
Mathematical
Inequalities

& Applications

Volume 18, Number 4 (2015), 1313–1320 doi:10.7153/mia-18-102

ON SOME INEQUALITIES OF CHEBYSHEV TYPE

ANDRIY L. SHIDLICH AND STANISLAV O. CHAICHENKO

(Communicated by S. Varošanec)

Abstract. We obtain some new inequalities of Chebyshev Type.

1. Introduction

Let f , g : [a,b] → R be integrable functions, both increasing or both decreas-
ing. Further, let p : [a,b] → R

+
0 be an integrable function. Then (see, for example, [5,

Chap. IX])

∫ b

a
p(x) f (x)g(x)dx �

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx

(∫ b

a
p(x)dx

)−1

. (1)

If one of the functions f or g is nonincreasing and the other nondecreasing the reversed
inequality is true, i.e.,

∫ b

a
p(x) f (x)g(x)dx �

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx

(∫ b

a
p(x)dx

)−1

. (2)

Inequalities (1) and (2) are known as Chebyshev’s inequalities. These inequalities were
obtained by P. L. Chebyshev [1, 2] and they attracted great interest of the researchers.
So, a lot of analogues and generalizations of inequalities (1) and (2) is known. In
particular, these results can be found in Chapter IX of the book [5] by D. S. Mitrinović,
J. E. Pečarić and A. M. Fink which trace completely the historical and chronological
developments of Chebyshev’s and related inequalities (see also [4, 6]). Also we would
like to recommend the article of H. P. Heinig and L. Maligranda [3], where one can
found a lot of important results on Chebyshev’s inequalities for strongly increasing
functions, positive convex and concave functions as well as on Chebyshev’s inequalities
in Banach function spaces and symmetric spaces.
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In [7], these investigations were developed in the following direction: the au-
thor found necessary and sufficient conditions on the function g : [a,b] → R

+
0 and

p : [a,b] → R
+ such that for any monotone function f : [a,b] → R

+
0 the relations

b∫
a

p(x) f (x)g(x)dx �
( b∫

a

pr(x) f r(x)dx

)1/r b∫
a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1/r

(3)

and

b∫
a

p(x) f (x)g(x)dx �
( b∫

a

pr(x) f r(x)dx

)1/r b∫
a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1/r

(4)

hold with r being an arbitrary positive number.
In this paper we continue the study of the inequalities of the type (1)–(4), namely,

we obtain the following assertions:

THEOREM 1. Assume that g: [a,b] → R
+
0 and p: [a,b] → R

+ are integrable
functions such that the product p ·g is also integrable on [a,b] function. Let f : [a,b]→
R

+
0 be a nonincreasing function. Then for any convex function M: [0,∞) → R such

that M(0) = 0 , the following inequality is true:

∫ b

a
p(x)g(x)M( f (x))dx � sup

s∈(a,b]

{
M

(∫ b
a p(x) f (x)dx∫ s

a p(x)dx

)∫ s

a
p(x)g(x)dx

}
, (5)

and for any concave function M: [0,∞) → R such that M(0) = 0 , the following in-
equality is true:

∫ b

a
p(x)g(x)M( f (x))dx � inf

s∈(a,b]

{
M

(∫ b
a p(x) f (x)dx∫ s

a p(x)dx

)∫ s

a
p(x)g(x)dx

}
. (6)

Putting M(t) = t1/r , r > 0, from Theorem 1 we obtain the following corollaries:

COROLLARY 1. Let r ∈ (0,1] , and let g: [a,b] → R
+
0 and p: [a,b] → R

+ be
integrable functions such that for all s ∈ (a,b] ,

∫ s
a p(x)g(x)dx(∫ s
a p(x)dx

)1/r
�

∫ b
a p(x)g(x)dx(∫ b
a p(x)dx

)1/r
. (7)

Then for any nonincreasing function f : [a,b] → R
+
0 ,

∫ b

a
p(x)g(x) f (x)dx �

(∫ b

a
p(x) f r(x)dx

)1/r ∫ b
a p(x)g(x)dx(∫ b
a p(x)dx

)1/r
. (8)
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COROLLARY 2. Let r � 1 , and let g: [a,b] → R
+
0 and p: [a,b] → R

+ be inte-
grable functions such that for all s ∈ (a,b] ,∫ s

a p(x)g(x)dx(∫ s
a p(x)dx

)1/r
�

∫ b
a p(x)g(x)dx(∫ b
a p(x)dx

)1/r
. (9)

Then for any nonincreasing function f : [a,b] → R
+
0 ,

∫ b

a
p(x)g(x) f (x)dx �

(∫ b

a
p(x) f r(x)dx

)1/r ∫ b
a p(x)g(x)dx(∫ b
a p(x)dx

)1/r
. (10)

If in corollaries 1 and 2, we put r = 1, then we see that relations (8) and (10) are
the Chebyshev’s classical inequalities (1) and (2). Furthermore, it should be noted that
conditions on the functions p and g of the form (7) and (9) for validity of inequalities
(1) and (2) were considered in the papers [7] and [8].

