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SHARP FORM OF MODIFIED WEIGHTED

HARDY INEQUALITIES OF TRACE TYPE

HEE CHUL PAK AND YOUNG JA PARK

(Communicated by L. E. Persson)

Abstract. The extremal function and the best constant for a modified weighted Hardy inequality
of trace type are investigated by using the Bliss’ argument. Computational difficulties of the
self-contained proof are overcome by the techniques taken from a paper by Talenti.

1. Background and the main theorem

Modified weighted Hardy inequalities of trace type[∫ ∞

0
|u(r)|qrn−1dr

]1/q

� C

[∫ ∞

0
|u′(r)|prndr

]1/p

, ′ ≡ d
dr

(1.1)

are considered. Here u is a differentiable function of one variable vanishing at in-
finity and the exponents p (1 < p < n ) and q satisfy a certain relation (presented in
(2.1)). The trace type Hardy inequality (1.1) originates from the classical Sobolev trace
inequalities: (∫

Rn
| f (x)|qdx

)1/q

� Ap,q

(∫
R

n+1
+

|∇u(x,y)|pdxdy

)1/p

, (1.2)

whereas the classical Hardy inequality came from a new and elementary proof for the
Hilbert’s double integral theorem by G. H. Hardy [7]. For the last couple of decades,
the classical Hardy inequality has been generalized, refined and applied in analysis
and in the theory of differential equations. See, for example, [3, 4, 5, 8, 10, 11, 14,
15, 16, 17, 19] and the references cited therein. The trace type Hardy inequality (1.1)
is a very special case of the generalized weighted Hardy inequalities some of whose
best constants have been specified. However, the best constant of the trace type Hardy
inequality (1.1) is not reported yet.

This paper is mainly devoted to identify the sharp constant and the extremal func-
tions of inequality (1.1). This sharp constant is worthy of notice in effort to give some
clues to the best constant for Sobolev trace inequalities (1.2) which is still an important
open problem. Our main result is presented as follows:
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THEOREM 1. The best constant of the modified weighted Hardy inequality of
trace type (1.1) constrained by (2.1) below is

n−
1
p

[
p−1

n+1− p

] q−1
q
[

Γ(n)Γ( n
p−1 −1)

Γ( np
p−1)

] 1
q− 1

p

with the extremal functions of the form

(a+br)1− n
p−1 for a,b > 0.

The proof is not short and is comprised of several stages. The basic strategies of
the proof are to turn the problem into a Lagrange one, and then to analyze it as the
Lagrange flows by the Bliss’ argument [3]. However, the computations of this problem
are not straightforward. In fact, there are some serious computational difficulties to
complete the arguments. The novelty of this report is to get over the difficulties both
directly and indirectly by the techniques taken largely from the paper by Talenti [20].

2. The arguments

1. We first note by the dilation argument that the exponents p and q should satisfy
the relation

1
q

=
n+1

n
1
p
− 1

n
. (2.1)

(The same index relation holds in the classical Sobolev trace inequalities (1.2).) The
rearrangement argument can be used to restrict the functions to be positive and mono-
tonically decreasing.

2. In order to find the extremal functions and the best constant of (1.1), we try to
look for the extremal functions of the functional J(u)

J(u) =

[∫ ∞
0 |u(r)|qrn−1dr

]1/q

[
∫ ∞
0 |u′(r)|p rndr]1/p

,

where functions u are in some admissible collection. In fact, the argument above leads
to consider the (admissible) collection A of functions which are sufficiently smooth,
non-negative real valued functions decreasing on the interval [0,∞) satisfying the con-
ditions ∫ ∞

0
|u′(r)|prndr < ∞ and u(r) → 0 as r → ∞.

We now derive the (Gateaux) differential of the functional J(u) :

1
J(u)

J′(u)(v) =
∫ ∞
0 (|u|q−1sgnu)rn−1vdr∫ ∞

0 |u|qrn−1dr
+
∫ ∞
0 (|u′|p−1sgnu′rn)′vdr∫ ∞

0 |u′|prndr
.



MODIFIED WEIGHTED HARDY INEQUALITIES OF TRACE TYPE 1331

Then the extremals of J are the solutions in A of the differential equation of the form

(|u′|p−1rn sgnu′)′ +Crn−1|u|q−1 sgnu = 0, (2.2)

where C is a positive constant. Conversely, every solution in A of any differential
equation of the form (2.2) is an extremal function of J .

