We start with the following dis-
cretization lemma.

LEMMA 3.1. Assume that 0 < p, q � +∞ . Let μ and ν be non-negative Borel
measures on I = (a,b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I) satisfy ‖u‖q,(a,t],ν < ∞
for all t ∈ I and u 	= 0 a.e. on (a,b) . If {xk}M+1

k=N is a discretizing sequence of ϕ(t) :=
‖u‖q,(a,t+],ν , then inequality (1.5) holds for all g ∈ B+(I) if and only if

A :=
∥∥∥{‖w‖p,Jk,μ ‖u‖−1

q,(a,xk+],ν

}∥∥∥
�ρ (N,M)

< ∞, (3.1)
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and
w = 0 μ −a.e. in (a,xN ] if xN > a, (3.2)

where 1/ρ := (1/p−1/q)+ .
The best possible constant c in (1.5) satisfies c ≈ A.

Proof. By Theorem 2.9,∥∥u(x)‖g‖∞,(x,b),μ
∥∥

q,I,ν ≈ ∥∥{‖g‖∞,Jk,μ‖u‖q,(a,xk+],ν
}∥∥

�q(N,M) , (3.3)

for all g ∈ B+(I) , where {xk}M+1
k=N is a discretizing sequence of the function ϕ(t) =

‖u‖q,(a,t+],ν , t ∈ (a,b) , and {Jk}M
k=N is defined by (2.5). By Lemma 2.6 (cf. also

Remark 2.8),

if xN > a, then ‖u‖q,(a,xN),ν = 0; (3.4)

if M < +∞, then xM+1 = b;

‖u‖q,(a,xk+1),ν � 2‖u‖q,(a,xk+],ν if N � k � M; (3.5)

2‖u‖q,(a,xk),ν � ‖u‖q,(a,xk+1+],ν if N < k < M. (3.6)

Sufficiency. Let (3.1) and (3.2) hold. Since

‖gw‖p,(a,b),μ =
∥∥{‖gw‖p,Jk,μ

}∥∥
�p(N,M) , for any g ∈ B+(I), (3.7)

and
‖gw‖p,Jk,μ � ‖g‖∞,Jk,μ‖w‖p,Jk,μ , N � k � M, (3.8)

on using (2.1) and (3.3), we have that

‖gw‖p,(a,b),μ �
∥∥{‖g‖∞,Jk,μ‖w‖p,Jk,μ

}∥∥
�p(N,M)

�
∥∥∥{‖w‖p,Jk,μ‖u‖−1

q,(a,xk+],ν

}∥∥∥
�ρ (N,M)

∥∥{‖g‖∞,Jk,μ‖u‖q,(a,xk+],ν
}∥∥

�q(N,M)

≈
∥∥∥{‖w‖p,Jk,μ‖u‖−1

q,(a,xk+],ν

}∥∥∥
�ρ (N,M)

∥∥u(x)‖g‖∞,(x,b),μ
∥∥

q,I,ν

Consequently, c � A .
Necessity. We now prove necessity. The validity of inequality (1.5) on B+(I) and

(3.3) imply that∥∥{‖gw‖p,Jk,μ
}∥∥

�p(N,M) � c
∥∥{‖g‖∞,Jk,μ‖u‖q,(a,xk+],ν

}∥∥
�q(N,M) (3.9)

for all g ∈ B+(I) .
Let gk ∈ B+(I) , N � k � M , be functions such that

suppgk ⊂ Jk, ‖gk‖∞,Jk,μ = 1 and ‖gw‖p,Jk,μ � ‖w‖p,Jk,μ . (3.10)
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Then we define the test function g by

g =
M

∑
k=N

akgk, (3.11)

where {ak} is a sequence of non-negative numbers. Consequently, (3.9) yields∥∥{ak‖w‖p,Jk,μ
}∥∥

�p(N,M) � c
∥∥{ak‖u‖q,(a,xk+],ν

}∥∥
�q(N,M) , (3.12)

and, by Proposition 2.5, we arrive at

A =
∥∥∥{‖w‖p,Jk,μ ‖u‖−1

q,(a,xk+],ν

}∥∥∥
�ρ (N,M)

� c. (3.13)

On the other hand, assuming that xN > a , testing (1.5) with g = χ(a,xN ] and using
(3.4), we arrive at ‖w‖p,(a,xN ],μ = 0, which implies (3.2). �

The following lemma is true.

