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CALDERÓN–LOZANOVSKIĬ SPACES
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(Communicated by L. Maligranda)

Abstract. Let M be a semifinite von Neumann algebra with a normal semifinite faithful trace
τ . We show that the noncommutative Calderón-Lozanovskiı̆ spaces Eϕ (M ) can be written in
the form Eϕ(M ) = Eϕ2 (M ) ·Eϕ1(M ) , if at least one of the following conditions holds:

(i) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for large arguments and M ↪→ E(M ) ,

(iii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for small arguments and E(M ) ↪→ M .

Here Eϕ2(M ) ·Eϕ1(M ) denote the product of the noncommutative Calderón-Lozanovskiı̆ spaces
Eϕ1(M ) and Eϕ2 (M ) .

1. Introduction

A function ϕ : [0,∞) → [0,∞] is said to be a Young function if ϕ is convex, non-
decreasing with ϕ(0) = 0. For any Young function ϕ and any symmetric function
space (E,‖ · ‖E) , we define the Calderón-Lozanovskiı̆ space Eϕ by

Eϕ = { f ∈ L0 : ϕ(λ | f |) ∈ E for some λ > 0}.
For every f ∈ Eϕ the following functional is finite

‖ f‖ϕ = inf
{

λ > 0 : ρϕ

( f
λ

)
� 1
}
,

where

ρϕ( f ) =

{
‖ϕ(| f |)‖E , if ϕ(| f |) ∈ E,

∞, otherwise.
(1.1)

If E is a symmetric function space with the Fatou property and ϕ is a Young function,
then (Eϕ ,‖·‖ϕ) is a symmetric function space and then Eϕ is a special case of a general
Calderón-Lozanovskiı̆ construction Ψ(E,F) (see [8, 14]), where E is a symmetric
function space and F = L∞ . If E = L1 , then Eϕ is the classical Orlicz space Lϕ

equipped with the Luxemburg-Nakano norm. If E is a Lorentz space Λω , then Eϕ is
the Orlicz-Lorentz space Λϕ,ω , equipped with the Luxemburg-Nakano norm. Recently,
P. Kolwicz, K. Lesnik, L. Maligranda [10] proved that Eϕ = Eϕ2 ·Eϕ1 , if at least one of
the following conditions holds:
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(i) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for large arguments and L∞ ↪→ E ,

(iii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for small arguments and E ↪→ L∞ .

Here we define noncommutative Calderón-Lozanovskiı̆ space by Eϕ(M ) = {x ∈
L0(M ) : μ(x) ∈ Eϕ} . The main result of this paper is the noncommutative analogue of
the product spaces of the classical Calderón-Lozanovskiı̆ spaces.

The paper is organized as follows: Section 2 consists of some preliminaries and
notations, including the noncommutative Calderón-Lozanovskiı̆ spaces and their el-
ementary properties. Section 3 presents some results about M(Eϕ1(M ),Eϕ(M )) . In
Section 4 we deal with the product space of the noncommutative Calderón-Lozanovskiı̆
spaces. Section 5 is devoted to the normability of the product space Eϕ1(M ) ·Eϕ2(M ) .

2. Preliminaries

In this section, we gather some of the elements of noncommutative integration in
semifinite von Neumann algebras and Banach function spaces. Our main references
are [1, 13, 19, 21]. Let (Ω,Σ,ν) be a complete σ -finite measure space and L0(Ω)
be the space of all classes of ν -measurable real-valued functions defined on Ω . Let
f ∈ L0(Ω) . Recall that the distribution function of f is defined as

d f (s) = ν({t ∈ Ω : | f (t)| > s}), s > 0

and its nonincreasing rearrangement is defined as

f ∗(t) = inf{s > 0 : d f (s) � t}, t > 0.

A (quasi-)Banach space E = (E,‖ · ‖E) is said to be a (quasi-)Banach ideal space on
Ω if E is a linear subspace of L0(Ω) and satisfies the so-called ideal property, which
means that if f ∈ E , g ∈ L0(Ω) and |g(t)|� | f (t)| for ν -almost all t ∈ Ω , then g ∈ E
and ‖g‖E � ‖ f‖E . We will also assume that a (quasi-)Banach ideal space on Ω is
saturated, i.e., every A∈ Σ with ν(A) > 0 has a subset B ∈ Σ of finite positive measure
for which χB ∈ E. The last statement is equivalent with the existence of a weak unit,
i.e., an element f ∈ E such that f (t) > 0 for each t ∈ Ω . If the measure space (Ω,Σ,ν)
is non-atomic we shall speak about (quasi-)Banach function space.