3. We will look for a solution of (2.2) of the form (a+brs)−α with a,b,s and α
being positive. Setting φ(r) = (a+brs)−α , we will first determine the exponent s and
α using (2.2). The equation (2.2) now becomes:

C(a+brs)−α(q−1)rn−1

= (αsb)p−1(a+brs)−(α+1)(p−1)−1r(s−1)(p−1)+n−1

× [a{(s−1)(p−1)+n}+brs{−(α +1)(p−1)s+(s−1)(p−1)+n}] .

This leaves us a few different choices for s and α . It can be computed that the only
possibility is of the form φ(r) = (a + br)1− n

p−1 for positive constants a and b . It is
easy to check that φ is a solution of (2.2) in A , and the constant C in (2.2) turns out
to be

C = nabp−1
(

n+1− p
p−1

)p−1

.

So far we have found a two-parameter family of extremal functions of J . Such ex-
tremals are positive decreasing functions. A slight (equivalent) change can be made to
represent these extremals in the form

ϕ(r) = a(1+br)1−
n

p−1 for a,b > 0.

Then equation (2.2) can be written as

(|ϕ ′|p−1sgnϕ ′rn)′ +Crn−1|ϕ |q−1sgnϕ = 0,

which is equivalent to saying that

nap−qbp−1
(

n+1− p
p−1

)p−1

|ϕ |q−1rn−1 =
(
rn|ϕ ′|p−1)′ . (2.3)

4. Our goal is to show that the extremals we found in the previous discussion
actually give the maximum, which is the essential part of the proof. To do it, we are
now going to look at the following equivalent Lagrange problem.

Letting M :=
∫ ∞

0
|u′|prndr , we have

∫ ∞

0

∣∣∣∣ u′

M1/p

∣∣∣∣
p

rndr = 1,
∫ ∞

0

∣∣∣ u

M1/p

∣∣∣q rn−1dr =

1

Mq/p

∫ ∞

0
|u|qrn−1dr and J(u) =

1

M1/p

(∫ ∞

0
|u|qrn−1dr

)1/q

, which in turn implies that
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J(u) = J
( u

M1/p

)
. By this observation, we can put our problem in the form of a La-

grange problem: maximize ∫ ∞

0
rn−1|u1(r)|qdr (2.4)

subject to

u′2(r) = rn|u′1(r)|p
u2(0) = 0 (2.5)

u2(r) → 1 and u1(r) → 0 as r → ∞.

It is clear that maximizing J is equivalent to the Lagrange problem (2.4). From the
constraints (2.5), we have

∫ ∞
0 rn|u′1(r)|pdr = 1, and so we point out that

u1(r) = o(r1− n+1
p ) as r → 0 or ∞. (2.6)

5. We consider the two parameter family of extremals

ϕ1(r) = a(1+br)1− n
p−1

ϕ2(r) =
∫ r

0
tn|ϕ ′

1(t)|pdt = ϕ1(r)prn+1−p f

(
br

1+br

)
,

where we put

f (ξ ) :=
(

n+1− p
p−1

)p

ξ p
∫ 1

0
(1− t)n(1− ξ t)−

np
p−1 dt. (2.7)

Then it is a Mayer field in the first octant {(r,u1,u2) ∈ R
3|r > 0,u1,u2 > 0} := R

3
+ . In

other words, the paths α(r) = (r,ϕ1(r),ϕ2(r)) (r > 0) are the trajectories of a smooth
vector field X defined on R

3
+ . Thus exactly one such path passes through any point in

R
3
+ , and X(α(r)) is the slope of the path passing through this point at the point α(r) ,

that is,

d
dr

α(r) = X(α(r)) := (X0,X1,X2) (2.8)

or equivalently to say, the vector field X is defined as follows: for any (r,u1,u2) ∈ R
3
+ ,

(r,u1,u2) = (r,ϕ1(r),ϕ2(r)) for some α(r) = (r,ϕ1(r),ϕ2(r)) , and so

X0(r,u1,u2) =
d
dr

(r) = 1

X1(r,u1,u2) =
d
dr

{ϕ1(r)} = −
(

n+1− p
p−1

)
u1

r
ξ (2.9)

X2(r,u1,u2) =
d
dr

{ϕ2(r)} = rn|X1(r,u1,u2)|p,



MODIFIED WEIGHTED HARDY INEQUALITIES OF TRACE TYPE 1333

where ξ is the root of the equation

f (ξ ) = rp−(n+1)u−p
1 u2 for 0 < ξ < 1. (2.10)