In the case, where the function M( f (x)) is nonincreasing and the function g is
nondecreasing (or nonincreasing), we can apply the Chebyshev’s classical inequalities
to the integral

∫ b
a p(x)g(x)M( f (x))dx on the left-hand side of relations (5) (or (6)).

Respectively, we obtain
∫ b

a
p(x)g(x)M( f (x))dx �

∫ b
a p(x)M( f (x))dx∫ b

a p(x)dx

∫ b

a
p(x)g(x)dx (11)

and ∫ b

a
p(x)g(x)M( f (x))dx �

∫ b
a p(x)M( f (x))dx∫ b

a p(x)dx

∫ b

a
p(x)g(x)dx. (12)

Furthermore, if exact upper (or lower) bound on the right–hand side of (5) (or (6)) is
realized for s = b , then from relations (5) and (6) we get

∫ b

a
p(x)g(x)M( f (x))dx � M

(∫ b
a p(x) f (x)dx∫ b

a p(x)dx

)∫ b

a
p(x)g(x)dx, (13)

and ∫ b

a
p(x)g(x)M( f (x))dx � M

(∫ b
a p(x) f (x)dx∫ b

a p(x)dx

)∫ b

a
p(x)g(x)dx. (14)

Here, it should be note that by virtue of Jensen’s inequality (see, for example, [5,
Chap. I]), estimations (13) and (14) of the integral

∫ b
a p(x)g(x)M( f (x))dx are more

precisely, than estimations (11) and (12).

REMARK 1. In the case, where the function f is nondecreasing, inequalities (5)

and (6) have the similar form, but in these inequalities, all the integrals of the kind
s∫
a
(·)

should be replaced by the integrals of the kind
b∫
s
(·) .
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2. Discrete analogue of Theorem 1

LEMMA 1. Assume that a = {ak}m
k=1 , b = {bk}m

k=1 and p = {pk}m
k=1 , m ∈ N are

nonnegative number sequences such that a1 � a2 � . . .am and pk > 0 . Then for any
convex function M: [0,∞) → R such that M(0) = 0 , the following inequality is true:

m

∑
k=1

pkbkM(ak) � max
s∈[1,m]

{
M

(
∑m

k=1 pkak

∑s
k=1 pk

) s

∑
k=1

pkbk

}
, (15)

and for any concave function M: [0,∞) → R such that M(0) = 0 , the following in-
equality is true:

m

∑
k=1

pkbkM(ak) � min
s∈[1,m]

{
M

(
∑m

k=1 pkak

∑s
k=1 pk

) s

∑
k=1

pkbk

}
. (16)

Proof. Consider the case, where the function M is convex (in the case, where the
function M is concave, the proof is similar). Let us prove by the induction on m the
proposition that for any convex function M : [0,∞)→R such that M(0) = 0, inequality
(15) holds.

The case m = 1 is obvious.
Also consider the case m = 2.
Put

c = p1a1 + p2a2, x0 = p1a1, αk = pkbk, βk = p−1
k , k = 1,2, (17)

and consider on the interval [0,c] the function

h(x) = α1M(β1x)+ α2M(β2(c− x)). (18)

Due to convexity of the function M(t) , the function h(x) is also convex on [0,c].
Hence, this function attains its maximum value on any interval [x1,x2] ⊆ [0,c] at one
of its endpoints. Thus

h(x) � max{h(x1),h(x2)} ∀x ∈ [x1,x2]. (19)

Setting x1 := β2c(β1 + β2)−1 and x2 := c , we see that the number x0 (by virtue of
monotonicity of the sequence a ) belongs to the interval [x1,x2] .

Therefore, in view of relations (17)–(19) and of the equality M(0) = 0, we get

2

∑
k=1

pkbkM(ak) = h(x0) � max{h(x1),h(x2)}

= max

{
M
( p1a2 + p2a2

p1 + p2

)
(p1b2 + p2b2),M

( p1a2 + p2a2

p1

)
p1b1

}
.