LEMMA 3.2. Assume that 0 < q � p � +∞ . Let μ and ν be non-negative Borel
measures on I = (a,b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I) satisfy ‖u‖q,(a,t],ν < ∞
for all t ∈ I and u 	= 0 a.e. on (a,b) . If {xk}M+1

k=N is a discretizing sequence of ϕ(t) =
‖u‖q,(a,t+],ν , t ∈ I , then

A =
∥∥∥{‖w‖p,Jk,μ ‖u‖−1

q,(a,xk+],ν

}∥∥∥
�∞(N,M)

< ∞, (3.14)

and (3.2) hold if and only if

A1 :=
∥∥∥‖w‖p,(a,x],μ‖u‖−1

q,(a,x),ν

∥∥∥
∞,(a,b),μ

< ∞. (3.15)

Moreover, A ≈ A1 .

Proof. Sufficiency. Assume that A1 < ∞ . This condition and (3.4) imply that

‖w‖p,(a,xN ],μ = 0 if xN > a. (3.16)

Consequently, (3.2) holds.
Applying (3.5), we get that

A = sup
N�k�M

‖w‖p,Jk,μ‖u‖−1
q,(a,xk+],ν �2 sup

N�k�M
‖w‖p,Jk,μ‖u‖−1

q,(a,xk+1),ν

�2 sup
N�k�M

‖w‖p,(a,xk+1]∩I,μ‖u‖−1
q,(a,xk+1),ν

�2A1.

Necessity. Assume that (3.14) and (3.2) hold. Therefore, on using (2.5),

A1 = sup
N�k�M

∥∥∥‖w‖p,(a,x],μ‖u‖−1
q,(a,x),ν

∥∥∥
∞,Jk ,μ
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and hence

A1 � sup
N�k�M

‖w‖p,(a,xk+1]∩I,μ

∥∥∥‖u‖−1
q,(a,x),ν

∥∥∥
∞,Jk ,μ

� sup
N�k�M

‖w‖p,(a,xk+1]∩I,μ‖u‖−1
q,(a,xk+],ν .

Applying (3.2) again, on using the fact that {‖u‖−1
q,(a,xk+],ν}M

k=N is almost geometrically
decreasing and Lemma 2.4, we obtain that

A1 � sup
N�k�M

‖w‖p,Jk,μ‖u‖−1
q,(a,xk+],ν = A. �

To prove our main statement we need the following lemma.

LEMMA 3.3. Assume that 0 < p < q � +∞ and 1/r = 1/p−1/q. Let μ and ν
be non-negative Borel measures on I = (a,b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I)
satisfy ‖u‖q,(a,t],ν < ∞ for all t ∈ I and u 	= 0 a.e. on (a,b) . If {xk}M+1

k=N is a discretizing
sequence of ϕ(t) = ‖u‖q,(a,t+],ν , t ∈ I , then

A =
∥∥∥{‖w‖p,Jk,μ ‖u‖−1

q,(a,xk+],ν

}∥∥∥
�r(N,M)

< ∞, (3.17)

and (3.2) hold if and only if

A2 :=
(∫

(a,b)
‖w‖r

p,(a,x],μd
(
−‖u‖−r

q,(a,x+],ν

))1/r

+‖w‖p,(a,b),μ‖u‖−1
q,(a,b),ν < ∞. (3.18)

Moreover, A ≈ A2 .

Proof. Let {xk}M+1
k=N be a discretizing sequence of the function ϕ(t)= ‖u‖q,(a,t+],ν ,

t ∈ (a,b) , and {Jk}M
k=N is defined by (2.5). By Lemma 2.6 (cf. also Remark 2.8), (3.4)-

(3.6) hold.
Sufficiency. Assume that A2 < ∞ . This condition, (3.4) and Convention 2.12 imply

that (3.2) holds. By (3.6),

2‖u‖q,(a,xk+1),ν � ‖u‖q,(a,xk+2+],ν � ‖u‖q,(a,xk+3),ν if N < k+1 < M.