6. Note that the equation (2.10) has exactly one solution ξ as long as r,u1 > 0
and u2 � 0 due to the following Lemma:

LEMMA 1. The function f : [0,1) → [0,∞) is a monotone increasing bijection.
Moreover, we have the following asymptotic behaviors:

ξ−p f (ξ ) →
(

n+1− p
p−1

)p 1
n+1

as r → 0, (2.11)

ξ n+1−p f (ξ )

(1− ξ )1− n
p−1

→
(

n+1− p
p−1

)p

B

(
n+1,

n
p−1

−1

)
as r → ∞, (2.12)

where B represents the beta function.

Proof. We differentiate (2.7) to get

f ′(ξ ) =
(

n+1− p
p−1

)p[
pξ p−1

∫ 1

0
(1− t)n(1− ξ t)−p′ndt

+ξ p
∫ 1

0
(1− t)n(−p′n)(1− ξ t)−p′n−1(−t)dt

]

=
(

n+1− p
p−1

)p∫ 1

0
(1− t)n(1− ξ t)−p′n−1ξ p−1[p− pξ t + ξ p′nt]dt,

where p′ represents the Hölder conjugate p
p−1 of p . Since

p− pξ t + ξ p′nt = p+ tξ (p′n− p) = p+ ξ t p
n− p+1

p−1
> 0,

we have f ′(ξ ) > 0 if 0 < ξ < 1. It has been proved that the function f is increasing.

In order to demonstrate f (ξ ) → 0 as ξ → 0, we first observe that

ξ−p f (ξ ) =
(

n+1− p
p−1

)p ∫ 1

0
(1− t)n(1− ξ t)−p′ndt

→
(

n+1− p
p−1

)p ∫ 1

0
(1− t)ndt =

(
n+1− p

p−1

)p 1
n+1
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as ξ → 0. So we get that f (ξ ) → 0 as ξ → 0. From the calculation that

∫ 1

0
(1− t)n(1− ξ t)−np′dt =

∫ 1

0

(
1− t
1− ξ t

)np′

(1− t)n−np′dt

=
∫ 1

0
snp′
{

s(1− ξ )
1− ξ s

}− n
p−1 1− ξ

(1− ξ s)2 ds

= (1− ξ )−
n

p−1+1
∫ 1

0

tn

(1− ξ t)−
n

p−1+2
dt

= (1− ξ )−
n

p−1+1ξ−(n+1)
∫ ξ

0
tn(1− t)

n
p−1−2dt, (2.13)

we have

(1− ξ )
n

p−1−1 f (ξ )
(

n+1− p
p−1

)−p

= ξ p−(n+1) ∫ ξ
0 tn(1− t)

(
n

p−1−1dt
)
−1

. (2.14)

Therefore as ξ → 1− , we have

ξ n+1−p(1− ξ )
n

p−1−1 f (ξ ) →
(

n+1−p
p−1

)p
B
(
n+1, n

p−1 −1
)

.

This implies the fact that limξ→1− f (ξ ) = ∞ . �

Before we proceed, we would like to point out two facts. First, differentiating both
sides of (2.14), we have a representation for the derivative of f :

f ′(ξ ) =
(

n+1− p
p−1

)p ξ p−1

1− ξ
+
(

n+1− p
p−1

)
ξ p− p+1
ξ (1− ξ )

f (ξ ). (2.15)

Next, concerning the function ξ (r,u1,u2) , we see that from (2.3)

(rn|X1|p−1)′ = n

[
n+1− p

p−1

]p−1

rn−pup−1
1 ξ p−1(1− ξ ). (2.16)

7. In the following we will show that there exists an exact differential dW satis-
fying the following: for any path c : (0,∞) → R

3
+ of the form c(r) = (r,u1(r),u2(r))

with u′2(r) = rn|u′1(r)|p , we have

∫
c
dW �

∫ ∞

0
rn−1|u1(r)|qdr,

and equality holds when the path is an extremal as follows:

u1(r) = a(1+br)1− n
p−1 , and u2(r) =

∫ r

0
tn|u′1(t)|pdt.
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8. We look tentatively at a twice differentiable real valued function W defined on
R