By a symmetric function space on I , where I = (0,1) or (0,∞) with the Lebesgue
measure m , we mean a Banach ideal space E = (E,‖ ·‖E) with the additional property
that for any two equimeasurable functions f ∼ g , f ,g ∈ L0(I) (that is, they have the
same distribution functions d f (t) = dg(t) , t > 0) and f ∈E we have g∈E and ‖ f‖E =
‖g‖E . In particular, ‖ f‖E = ‖ f ∗‖E . A symmetric function space E on I is said to have
the Fatou property if 0 < fn ∈ E , fn ↑n f ∈ L0(I) and supn ‖ fn‖E < ∞ imply that f ∈ E
and ‖ fn‖E ↑n ‖ f‖E . For any 0 < s < ∞ , we define the dilation operator Ds on L0(0,∞)
by

Ds( f )(t) = f
( t

s

)
, 0 < t < ∞.
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Similarly, the dilation operator Ds on L0(0,1) is defined by setting

Ds( f )(t) =

{
f ( t

s ), t � min{1,s},
0, otherwise.

(2.1)

If E is a symmetric function space on I , then Ds is a bounded linear operator.
For two ideal (quasi-)Banach spaces E and F on I the symbol E ↪→C F means

that the embedding E ⊆ F is continuous and ‖ f‖F � C‖ f‖E for all f ∈ E . In the case
when the embedding E ↪→C F holds with some (unknown) constant C > 0 we simply
write E ↪→ F . Moreover, E = F(E ≡ F) means that the spaces are the same and the
(quasi-)norms are equivalent (equal).

Any non-trivial symmetric function space E on I (i.e., E �= 0) is an intermediate
space between the spaces L1(I) and L∞(I) . More precisely,

L1(I)∩L∞(I) ↪→ E ↪→ L1(I)+L∞(I).

A symmetric function space E on I has the majorant property if for all f ∈ L0(I) , g ∈
E , the condition

∫ t
0 f ∗(t)dt �

∫ t
0 g∗(t)dt , t ∈ I implies that f ∈ E and ‖ f‖E � ‖g‖E .

Every symmetric function space with the Fatou property have the majorant property.
More information about symmetric spaces on I can be found in [1, 13, 9].

A function ϕ : [0,∞) → [0,∞] is said to be a Young function if ϕ is convex, non-
decreasing with ϕ(0) = 0. We suppose that ϕ is neither identically zero nor identically
infinity on (0,∞) .

For any Young function ϕ and any symmetric function spaces (E,‖ · ‖E) , we
define the Calderón-Lozanovskiı̆ space Eϕ by

Eϕ = { f ∈ L0 : ϕ(λ | f |) ∈ E for some λ > 0},
which is a symmetric function space on I with the so called Luxemburg-Nakano norm
defined by

‖ f‖ϕ = inf
{

λ > 0 : ρϕ

( f
λ

)
� 1
}
,

where ρϕ(·) is the same as (2.1) . We refer to [8, 9, 10, 14] for details on the Calderón-
Lozanovskiı̆ space.

Throughout the present paper, M ⊆ B(H ) will denote a von Neumann algebra
on some Hilbert space H , that is, M is an ∗ -subalgebra of B(H ) containing 1
that is closed for the weak operator topology. A trace τ on the von Neumann algebra
M is a map τ : M + → [0,∞] which is additive, positively homogeneous and unitarily
invariant, that is, τ(x) = τ(u∗xu) for all a ∈ M + and unitary operators u ∈ M , where
M + = {x ∈ M : x � 0} . A trace τ : M + → [0,∞] is called

(i) faithful if for all x ∈ M + , τ(x) = 0 implies that x = 0;

(ii) semifinite if for every x ∈ M + with τ(x) > 0, there exists 0 � y � x such that
0 < τ(y) < ∞;

(iii) normal if xi ↑i x in M + implies that 0 � τ(xi) ↑i τ(x) .
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A von Neumann algebra M equipped with a faithful, normal semifinite trace is said
to be a semifinite von Neumann algebra. In what follows, M shall always denote
a semifinite von Neumann algebra, equipped with a fixed faithful, normal, semifinite
trace τ .