Therefore,
‖u‖−r

q,(a,xk+3),ν
� 2−r ‖u‖−r

q,(a,xk+1),ν
,

which yields

‖u‖−r
q,(a,xk+1),ν

−‖u‖−r
q,(a,xk+3),ν

� (1−2−r)‖u‖−r
q,(a,xk+1),ν

if N � k � M−2.

Assume that N � M−2. On using (3.5) and the last estimate, we arrive at

Ar �
M

∑
k=N

‖w‖r
p,Jk,μ‖u‖−r

q,(a,xk+1),ν

�
M−2

∑
k=N

‖w‖r
p,Jk,μ

(
‖u‖−r

q,(a,xk+1),ν
−‖u‖−r

q,(a,xk+3),ν

)
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+‖w‖r
p,JM−1,μ

(
‖u‖−r

q,(a,xM),ν −‖u‖−r
q,(a,b),ν

)
+‖w‖r

p,JM−1,μ‖u‖−r
q,(a,b),ν +‖w‖r

p,JM,μ‖u‖−r
q,(a,b),ν. (3.19)

Now, by (2.12) with ϕ(t) = −‖u‖−r
q,(a,t+],ν , t ∈ I , and [α,β ) = [xk+1,xk+3) , N � k �

M−2, or [α,β ) = [xM,b) , we obtain that

Ar �
M−2

∑
k=N

‖w‖r
p,Jk,μ

∫
[xk+1,xk+3)

d
(
−‖u‖−r

q,(a,t+],ν

)

+‖w‖r
p,JM−1,μ

∫
[xM ,b)

d
(
−‖u‖−r

q,(a,t+],ν

)
+2‖w‖r

p,(a,b),μ‖u‖−r
q,(a,b),ν

�
M−2

∑
k=N

∫
[xk+1,xk+3)

‖w‖r
p,(a,t],μ d

(
−‖u‖−r

q,(a,t+],ν

)

+
∫

[xM ,b)
‖w‖r

p,(a,t],μ d
(
−‖u‖−r

q,(a,t+],ν

)
+2‖w‖r

p,(a,b),μ‖u‖−r
q,(a,b),ν

�
∫

(a,b)
‖w‖r

p,(a,t],μ d
(
−‖u‖−r

q,(a,t+],ν

)
+2‖w‖r

p,(a,b),μ‖u‖−r
q,(a,b),ν

� Ar
2

(note that we have used (3.2) and Convention 2.12), that is,

A � A2. (3.20)

If N > M−2, then (3.20) can be proved more simply and we omit the proof.

Necessity. Now assume that A < ∞ and (3.2) holds. On using (3.2), together with
(2.13) and (2.11), we have that

Ar
2 ≈

M

∑
k=N

∫
Jk
‖w‖r

p,(a,x],μd
(
−‖u‖−r

q,(a,x+],ν

)
+‖w‖r

p,(a,b),μ‖u‖−r
q,(a,b),ν

�
M−1

∑
k=N

‖w‖r
p,(a,xk+1],μ

∫
Jk

d
(
−‖u‖−r

q,(a,x+],ν

)

+‖w‖r
p,(a,b),μ

∫
(xM ,b)

d
(
−‖u‖−r

q,(a,x+],ν

)
+‖w‖r

p,(a,b),μ‖u‖−r
q,(a,b),ν

=
M−1

∑
k=N

‖w‖r
p,(a,xk+1],μ

(
‖u‖−r

q,(a,xk+],ν −‖u‖−r
q,(a,xk+1+],ν

)

+‖w‖r
p,(a,b),μ

(
‖u‖−r

q,(a,xM+],ν −‖u‖−r
q,(a,b),ν

)
+‖w‖r

p,(a,b),μ‖u‖−r
q,(a,b),ν

�
M−1

∑
k=N

‖w‖r
p,(a,xk+1],μ‖u‖

−r
q,(a,xk+],ν +‖w‖r

p,(a,b),μ‖u‖−r
q,(a,xM+],ν . (3.21)
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Thus, using (3.2) again, we arrive at

Ar
2 �

M

∑
k=N

‖w‖r
p,(a,xk+1]∩I,μ‖u‖−r

q,(a,xk+],ν

=
M

∑
k=N

(
k

∑
i=N

‖w‖r
p,Ji,μ

)
‖u‖−r

q,(a,xk+],ν

Now, the fact that {‖u‖−r
q,(a,xk+],ν}M

k=N is almost geometrically decreasing and Lemma
2.4 imply that

A2 �
(

M

∑
k=N

‖w‖r
p,Jk,μ‖u‖−r

q,(a,xk+],ν

)1/r

= A. (3.22)

Combining (3.20) and (3.22), we get A ≈ A2 . �
Now we are in position to prove our first main result.