Hence, for m = 2, inequality (15) holds.
Now, assume that for m = n−1 � 1, the proposition is true.
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Let us show that for m = n , it is also true. Let us use notations (17) and consider on
the interval [0,c] the function h(x) of the form as in (18). Setting x1 := β2c(β1 +β2)−1

and x2 := c− a3/β2 , we see that the number x0 (by virtue of monotonicity of the
sequence a ) belongs to the interval [x1,x2] . Thus in view of relations (17)–(19),

n

∑
k=1

pkbkM(ak) = h(x0)+
n

∑
k=3

pkbkM(ak) � max{h(x1),h(x2)}+
n

∑
k=3

pkbkM(ak). (20)

Further, in the case, where h(x1) � h(x2) , we set

p ′
k =

{
p1 + p2, k = 1,
pk+1, k = 2,m−1;

b′k =
{

(p1b1 + p2b2)/(p1 + p2), k = 1,
bk+1, k = 2,m−1;

(21)

a′k =
{

(p1a1 + p2a2)/(p1 + p2), k = 1,
ak+1, k = 2,m−1.

(22)

Then by virtue of (20), we conclude that the following relation is true:

m

∑
k=1

pkbkM(ak) �
m−1

∑
k=1

p′kb
′
kM(a′k). (23)

In the case, where h(x1) < h(x2) , relation (23) holds for the sequences a′ , b′ and p′ of
the form:

p ′
k =

⎧⎨
⎩

p1, k = 1,
p2 + p3, k = 2,
pk+1, k = 3,m−1;

b′k =

⎧⎨
⎩

b1, k = 1,
(p2b2 + p3b3)(p2 + p3)−1, k = 2,
bk+1, k = 3,m−1;

(24)

a′k =
{

(p1a1 + p2a2− p2a3)/p1, k = 1,
ak+1. k = 2,m−1,

(25)

The sum on the right-hand side of (23) contains n− 1 items. Furthermore, in both
cases, for the sequences a′ , b′ and p′ , the induction assumption is satisfied. Thus,
taking into account (21)–(25), we obtain the necessary estimate (15):

n

∑
k=1

pkbkM(ak) �
n−1

∑
k=1

p′kb
′
kM(a′k) � sup

s∈[1,n−1]

{
M

(
∑n−1

k=1 p′ka
′
k

∑s
k=1 p′k

)
s

∑
k=1

p′kb
′
k

}

� sup
s∈[1,n]

{
M

(
∑n

k=1 pkak

∑s
k=1 pk

) s

∑
k=1

pkbk

}
.

3. Proof of Theorem 1

Proof. Consider the case, where the function M is convex (in the case, where the
function M is concave, the proof is similar). First, let us verify that inequality (5) holds
for any function f such that for a certain m ∈ N ,

f (x) = ak, x ∈ [lk−1, lk), k = 1,2, . . . ,m,
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where a1 > a2 > .. . > am � 0 and a = l0 < l1 < .. . < lm = b .
For any k = 1,2, . . . ,m , we put

pk =

lk∫
lk−1

p(x)dx, bk =

lk∫
lk−1

p(x)g(x)dx

( lk∫
lk−1

p(x)dx

)−1

.

Then by virtue of Lemma 1, we get (5):

∫ b

a
p(x)g(x)M( f (x))dx =

m

∑
k=1

lk∫
lk−1

p(x)g(x)M( f (x))dx

=
m

∑
k=1

pkbkM(ak)

� sup
s∈[1,m]∩N

{
M

(
∑m

k=1 pkak

∑s
k=1 pk

) s

∑
k=1

pkbk

}

= sup
s∈[1,m]∩N

{
M

(∫ b
a p(x) f (x)dx∫ ls

a p(x)dx

)∫ ls

a
p(x)g(x)dx

}

� sup
s∈(a,b]

{
M

(∫ b
a p(x) f (x)dx∫ s

a p(x)dx

)∫ s

a
p(x)g(x) dx

}
.

Let us prove the validity of inequality (5) in general case. First, note that if the
functions M and f satisfy the conditions of Theorem 1, then there exists the num-
ber n0 = n0(M, f ) ∈ N such that for any n > n0 and for all x ∈ [a;b] , the inequality
|M( f (x))| < n holds.