3
+ satisfying the following property: for any (r,u1,u2) ∈ R

3
+ , the function Φ : M → R

defined by

Φ(ξ0,ξ1,ξ2) = rn−1uq
1ξ0− ∂W

∂ r
(r,u1,u2)ξ0− ∂W

∂u1
(r,u1,u2)ξ1− ∂W

∂u2
(r,u1,u2)ξ2

has a critical point at X(r,u1,u2) on M , where

M =
{
(ξ0,ξ1,ξ2)

∣∣∣ξ0 > 0, ξ p−1
0 ξ2 = rn|ξ1|p

}
is the cone of all direction issuing from the point (r,u1,u2) . Note that by the way of
defining M , we have ξ2 > 0, and also(

∂Φ
∂ξ0

,
∂Φ
∂ξ1

,
∂Φ
∂ξ2

)
=
(

rn−1uq
1−

∂W
∂ r

, −∂W
∂u1

, −∂W
∂u2

)
.

Define G(ξ0,ξ1,ξ2) := ξ p−1
0 ξ2 − rn|ξ1|p . Then simple computations yield that

∂G
∂ξ0

= (p−1)ξ p−2
0 ξ2

∣∣
(X0,X1,X2) = (p−1)rn|X1|p

∂G
∂ξ1

= −rnp|ξ1|p−1sgnξ1
∣∣
(X0,X1,X2) = −rnp|X1|p−1sgnX1 = prn|X1|p−1

∂G
∂ξ2

= ξ p−1
0

∣∣∣(X0,X1,X2) = X p−1
0 = 1.

at X(r,u1,u2) := (X0,X1,X2)(see (2.9)). Lagrange’s multipliers rule gives the following
relation at the critical point X(r,u1,u2) = (X0,X1,X2)

∇Φ = λ ∇G,

where λ (r,u1,u2) is a differentiable function to be determined. That is,

∂W
∂ r

= rn−1uq
1−λ (p−1)rn|X1|p

∂W
∂u1

= −λ prn |X1|p−1 (2.17)

∂W
∂u2

= −λ .

We notice that the directional derivative ∇XW of W in the direction of the vector field

X is ∇XW :=
[

∂
∂ r +X1

∂
∂u1

+ rn|X1|p ∂
∂u2

]
W = rn−1uq

1 .

The compatibility conditions: ∂
∂ r

(
∂W
∂u2

)
= ∂

∂u2

(
∂W
∂ r

)
, ∂

∂u1

(
∂W
∂u2

)
= ∂

∂u2

(
∂W
∂u1

)
,

∂
∂ r

(
∂W
∂u1

)
= ∂

∂u1

(
∂W
∂ r

)
can be arranged in the form of an overdetermined system of
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linear partial differential equations of the first order in the unknown ∇λ :

⎛
⎝ 1 0 a1

0 1 a2

a2 −a1 0

⎞
⎠
⎛
⎜⎜⎝

∂λ
∂ r

∂λ
∂u1

∂λ
∂u2

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

−pλ (X1
∂

∂u2
)(rn|X1|p−1)

pλ ∂
∂u2

(rn|X1|p−1)

qrn−1uq−1
1 + λ p

[
∂
∂ r +X1

∂
∂u1

]
(rn|X1|p−1)

⎞
⎟⎟⎟⎟⎠ ,

where we set a1 = −(p−1)rn|X1|p , a2 = −prn|X1|p−1 . Consider the eigenvectors for
AT , where A is the 3×3 matrix in the argument. Some computation gives us that the
eigenvalues λ of AT are 0 and 1. It also turns out that

�v = (−a2,a1,1) = (prn|X1|p−1,−(p−1)rn|X1|p,1)

is an eigenvector corresponding to the eigenvalue 0, which implies that

�b ·�v = A�x ·�v =�x ·AT�v = 0,

where �x =
(

∂λ
∂ r , ∂λ

∂u1
, ∂λ

∂u2

)T
. From this observation, we obtain that

qrn−1uq−1
1 + λ p∇X(rn|X1|p−1) = 0. (2.18)

The identity (2.16) can be rewritten as

∇X (rn|X1|p−1) = X ·∇(rn|X1|p−1)
= (rn|X1|p−1)′

= n

[
n+1− p

p−1

]p−1

rn−pup−1
1 ξ p−1(1− ξ ),

where ξ is the root of the equation (2.10). Applying this into (2.18), we get

λ = − (p−1)p−1

(n+1−p)p
rp−1uq−p

1
ξ p−1(1−ξ ) . (2.19)

It can be proved that the function λ defined by (2.19) is actually a solution to the sys-
tem (2.17). The procedure described above gives us a smooth solution W to the system
when we use λ as defined in (2.19).