THEOREM 3.4. Assume that 0 < p, q � +∞ . Let μ and ν be non-negative Borel
measures on I = (a,b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I) satisfy ‖u‖q,(a,t],ν < ∞
for all t ∈ I and u 	= 0 a.e. on (a,b) .

(i) Let 0 < q � p � +∞ . Then inequality (1.5) holds for all g ∈ B+(I) if and only
if

A1 =
∥∥∥‖w‖p,(a,x],μ‖u‖−1

q,(a,x),ν

∥∥∥
∞,(a,b),μ

< ∞. (3.23)

The best possible constant c in (1.5) satisfies c ≈ A1 .
(ii) Let 0 < p < q < +∞ and 1/r = 1/p−1/q. Then inequality (1.5) holds for all

g ∈ B+(I) if and only if

A2 =
(∫

(a,b)
‖w‖r

p,(a,x],μd
(
−‖u‖−r

q,(a,x],ν

))1/r

+‖w‖p,(a,b),μ‖u‖−1
q,(a,b),ν < ∞. (3.24)

The best possible constant c in (1.5) satisfies c ≈ A2 .
(iii) Let 0 < p < +∞ , q = +∞ . Then inequality (1.5) holds for all g ∈ B+(I) if

and only if

A3 =

(∫
(a,b)

(
w(x)

‖u‖∞,(a,x),ν

)p

dμ(x)

)1/p

(3.25)

≈
(∫

(a,b)
‖w‖p

p,(a,x],μd
(
−‖u‖−p

∞,(a,x+],ν

))1/p

+‖w‖p,(a,b),μ‖u‖−1
∞,(a,b),ν < ∞.

The best possible constant c in (1.5) satisfies c ≈ A3 .

Proof. (i) Let 0 < q � p � +∞ . The statement follows by Lemmas 3.1 and 3.2.
(ii) Let 0 < p < q < +∞ . The statement follows by Lemmas 3.1 and 3.3.
(iii) Let 0 < p < q = +∞ . The statement follows by Lemmas 3.1, 3.3 and an

integration by parts formula. �
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REMARK 3.5. Let q < +∞ . Since

‖u‖q,(a,x+],ν = ‖u‖q,(a,x],ν for all x ∈ I,

the cases (ii) and (iii) can be combined:
(ii)′ Let 0 < p < q � +∞ and 1/r = 1/p−1/q . Then inequality (1.5) holds for

all g ∈ B+(I) if and only if

A′
2 :=

(∫
(a,b)

‖w‖r
p,(a,x],μd

(
−‖u‖−r

q,(a,x+],ν

))1/r

+‖w‖p,(a,b),μ‖u‖−1
q,(a,b),ν < ∞.

The best possible constant c in (1.5) satisfies c ≈ A′
2 .

REMARK 3.6. Note that inequality (1.5) can be easily characterized by a more
simply argumentations when q = +∞ . Exchanging essential suprema, we have that

‖u(x)‖g‖∞,(x,b),μ‖∞,(a,b),ν = ‖‖u‖∞,(a,x),νg(x)‖∞,(a,b),μ , g ∈ B+(I). (3.26)

Consequently, (1.5) is nothing else the description of the embeddings of weighted
L∞(μ) to weighted Lp(ν) (see, for instance, [2, Proposition 6.13]). Indeed: on us-
ing (3.26), for the best constant c in (1.5) we have that

c =sup
g 	∼0

‖gw‖p,(a,b),μ

‖u(x)‖g‖∞,(x,b),μ‖∞,(a,b),ν

=sup
g 	∼0

‖gw‖p,(a,b),μ

‖‖u‖∞,(a,x),νg(x)‖∞,(a,b),μ

=

(∫
(a,b)