We denote the projection lattice of M by P(M ) . A closed densely defined lin-
ear operator x in H with domain D(x) is said to be affiliated with M if and only
if u∗xu = x for all unitary operators u which belong to the commutant of M . When
x is affiliated with M , x is said to be τ -measurable if for every ε > 0 there ex-
ists e ∈ P(M ) such that e(H ) ⊆ D(x) and τ(e⊥) < ε (where for any projection
e , we let e⊥ = 1− e). The set of all τ -measurable operators will be denoted by
L0(M ) . The set L0(M ) is an ∗ -algebra with sum and product being the respective
closure of the algebraic sum and product. The measure topology in L0(M ) is the
vector space topology defined via the neighbourhood base {V (ε,δ ) : ε,δ > 0} , where
V (ε,δ ) = {x∈ L0(M ) : τ(e(ε,∞)(|x|)) � δ} and e(ε,∞)(|x|) is the spectral projection of
|x| associated with the interval (ε,∞) . With respect to the measure topology, L0(M )
is a complete topological ∗ -algebra.

For x ∈ L0(M ) we define

λt(x) = τ(e(t,∞)(|x|)) and μt(x) = inf{s > 0 : λs(x) � t},
where e(t,∞)(|x|) is the spectral projection of |x| associated with the interval (t,∞) . The
function t → λt(x) is called the distribution function of x and t → μt(x) is the gener-
alized singular number of x . We will denote simply by λ (x) and μ(x) the functions
t → λt(x) and t → μt(x) , respectively (cf. [6]).

Let E be a symmetric function space on I . We define

E(M ) = {x ∈ L0(M ) : μ(x) ∈ E},
‖x‖E(M ) = ‖μ(x)‖E .

Then the noncommutative symmetric function space (E(M ),‖ · ‖E(M )) is a Banach
space (cf. [4, 18]). As usual, we put L∞(M ) = M and denote by ‖ · ‖ the usual
operator norm.

In particular, we define the noncommutative Calderón-Lozanovskiı̆ space Eϕ(M )
(ϕ is a Young function) by

Eϕ(M ) = {x ∈ L0(M ) : μ(x) ∈ Eϕ},
where the functional ‖ · ‖ϕ on Eϕ(M ) is defined by ‖x‖ϕ = ‖μ(x)‖Eϕ . That is we
define the noncommutative Calderón-Lozanovskiı̆ space Eϕ(M ) by

Eϕ(M ) = {x ∈ L0(M ) : ϕ(μ(λx)) ∈ E for some λ > 0},
which is a noncommutative symmetric function space with the so called Luxemburg-
Nakano norm defined by

‖x‖ϕ = inf
{

λ > 0 : ρϕ
M

( x
λ

)
� 1
}
,
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where ρϕ
M (x) := ρϕ(μ(x)) .

Let E and F be two symmetric function spaces on I with norms ‖ ·‖E and ‖ ·‖F ,
respectively. The space of pointwise multipliers is defined as follows:

M(E,F) = { f ∈ L0(I) : f g ∈ F for all g ∈ E}

and M(E,F) is a Banach space with the norm ‖ f‖M(E,F) = sup{‖ f g‖F : ‖g‖E � 1}
(cf. [16]).

Pointwise multipliers between Calderón-Lozanovskiı̆ spaces as well as between
some other Banach ideal spaces were investigated by several authors, see [9, 10, 12, 16,
15]. A plausible definition of noncommutative pointwise multipliers space is defined
as follows:

DEFINITION 1. Let E and F be two symmetric function spaces on I . Then
E(M ) and F(M ) are two noncommutative symmetric function spaces. We define
noncommutative pointwise multipliers space M(E(M ),F(M )) by

M(E(M ),F(M )) = {x ∈ L0(M ) : xy ∈ F(M ) for every y ∈ E(M )}.

We define a functional ‖ · ‖M on M(E(M ),F(M )) by

‖x‖M = sup{‖xy‖F(M ) : y ∈ E(M ), ‖y‖E(M ) � 1}.

We define the right-continuous inverse ϕ−1 of ϕ as ϕ−1(t)= inf{s � 0 : ϕ(s) > t}
for t ∈ [0,∞) with ϕ−1(∞) = limt→∞ ϕ−1(t) . We write aϕ = sup{t � 0,ϕ(t) = 0} and
bϕ = sup{t > 0,ϕ(t) < ∞} , then 0 � aϕ � bϕ � ∞ and aϕ < ∞ , bϕ > 0, since a Young
function is neither identically zero nor identically infinity on (0,∞).