9. Now we want to show that the differential dW maximizes the functional J . Let

E(r,u1,u2;ξ0,ξ1,ξ2) := rn−1uq
1ξ0 − ∂W

∂ r
(r,u1,u2)ξ0

− ∂W
∂u1

(r,u1,u2)ξ1− ∂W
∂u2

(r,u1,u2)ξ2,

under the constraints: ξ0 > 0 and ξ p−1
0 ξ2 = rn|ξ1|p . From (2.17), we have

E(r,u1,u2;ξ0,ξ1,ξ2)

=
(

∂W
∂ r

+(p−1)rn|X1|pλ
)

ξ0− ∂W
∂ r

ξ0 − ∂W
∂u1

ξ1 − ∂W
∂u2

ξ2

= ξ0r
nλ (r,u1,u2)

[
(p−1)|X1|p + p

ξ1

ξ0
|X1|p−1 +

∣∣∣∣ξ1

ξ0

∣∣∣∣
p]

.
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The last equation follows from the relation ξ2
ξ0

= rn
∣∣∣ ξ1

ξ0

∣∣∣p . It can be shown (via elemen-

tary calculus) that the expression in the bracket is always nonnegative and vanishes if
and only if (ξ0,ξ1,ξ2) is parallel to X(r,u1,u2) . Overall, we have

E(r,u1,u2;ξ0,ξ1,ξ2) � 0 (2.20)

since ξ0rnλ < 0 and E = 0 only when (ξ0,ξ1,ξ2) is parallel to X(r,u1,u2) .

10. Now an explicit expression for the function W can be derived, which is needed
to determine the boundary behavior of W . Put λ in equation (2.17) and we have

∂W
∂ r

=
rn−1uq

1

1− ξ
, (2.21)

∂W
∂u1

=
p

n+1− p

rnuq−1
1

1− ξ
=

q
n

rnuq−1
1

1− ξ
, (2.22)

∂W
∂u2

=
(p−1)p−1

(n+1− p)p

rp−1uq−p
1

ξ p−1(1− ξ )
, (2.23)

where ξ is the root of the equation (2.10). Denoting W (r,u1) := W (r,u1,0) , we note
that (2.21) and (2.22) imply that

∂W
∂ r

(r,u1) = rn−1uq
1 and

∂W
∂u1

(r,u1) =
q
n
rnuq−1

1 ,

which, in turn, leads to

W (r,u1,0) = W (r,u1) =
1
n
rnuq

1 +C0 (2.24)

for some constant C0 . Hence from (2.23) together with (2.24), we obtain that

W (r,u1,u2) = W (r,u1,0)+
(p−1)p−1

(n+1− p)p

∫ u2

0

rp−1uq−p
1

ξ p−1(1− ξ )
du2

=
1
n
rnuq

1 +
(p−1)p−1

(n+1− p)p

∫ u2

0

rp−1uq−p
1

ξ p−1(1− ξ )
du2 +C0. (2.25)

We now consider f (ξ ) = rp−(n+1)u−p
1 u2 in order to find the integral

∫ u2

0

rp−1uq−p
1

ξ p−1(1− ξ )
du2 = rnuq

1

∫ ξ

0

f ′(ξ )
ξ p−1(1− ξ )

dξ . (2.26)

Integration by parts together with the asymptotic behavior (2.11) and the formula (2.15)
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successively implies

∫ ξ

0

f ′(ξ )
ξ p−1(1− ξ )

dξ

=
f (ξ )

ξ p−1(1− ξ )

∣∣∣∣
ξ

0
−
∫ ξ

0
f (ξ )

d
dξ

(
1

ξ p−1(1− ξ )

)
dξ

=
f (ξ )

ξ p−1(1− ξ )
−
∫ ξ

0
f (ξ )

ξ p− (p−1)
ξ p(1− ξ )2 dξ

=
f (ξ )

ξ p−1(1− ξ )
−
∫ ξ

0

[
p−1

n+1− p
f ′(ξ )

ξ p−1(1− ξ )
−
(

n+1− p
p−1

)p−1 1
(1− ξ )2

]
dξ .