(
w(x)

‖u‖∞,(a,x),ν

)p

dμ(x)

)1/p

,

when 0 < p < +∞ , and

c =
∥∥∥w(x)‖u‖−1

∞,(a,x),ν

∥∥∥
∞,(a,b),μ

=
∥∥∥‖w‖∞,(a,x],μ‖u‖−1

∞,(a,x),ν

∥∥∥
∞,(a,b),μ

,

when p = +∞ . In the last equality, exchanging essential suprema, we have used that

∥∥∥w(x)‖u‖−1
∞,(a,x),ν

∥∥∥
∞,(a,b),μ

=
∥∥∥∥w(x)

∥∥∥‖u‖−1
∞,(a,t),ν

∥∥∥
∞,[x,b),μ

∥∥∥∥
∞,(a,b),μ

=
∥∥∥∥
∥∥∥w(x)‖u‖−1

∞,(a,t),ν

∥∥∥
∞,[x,b),μ

∥∥∥∥
∞,(a,b),μ

=
∥∥∥∥
∥∥∥w(x)χ[x,b)(t)‖u‖−1

∞,(a,t),ν

∥∥∥
∞,(a,b),μ

∥∥∥∥
∞,(a,b),μ
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=
∥∥∥∥∥w(x)χ[x,b)(t)

∥∥
∞,(a,b),μ ‖u‖−1

∞,(a,t),ν

∥∥∥
∞,(a,b),μ

=
∥∥∥‖w‖∞,(a,t],μ‖u‖−1

∞,(a,t),ν

∥∥∥
∞,(a,b),μ

.

(see, [1, Remark 4.2]).

4. Reverse inequality for the dual operator

The aim of this section is to characterize the inequality (1.6).

THEOREM 4.1. Assume that 0 < p, q � +∞ . Let μ and ν be non-negative Borel
measures on I = (a,b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I) satisfy ‖u‖q,[t,b),ν < ∞
for all t ∈ I and u 	= 0 a.e. on (a,b) .

(i) Let 0 < q � p � +∞ . Then inequality (1.6) holds for all g ∈ B+(I) if and only
if

B1 :=
∥∥∥‖w‖p,[x,b),μ‖u‖−1

q,(x,b),ν

∥∥∥
∞,(a,b),μ

< ∞. (4.1)

The best possible constant c in (1.6) satisfies c ≈ B1 .
(ii) Let 0 < p < q < +∞ and 1/r = 1/p−1/q. Then inequality (1.6) holds for all

g ∈ B+(I) if and only if

B2 :=
(∫

(a,b)
‖w‖r

p,[x,b),μd
(
‖u‖−r

q,[x,b),ν

))1/r

+‖w‖p,(a,b),μ‖u‖−1
q,(a,b),ν < ∞. (4.2)

The best possible constant c in (1.6) satisfies c ≈ B2 .
(iii) Let 0 < p < +∞ , q = +∞ . Then inequality (1.6) holds for all g ∈ B+(I) if

and only if

B3 : =

(∫
(a,b)

(
w(x)

‖u‖∞,(x,b),ν

)p

dμ(x)

)1/p

(4.3)

≈
(∫

(a,b)
‖w‖p

p,[x,b),μd
(
‖u‖−p

∞,[x−,b),ν

))1/p

+‖w‖p,(a,b),μ‖u‖−1
∞,(a,b),ν < ∞,

where
‖u‖∞,[x−,b),ν := lim

s→t−‖u‖∞,[s,b),ν .

The best possible constant c in (1.6) satisfies c ≈ B3 .

REMARK 4.2. Note that the proof of Theorem 4.1 is similar to the proof of The-
orems 5.1 and 5.4 from [1]. For the sake of completeness we give complete proof here.

Proof. If λ is a non-negative Borel measure on I , we denote by λ̃ a non-negative
Borel measure on Ĩ := (−b,−a) defined by

λ̃ := λ (−E), where −E := {−x : x ∈ E}.
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Similarly, if h ∈ B+(I) , then the function h̃ ∈ B+(Ĩ) is given by

h̃ := h(−x), x ∈ Ĩ.