Throughout this paper we assume that aϕ �= bϕ . We write ϕ(bϕ) = lims→b−ϕ ϕ(s)
if bϕ < ∞ and write ϕ > 0 when aϕ = 0 and ϕ < ∞ if bϕ = ∞ . The function ϕ is
continuous and nondecreasing on [0,bϕ) and strictly increasing on [aϕ ,bϕ) . It follows
that ϕ(aϕ) = 0 and

(1) If ϕ ∈ Y1 , then ϕ−1 is continuous on [0,∞) and

ϕ−1(t) =

⎧⎪⎨⎪⎩
aϕ if t = 0,

s, if t ∈ (0,∞), and t = ϕ(s) where s ∈ (aϕ ,∞),
∞, if t = ∞.

(2) If ϕ ∈ Y2 , then ϕ−1 is continuous on [0,∞) and

ϕ−1(t) =

⎧⎪⎨⎪⎩
aϕ if t = 0,

s, if t ∈ (0,∞), and t = ϕ(s) where s ∈ (aϕ ,bϕ),
bϕ , if t = ∞.
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(3) If ϕ ∈ Y3 , then ϕ−1 is continuous on [0,∞) and

ϕ−1(t) =

⎧⎪⎨⎪⎩
aϕ if t = 0,

s, if t ∈ (0,ϕ(bϕ)), and t = ϕ(s) where s ∈ (aϕ ,bϕ),
bϕ , if t � ϕ(bϕ),

where the set of Young functions Yi , i = 1,2,3 are defined by

Y1 = {ϕ : bϕ = ∞},
Y2 = {ϕ : bϕ < ∞ and ϕ(bϕ) = ∞},
Y3 = {ϕ : bϕ < ∞ and ϕ(bϕ) < ∞}.

Further details can be found in [9, 11]. Next, we will use the following relation between
Young functions: we say ψ1 ≺ ψ2 for all arguments [for large arguments] (for small
arguments) means that there exists a constant c > 0 [there exists a constant c > 0,
t0 > 0] (there exists a constant c > 0, t0 > 0) such that the inequality ψ1(t) � cψ2(t)
holds for all t > 0 [for all t � t0 ] (for all 0 < t < t0 ), respectively.

Let x ∈ L0(M ) . Recall that any Young function ϕ is continuous and nondecreas-
ing on [0,bϕ) . If bϕ = ∞ , then for any s > 0, we always have ϕ( 1

s |x|) ∈ L0(M )
and μ(ϕ( 1

s |x|)) = ϕ( 1
s μ(|x|)) . If bϕ < ∞ , we can always give meaning to ϕ(μ(x)) .

However ϕ(|x|) may not even exist as an element of L0(M ) . Let x ∈ L0(M ) with
ϕ(|x|) ∈ L0(M ) . It follows from Lemma 2.1 of [11] that μ(ϕ(|x|)) = ϕ(μ(|x|)) . On
the other hand, if ϕ ∈ Y1 ∪Y2 ∪Y3 , then ϕ−1 is continuous and nondecreasing on
[0,∞) . Applying Lemma 2.5 (iv) of [6] we get ϕ−1(|x|) ∈ L0(M ) and μ(ϕ−1(|x|)) =
ϕ−1(μ(|x|)) .

PROPOSITION 1. Let (E,‖ · ‖E) be a symmetric function space on I with Fatou
property and let ϕ be a Young function. Then the following properties are satisfied:

(i) If e ∈ P(M ) and τ(e) < ∞, then e ∈ Eϕ(M ) .

(ii) If x ∈ Eϕ(M ) , then ρϕ
M (x) � 1 if and only if ‖x‖ϕ � 1 .

(iii) The space (Eϕ(M ),‖ · ‖ϕ ) is a noncommutative symmetric function space with
Fatou property.

Proof. (i) : Since μ(e) = χ(0,τ(e)) and 0 � aϕ < bϕ � ∞ , there exists λ0 ∈ (0,∞) ,

such that ϕ( μ(e)
λ0

) = ϕ( 1
λ0

)χ(0,τ(e)) < ∞ . Thus, the result follows from χ(0,τ(e)) ∈ E and
τ(e) < ∞ .

(ii) : Let x,y ∈ Eϕ(M ) and α + β = 1 with α � 0, β � 0. By Theorem 4.4 of
[6], we have∫ t

0
ϕ(μs(αx+ βy))ds �

∫ t

0
ϕ(μs(αx)+ μs(βy))ds

�
∫ t

0
αϕ(μs(x))+ β ϕ(μs(y))ds, t > 0.