For any n > n0 , consider the system of points l(n)
0 < l(n)

1 < .. . < l(n)
m = b , defined

in the following way: we put l(n)
0 := a and for any k ∈ [1;m]∩N the value l(n)

k is the

greatest positive number such that l(n)
k > l(n)

k−1 and for all x ∈ [l(n)
k−1; l

(n)
k ) the following

relation is true:

|M( f (l(n)
k−1))−M( f (x))| � 1

n
.

By virtue of the conditions on the function M and f , this system of points always exists
and m � 2n2 .

Further, consider the functions fn = fn(x) such that

fn(x) ≡ lim
t→l(n)

k −
f (t), for all x ∈ [l(n)

k−1; l
(n)
k ), k = 1,2, . . . ,m. (26)

We see that the inequality |M( f (x))−M( fn(x))|� 1
n holds for all n > n0 and x∈ [a,b] .

Due to integrability on [a,b] of the product p(x)g(x) , the values

∫ b

a
p(x)g(x)[M( f (x))−M( fn(x))] dx
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converge to zero as n → ∞ . Furthermore, for any n > n0 , the function fn(x) is non-
increasing and it takes finitely many values on [a,b] . Hence, this function satisfies the
conditions of the proposition proved above.

Thus, in view of (26) and continuity of the function M , we conclude that for any
ε > 0 and for all sufficiently great n (n > n1(ε)),

b∫
a

p(x)g(x)M( f (x))dx =
b∫

a

p(x)g(x)M( fn(x))dx

+
b∫

a

p(x)g(x)(M( f (x))−M( fn(x)))dx

� sup
s∈(a;b]

{
M

(∫ b
a p(x) fn(x)dx∫ s

a p(x)dx

)∫ s

a
p(x)g(x)dx

}
+

ε
2

� sup
s∈(a;b]

{
M

(∫ b
a p(x) f (x)dx∫ s

a p(x)dx

)∫ s

a
p(x)g(x)dx

}
+ ε.

Hence, relation (5) is true.
Analyzing the proof of Theorem 1, we see that the similar statement is also true in

the case, where b = ∞ .

THEOREM 1′ . Assume that g: [a,b] → R
+
0 and p: [a,b] → R

+ (where b ∈
(a,∞]) are integrable functions such that the product p · g is also integrable on [a,b]
function. Let also f : [a,b]→ R

+
0 be a nonincreasing function. Then for any convex (or

concave) function M: [0,∞) → R such that M(0) = 0 , inequality (5) (or inequality
(6)) is true.

Analogically, one can obtain the statement, similar to Lemma 1, in the case, where
n = ∞ .

LEMMA 1′ . Let a = {ak}∞
k=1 , b = {bk}∞

k=1 and p = {pk}∞
k=1 be nonnegative

number sequences such that a1 � a2 � . . . , pk > 0 and the series ∑∞
k=1 pkbk is conver-

gent. Then for any convex function M: [0,∞) → R such that M(0) = 0 , the following
inequality is true:

∞

∑
k=1

pkbkM(ak) � sup
s∈[1,∞)

{
M

(
∑∞

k=1 pkak

∑s
k=1 pk

) s

∑
k=1

pkbk

}
, (15′)

and for any concave function M: [0,∞) → R such that M(0) = 0 , the following in-
equality is true:

∞

∑
k=1

pkbkM(ak) � inf
s∈[1,∞)

{
M

(
∑∞

k=1 pkak

∑s
k=1 pk

) s

∑
k=1

pkbk

}
. (16′)



1320 A. L. SHIDLICH AND S. O. CHAICHENKO

RE F ER EN C ES

[1] P. L. CHEBYSHEV, O priblizhennyh vyrazhenijah odnih integralov cherez drugie, Soobschenija i Pro-
tokoly Zasedanij Matematicheskogo Obschestva pri Imperatorskom Khar’kovskom Universitete, No. 2
(1882), 93–98; Polnoe Sobranie Sochinenii P. L. Chebysheva, Moskva–Leningrad, 3, (1978), 128–131.

[2] P. L. CHEBYSHEV, Ob odnom rjade, dostavljajuschem predel’nye velichiny integralov pri razlozhenii
podintegral’noi funkcii na mnozhiteli, Prilozhenie k 57 tomy Zapisok Imp. Akad. Nauk, No. 4 (1883);
Polnoe Sobranie Sochinenii P. L. Chebysheva. Moskva–Leningrad, 3, (1978), 157–169.

[3] H. P. HEINIG AND L. MALIGRANDA,Chebyshev inequality in function spaces, Real Anal. Exchange,
17, 1 (1991/92), 211–247.
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