It is clear that ∫
E

hdλ =
∫
−E

h̃dλ̃ , (4.4)

and
‖h‖∞,E,λ = ‖h̃‖∞,−E,λ̃ , (4.5)

for any Borel subset E of I . In particular,

‖gw‖p,(a,b),μ = ‖g̃w̃‖p,(−b,−a),μ̃,

‖u(x)‖g‖∞,(a,x),μ‖q,(a,b),ν = ‖ũ(x)‖g‖∞,(a,−x),μ‖q,(−b,−a),ν̃ ,

= ‖ũ(x)‖g̃‖∞,(x,−a),μ̃‖q,(−b,−a),ν̃ .

Consequently, inequality (1.6) holds for all g ∈ B+(I) if and only if the inequality

‖g̃w̃‖p,(−b,−a),μ̃ � c‖ũ(x)‖g̃‖∞,(x,−a),μ̃‖q,(−b,−a),ν̃ (4.6)

holds for all g̃ ∈ B+(Ĩ) .
(i) Let 0 < q � p � +∞ . Since ‖ũ‖q,(−b,x],ν̃ = ‖u‖q,[−x,b),ν if x ∈ (−b,−a) , we

deduce from Theorem 3.4 that inequality (1.6) holds on B+(I) if and only if

sup
x∈(−b,−a)

‖w̃‖p,(−b,x],μ̃ ‖ũ‖−1
q,(−b,x],ν̃ < ∞. (4.7)

However, using (4.4) and (4.5), we see that condition (4.7) coincides with (4.1).
(ii) Let 0 < p < q < +∞ and 1/r = 1/p−1/q . By Theorem 3.4, inequality (1.6)

holds for all g ∈ B+(I) if and only if

A2 :=
(∫

(−b,−a)
‖w̃‖r

p,(−b,x],μ̃ d
(
−‖ũ‖−r

q,(−b,x],ν̃

))1/r

+‖w̃‖p,(−b,−a),μ̃‖ũ‖−1
q,(−b,−a),ν̃ < ∞. (4.8)

It is clear that

‖w̃‖p,(−b,−a),μ̃ = ‖w‖p,(a,b),μ and ‖ũ‖q,(−b,−a),ν̃ = ‖u‖q,(a,b),ν . (4.9)

Moreover, by the definition of the Lebesgue-Stieltjes integral,∫
(−b,−a)

‖w̃‖r
p,(−b,x],μ̃d

(
−‖ũ‖−r

q,(−b,x],ν̃

)
=
∫

(−b,−a)
‖w̃‖r

p,(−b,x],μ̃dλ̃ = : D, (4.10)

where λ̃ is the non-negative Borel measure associated to the non-decreasing and right-
continuous function ϕ̃(x) := −‖ũ‖−r

q,(−b,x],ν̃ , x ∈ (−b,−a) , that is,

λ̃ ((α̃ , β̃ ]) = ϕ̃(β̃ )− ϕ̃(α̃) for any (α̃, β̃ ] ⊂ (−b,−a).
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Since, by (4.4),

‖w̃‖r
p,(−b,x],μ̃ = ‖w‖r

p,[x,b),μ for all t ∈ (−b,−a),

we obtain from (4.4) that

D =
∫

(−b,−a)
‖w̃‖r

p,(−b,x],μ̃dλ̃ =
∫

(a,b)
‖w‖r

p,[x,b),μ dλ , (4.11)

where λ (E) = λ̃ (−E) if E is a Borel subset of I . In particular, if [α,β ) ⊂ (a,b) , then

λ ([α,β )) = λ̃ ((−β ,−α]) = ϕ̃(−α)− ϕ̃(−β )

= −‖ũ‖−r
q,(−b,−α ],ν̃ +‖ũ‖−r

q,(−b,−β ],ν̃

= −‖u‖−r
q,[α ,b),ν +‖u‖−r

q,[β ,b),ν.

That means that the non-negative Borel measure λ is associated to the non-decreasing
and left-continuous function ϕ given on (a,b) by

ϕ(x) := ‖u‖−r
q,[x,b),ν , x ∈ (a,b).