PRODUCTS OF NONCOMMUTATIVE CALDERÓN-LOZANOVSKIĬ SPACES 1347

Since E is a symmetric function space with the Fatou property, then E have the majo-
rant property. This tells us that

ρϕ
M (αx+ βy) = ‖ϕ(μs(αx+ βy))‖E � ‖αϕ(μs(x))+ β ϕ(μs(y)‖E

� α‖ϕ(μs(x))‖E + β‖ϕ(μs(y)‖E = αρϕ
M (x)+ β ρϕ

M (y).

Thus, the result follows immediately from Lemma 2.2 of [8] and the definition of ρϕ
M (·)

and ‖ · ‖ϕ .
(iii) : Since Eϕ is a symmetric function space, Theorem 4.5 of [4] shows that

Eϕ(M ) is a noncommutative symmetric function space. On the other hand, the Fa-
tou property follows immediately from Lemma 2.2 of [8] and Proposition 1.7 of [5].
Indeed, if 0 � xn ↑ x ∈ L0(M ) with supn ‖xn‖ϕ < ∞ , then by Proposition 1.7 of [5],
we have μ(xn) ↑ μ(x) and supn ‖μ(xn)‖Eϕ < ∞ . On the other hand, it follows from
Lemma 2.2 of [8] that Eϕ have the Fatou property. This tells us that μ(x) ∈ Eϕ and
‖μ(xn)‖Eϕ ↑ ‖μ(x)‖Eϕ . That is x ∈ Eϕ(M ) and ‖xn‖ϕ ↑ ‖x‖ϕ . �

A similar discussion to the proof of Proposition 2.2 of [11], leads to the following
proposition.

PROPOSITION 2. Let (E,‖ · ‖E) be a symmetric function space on (0,τ(1)) with
Fatou property and let ϕ be a Young function and x ∈ L0(M ) . Then there exists some
α > 0 such that ρϕ(αμ(x)) < ∞ if and only if there exists some β > 0 such that
ϕ(β |x|) ∈ L0(M ) and ‖ϕ(β |x|)‖E(M ) < ∞. Moreover,

‖μ(x)‖Eϕ = inf
{

s > 0 : ϕ
(1

s
|x|
)
∈ L0(M ),

∥∥∥ϕ
(1

s
|x|
)∥∥∥

E(M )
� 1
}
.

Proof. The validity of this result for the case bϕ = ∞ follows from Lemma 2.1 of
[11]. Hence let bϕ < ∞ . If now there exists β > 0 such that ϕ(β |x|) ∈ L0(M ) , then
it follows from Lemma 2.1 of [11] that ‖ϕ(β |x|)‖E(M ) = ‖ϕ(β μ(x))‖E . This implies
that ρϕ(β μ(x)) < ∞ . Conversely, suppose that ρϕ(αμ(x)) < ∞ for some α > 0. If
for some t0 > 0 we had αμt0(x) > bϕ , then αμt(x) � αμt0(x) > bϕ for all 0 � t � t0,
which would force

‖ϕ(αμt(x))‖E � ‖ϕ(αμt(x))χ[0,t0]‖E = ‖∞χ[0,t0]‖E = ∞.

Thus we must have αμt(x) � bϕ , t > 0. This means that

α‖x‖ = lim
t→0

αμt(x) � bϕ .

So in this case we clearly have that x∈M with ϕ( α
1+ε |x|)∈M ⊆ L0(M ). By Lemma

2.1 of [11], we have∥∥∥ϕ
( α

1+ ε
|x|
)∥∥∥

E(M )
=
∥∥∥ϕ
( α

1+ ε
μ(|x|)

)∥∥∥
E

� ‖ϕ(αμ(|x|))‖E < ∞.
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To see the second claim, observe that the Lemma 2.1 of [11] ensures that{
s > 0 : ϕ

(1
s
|x|
)
∈ L0(M ),

∥∥∥ϕ
(1

s
|x|
)∥∥∥

E(M )
� 1
}
⊆
{

s > 0 :
∥∥∥ϕ
(1

s
μ(|x|)

)∥∥∥
E

� 1
}
.

Hence

‖μ(x)‖Eϕ = inf
{

s > 0 :
∥∥∥ϕ
(1

s
μ(|x|)

)∥∥∥
E

� 1
}

� inf
{

s > 0 : ϕ
(1

s
|x|
)
∈ L0(M ),

∥∥∥ϕ
(1

s
|x|
)∥∥∥

E(M )
� 1
}
.