Hence we have(∫ ξ

0

f ′(ξ )
ξ p−1(1− ξ )

dξ
)(

1+
p−1

n+1− p

)
= f (ξ )

1
ξ p−1(1− ξ )

+
(

n+1− p
p−1

)p−1 ξ
1− ξ

.

Therefore we get

∫ ξ

0

f ′(ξ )
ξ p−1(1− ξ )

dξ =
(n+1− p) f (ξ )
nξ p−1(1− ξ )

+
n+1− p

n

(
n+1− p

p−1

)p−1 ξ
1− ξ

.

Applying this into (2.26) and (2.25), W can be written as

W (r,u1,u2) =
rnuq

1

n(1− ξ )
+

1
n

(
p−1

n+1− p

)p−1 rp−1uq−p
1 u2

ξ p−1(1− ξ )
+C0. (2.27)

11. Let (u1(r),u2(r)) be a pair satisfying the conditions (2.5). By looking at
asymptotic behaviors of W , we first demonstrate that limr→0W (r,u1(r),u2(r)) exists,
and it is precisely C0 by means of finding that the first and second terms in (2.27) vanish

as r goes to zero. We recall (2.6): u1(r) = o(r1− n+1
p ) as r → 0. Hence the first term in

the right side of (2.27) tends to 0:

rnuq
1

n
1

1− ξ
=
(

u1

r1− n+1
p

)q 1
1− ξ

→ 0

as r → 0 (so ξ → 0). Also the asymptotic behavior (2.11) explains the diminishment
of the second term in (2.27):

rp−1uq−p
1 u2

ξ p−1(1− ξ )
=

rnuq
1

1− ξ
f (ξ )
ξ p−1 → 0

as r → 0 (ξ → 0). Next we consider limr→∞W (r,u1(r),u2(r)) . We can rewrite the
terms in (2.27):

rnuq
1

n
1

1− ξ
=

u
q
p
2

n
ξ n

(
ξ n+1−p f (ξ )

(1− ξ )1− n
p−1

)− q
p

(1− ξ )
n

p−1−1 → 0
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as r → ∞ (so ξ → 1) by the asymptotic behavior (2.12), and also

rp−1uq−p
1 u2

ξ p−1(1− ξ )
= u

q
p
2

(
ξ n+1−p f (ξ )

(1− ξ )1− n
p−1

)1− q
p

→
[(

n+1− p
p−1

)p

B

(
n+1,

n
p−1

−1

)]1− q
p

=
(

n+1− p
p−1

)−p(p−1)
n+1−p

[
B

(
n+1,

n
p−1

−1

)]−(p−1)
n+1−p

as r → ∞ . Hence we conclude

lim
r→∞

W (r,u1(r),u2(r))

= C0 +
1
n

(
p−1

n+1− p

) (n+1)(p−1)
n+1−p

[
B

(
n+1,

n+1− p
p−1

)]− p−1
n+1−p

. (2.28)

12. We know from (2.20) that∫ ∞

0
rn−1|u1(r)|qdr �

∫ ∞

0
∇W (r,u1(r),u2(r)) · (1,u′1(r),u

′
2(r))dr

(
=
∫

c
dW

)
= lim

r→∞
W (r,u1(r),u2(r))− lim

r→0
W (r,u1(r),u2(r)),

which is independent of the path by the above observation. Combine these estimates
together with (2.28) and the equality condition of the estimate (2.20) to have that

∫ ∞

0
rn−1|u1(r)|qdr � 1

n

(
p−1

n+1− p

) (n+1)(p−1)
n+1−p

[
B

(
n+1,

n+1− p
p−1

)]− p−1
n+1−p

and the equality holds if (and only if) (1,u′1,u
′
2) is parallel to X(r,u1,u2) . Therefore

we can conclude that(∫ ∞

0
rn−1|u1(r)|qdr

)1/q

�

⎛
⎝1

n

(
p−1

n+1− p

) (n+1)(p−1)
n+1−p

[
B

(
n+1,

n+1− p
p−1

)]− p−1
n+1−p

⎞
⎠

1/q

= n−
1
q

(
p−1

n+1− p

) q−1
q
[
B

(
n+1,

n+1− p
p−1

)] 1
q− 1

p

= n−
1
p

(
p−1

n+1− p

) q−1
q
[

Γ(n)Γ( n
p−1 −1)

Γ( np
p−1)

] 1
q− 1

p [∫ ∞

0
|u′(t)|ptndt

]1/p

.

The proof is now completed. �
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