Consequently, ∫
(a,b)

‖w‖r
p,[x,b),μ dλ =

∫
(a,b)

‖w‖r
p,[x,b),μ d

(
‖u‖−r

q,[x,b),ν

)
. (4.12)

The result now follows from (4.8)-(4.12).
(iii) Let 0 < p < +∞ , q = +∞ . By Theorem 3.4, inequality (1.6) holds for all

g ∈ B+(I) if and only if

∫
(−b,−a)

(
w̃(x)

‖ũ‖∞,(−b,x),ν̃

)p

dμ̃(x) < ∞. (4.13)

By (4.5) and (4.4), we have that ‖ũ‖∞,(−b,x),ν̃ = ‖u‖∞,(−x,b),ν

∫
(−b,−a)

(
w̃(x)

‖ũ‖∞,(−b,x),ν̃

)p

dμ̃(x) =
∫

(−b,−a)

(
w̃(x)

‖u‖∞,(−x,b),ν

)p

dμ̃(x)

=
∫

(a,b)

(
w(x)

‖u‖∞,(x,b),ν

)p

dμ(x),

and we see that (4.13) coincides with (4.3).
The equivalency in (4.3) can be shown by the same argumentations as in the case

(i) and (ii) or by an integration by parts formula. �

REMARK 4.3. Let q < +∞ . Then

‖u‖q,[x−,b),ν := lim
s→t−‖u‖q,[s,b),ν = ‖u‖q,[x,b),ν for all x ∈ I,
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which allows us to combine the cases (ii) and (iii) of Theorem 4.1:
(ii)′ Let 0 < p < q � +∞ and 1/r = 1/p−1/q . Then inequality (1.6) holds for

all g ∈ B+(I) if and only if

B′
2 :=

(∫
(a,b)

‖w‖r
p,[x,b),μd

(
‖u‖−r

q,[x−,b),ν

))1/r

+‖w‖p,(a,b),μ‖u‖−1
q,(a,b),ν < ∞.

The best possible constant c in (1.6) satisfies c ≈ B′
2 .

5. Inequalities involving three measures

Now, we consider the inequality

‖g‖p,(a,b),λ � c‖u(x)‖g‖∞,Sx,μ‖q,(a,b),ν , g ∈ B+(I), (5.1)

for all non-negative Borel measurable functions g on the interval (a,b) ⊆ R , where
0 < p � +∞ , 0 < q � +∞ , λ , μ and ν are non-negative Borel measures on (a,b) , u
is a weight function on I and either Sx = (a,x) or Sx = (x,b) for all x ∈ I .

By the same way as it has been done in [1], it is easy to show that in order to
characterize the validity of (5.1) it is enough to characterize the validity of the inequality

‖gw‖p,(a,b),μ � c‖u(x)‖g‖∞,Sx,μ‖q,(a,b),ν , g ∈ B+(I). (5.2)

THEOREM 5.1. Assume that 0 < p, q � +∞ . Let λ , μ and ν be non-negative
Borel measures on I = (a,b) ⊆ R and let u ∈ B+(I) . Then inequality (5.1) holds for
all g ∈ B+(I) if and only if the measure λ is absolutely continuous with respect to μ
and inequality (5.2) with w := (dλ/dμ)1/p holds for all g ∈ B+(I) .

Proof. Assume that (5.1) holds for all g∈B+(I) . Let E ⊆ I be such that μ(E)= 0
and put g = χE . Then ‖g‖∞,Sx,μ = 0 for all x∈ I . Therefore, the right-hand side of (5.1)
is zero, which implies that λ (E) = 0, when 0 < p < +∞ , for λ (E) = ‖g‖p

p,(a,b),λ =
0, and when p = +∞ , for ‖g‖∞,(a,b),λ = ‖χE‖∞,(a,b),λ = 0. Hence, λ is absolutely
continuous with respect to μ , and, by the Radon-Nykodym theorem, there is v∈ B+(I)
such that dλ = vdμ . Putting w = v1/p , we have that dλ = wpdμ . Consequently, for
any g ∈ B+(I) , we can rewrite the left-hand side of (5.1) as

‖g‖p,(a,b),λ = ‖gw‖p,(a,b),μ,

and our claim follows. �
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