To see that equality holds, let ε > 0 be given, and select s0 > 0 so that

‖μ(x)‖Eϕ � s0 � (1+ ε)‖μ(x)‖Eϕ and
∥∥∥ϕ
( 1

s0
μ(x)

)∥∥∥
E

� 1.

It follows from the above case that

ϕ
( 1

(1+ ε)s0
|x|
)
∈ L0(M ) and

∥∥∥ 1
(1+ ε)s0

|x|
∥∥∥

E(M )
�
∥∥∥ϕ
( 1

s0
μ(|x|)

)∥∥∥
E

� 1.

Thus

inf
{

s > 0 : ϕ
(1

s
|x|
)
∈ L0(M ),

∥∥∥ϕ
(1

s
|x|
)∥∥∥

E(M )
� 1
}

� (1+ ε)s0 � (1+ ε)2‖μ(x)‖Eϕ .

Since ε > 0 was arbitrary, we have

inf
{

s > 0 : ϕ
(1

s
|x|
)
∈ L0(M ),

∥∥∥ϕ
(1

s
|x|
)
‖E(M ) � 1

}
� ‖μ(x)‖Eϕ .

This implies the desired result. �

PROPOSITION 3. Let E,E1,E2 and F,F1,F2 be symmetric function spaces.

(i) If x ∈ M(E(M ),F(M )) , then |x| ∈ M(E(M ),F(M )) and ‖x‖M = ‖|x|‖M .

(ii)

‖x‖M = sup{‖xy‖F(M ) : 0 � y ∈ E(M ),‖y‖E(M ) � 1}
= sup{‖xy‖F(M ) : 0 � y ∈ E(M ),‖y‖E(M ) = 1}.

(iii) If 0 < x � z and x,z ∈ M(E(M ),F(M )) , then ‖x‖M � ‖z‖M .

(iv) If M(E,F) �= {0} and e ∈ P(M ) with τ(e) < ∞ , then

e ∈ M(E(M ),F(M )).

(v) If limt→∞ μt(x) = 0 holds for all x ∈ M(E(M ),F(M )) , then the injection
M(E(M ),F(M )) ↪→ L0(M ) is continuous.
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Proof. (i) : Let x = u|x| be the polar decomposition of x and let y ∈ E(M ) with
‖y‖E(M ) � 1. It follows that

‖xy‖F(M ) = ‖u|x|y‖F(M ) � ‖|x|y‖F(M ),

‖|x|y‖F(M ) = ‖u∗xy‖F(M ) � ‖xy‖F(M ).

Hence |x| ∈ M(E(M ),F(M )) and ‖x‖M = ‖|x|‖M .
(ii) : Let y ∈ E(M ) with ‖y‖E(M ) � 1 and let y = v|y| be the polar decomposi-

tion of y . Therefore, μ(xy) = μ(x|y∗|v) � μ(x|y∗|) , and so ‖xy‖F(M ) � ‖x|y∗|‖F(M ) .
Combining this with |y∗| � 0, we have

‖x‖M � sup{‖xy‖F(M ) : 0 � y ∈ E(M ),‖y‖E(M ) � 1},
which implies that ‖x‖M = sup{‖xy‖F(M ) : 0 � y ∈ E(M ),‖y‖E(M ) � 1}. On the
other hand, by a simple computation, we derive

sup{‖xy‖F(M ) : 0 � y ∈ E(M ),‖y‖E(M ) � 1}
= sup{‖xy‖F(M ) : 0 � y ∈ E(M ),‖y‖E(M ) = 1}.

(iii) : If 0 � x � z , then there exists u∈ M with ‖u‖� 1 such that x = uz . Thus,
μ(xy) = μ(uzy) � μ(zy) and therefore, (iii) holds.

(iv) : Let e ∈ P(M ) with τ(e) < ∞ . By Proposition 2.3 of [9] and the fact
M(E,F) �= {0} , we get χ[0,τ(e)) ∈ M(E,F) . By Lemma 2.5 of [6], we obtain

μt(ey) � μ t
2
(e)μ t

2
(y) = D2(μt(e)μt(y)) = D2(χ[0,τ(e))(t)μt(y)),y ∈ E(M ).

Consequently,

‖e‖M = sup{‖μ(ey)‖F : y ∈ E(M ),‖y‖E(M ) � 1}
� ‖D2‖F→F sup{‖μ(y)χ[0,τ(e))‖F : μ(y) ∈ E,‖μ(y)‖E � 1}
� ‖D2‖F→F sup{‖ f χ[0,τ(e))‖F : f ∈ E,‖ f‖E � 1}
= ‖D2‖F→F‖χ[0,τ(e))‖M(E,F) < ∞.

That is e ∈ M(E(M ),F(M )) .
(v) : A similar discussion to the proof of Theorem 7.1 of [18] shows that (v)

holds. Indeed, for x ∈ M(E(M ),F(M )) with ‖x‖M � 1. Let x = u|x| be the polar
decomposition of x and |x| =

∫ ∞
0 λdeλ be the spectral decomposition of |x| . Then

|x| admits the Schmidt decomposition |x| =
∫ ∞
0 μt(x)dẽt , where ẽt = eμt(x)−0 , t > 0

and e0−0 = 1 [cf. [17]]. Given δ > 0, it is easy to see that μt(x) � μδ (x)χ[ δ
2 ,δ ) ,

thus |x| =
∫ ∞
0 μt(x)dẽt � μδ (x)q , where q =

∫ ∞
0 χ[ δ

2 ,δ )dẽt . It is clear that τ(q) < ∞,

which means that q ∈ M(E(M ),F(M )) . Hence, ‖x‖M = ‖|x|‖M � μδ (x)‖q‖M and
‖q‖−1

M � μδ (x) , which complete the proof. �

PROPOSITION 4. Let E(M ) and F(M ) be two noncommutative symmetric
function spaces. If limt→∞ μt(x) = 0 holds for all x ∈ M(E(M ),F(M )) , then
M(E(M ),F(M )) is a Banach space with the norm

‖x‖M = sup{‖xy‖F(M ) : y ∈ E(M ),‖y‖E(M ) � 1}.
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Proof. It is clear that ‖ ·‖M is subadditive, homogenous and positive. If ‖x‖M =
‖|x|‖M = 0, then ‖xy‖F(M ) = ‖|x|y‖F(M ) = 0 for every y ∈ E(M ) with ‖y‖E(M ) �
1. That is ‖xy‖F(M ) = ‖|x|y‖F(M ) = 0 for every y ∈ E(M ) . Let e( 1

n ,∞)(|x|) be

the spectral projection of |x| associated with the interval ( 1
n ,∞) , n = 1,2, · · · . Since

τ(e( 1
n ,∞)(|x|)) < ∞ , then e( 1

n ,∞)(|x|) ∈ E(M ) , and so |x|e( 1
n ,∞)(|x|) = 0, n = 1,2, · · · .

Since |x|e( 1
n ,∞)(|x|) → |x| in the measure topology, we have |x| = 0, i.e., x = 0. The

proof of Theorem 8.11 of [7] shows that it is sufficient to prove the noncommutative
form of the Riesz-Fischer theorem, i.e., we have an estimate

‖
∞

∑
n=1

xn‖M �
∞

∑
n=1

‖xn‖M ,xn � 0, n = 1,2,3 · · · ,

whenever the right-hand side is finite. Let ∑∞
n=1‖xn‖M < ∞ , then ∑∞

n=1 xn converges
in L0(M ) to some x . Indeed, set zn = ∑n

k=1 xk , it is clear that {zn}∞
n=1 is a Cauchy

sequence in M(E(M ),F(M )) , then by (v) of Proposition 3, {zn}∞
n=1 converges in

L0(M ) to some x . Note that ∑∞
n=1‖xny‖M � ∑∞

n=1‖xn‖M < ∞ and

‖(
∞

∑
n=1

xn)y‖F(M ) = ‖
∞

∑
n=1

xny‖F(M ) �
∞

∑
n=1

‖xny‖F(M )

�
∞

∑
n=1

‖xn‖M < ∞

hold for each y ∈ E(M ) with ‖y‖E(M ) � 1. Thus ∑∞
n=1 xn ∈ M(E(M ),F(M )) and

‖∑∞
n=1 xn‖M � ∑∞

n=1 ‖xn‖M < ∞ . �

PROPOSITION 5. Let E(M ) �= {0} be a noncommutative symmetric function space,
then

M(E(M ),E(M )) = M , M(M ,E(M )) = E(M ).

Proof. It is clear that M ⊆M(E(M ),E(M )) and ‖xy‖E(M ) � ‖y‖E(M )‖x‖ hold
for x ∈ M and y ∈ E(M ) . Moreover, ‖x‖M � ‖x‖,x ∈ M . Conversely, let x ∈
M(E(M ),E(M )) and x /∈ M , then the projection en = e(n3,(n+1)3](|x|) has positive
trace for infinitely many n ∈ N+ . Without loss of generality, we suppose that 0 <
τ(en) < ∞ for all n ∈ N+ . We put an = ‖en‖E(M ) , n∈ N+ and y = ∑∞

n=1
1

n2an
en . Then

y ∈ E(M ) . Since

‖xy‖E(M ) � ‖xyen‖E(M )

� n3‖yen‖E(M ) = n

holds for all n ∈ N+ , we have x /∈ M(E(M ),E(M )) . This implies that

M ⊇ M(E(M ),E(M )).
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On the other hand, for x ∈ M(E(M ),E(M )) ⊆ M and 0 < λ0 < ‖x‖ , we put yλ0
=

e(λ0 ,‖x‖)(|x|)
‖e(λ0,‖x‖)(|x|)‖E(M )

∈ E(M ) , then ‖yλ0
‖E(M ) = 1 and

‖xyλ0
‖E(M ) =

∥∥∥x e(λ0,‖x‖)(|x|)
‖e(λ0,‖x‖)(|x|)‖E(M )

∥∥∥
E(M )

� λ0, 0 < λ0 < ‖x‖,

which implies that ‖x‖M � ‖x‖. Therefore, M(E(M ),E(M )) = M .
Let x ∈ M(M ,E(M )) and x = u|x| be the polar decomposition of x . Note

that x = xuu∗ and uu∗ ∈ M , by a simple computation, we derive M(M ,E(M )) =
E(M ) . �

We put M(E(M ),F(M )) = E(M )F(M ) . The spaces (E(M )F(M ))F(M ) is de-
noted by E(M )F(M )F(M ) . Here we say that E(M ) is F(M )-perfect, if E(M ) =
E(M )F(M )F(M ) .

PROPOSITION 6. Let E , E1 , E2 , F , F1 , F2 be symmetric function spaces.

(i) E(M ) ↪→1 E(M )F(M )F(M ) .

(ii) If E1(M ) ↪→1 E2(M ) , then M(E2(M ),F(M )) ↪→1 M(E1(M ),F(M )) .

(iii) If F1(M ) ↪→1 F2(M ) , then M(E(M ),F1(M )) ↪→1 M(E(M ),F2(M )) .

(iv) E(M )F(M ) = E(M )F(M )F(M )F(M ) .

(v) If F,E1 ⊆ L1 , then

M(E0(M ),E1(M )) ↪→1 M(E1(M )F(M ),E0(M )F(M ))

= M(E0(M )F(M )F(M ),E1(M )F(M )F(M )).

(vi) E(M ) ↪→1 E1(M )F(M ) if and only if E1(M ) ↪→1 E(M )F(M ) .

(vii) If F,F1 ⊆ L1 and F(M ) is F1(M )-perfect, then E(M )F(M ) is F1(M )-perfect.

Proof. (i) : Let y ∈ M(E(M ),F(M )) and y = u|y| be the polar decomposi-
tion of y . Then yx ∈ F(M ) holds for all x ∈ E(M ) . Thus μ(|y|x) = μ(u∗yx) �
μ(yx) ∈ F holds for all x ∈ E(M ) . This implies that |y| ∈ M(E(M ),F(M )). For
every x ∈ E(M ) , it is clear that u∗x ∈ E(M ) . Thus μ(y∗x) = μ(|y|u∗x) ∈ F holds
for all x ∈ E(M ) . That is y∗ ∈ M(E(M ),F(M )) . Moreover, we have Rey , Imy ∈
M(E(M ),F(M )) . Since x ∈ E(M ) , it is clear that Rex , Imx ∈ E(M ) . Hence,
Rey Rex , Rey Imx , Imy Rex , Imy Imx ∈ F(M ) . By Corollary 3.6 of [3], we deduce
Rex Rey , ImxRey , Rex Imy , Imx Imy ∈ F(M ) . Since

μt(xy) � D4(μt(Rex Rey)+ μt(Imx Rey)+ μt(Rex Imy)+ μt(Imx Imy))

and D4 is bounded on F , we get xy ∈ F(M ) . Therefore,

E(M ) ⊆ M(M(E(M ),F(M )),F(M )).
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Let y ∈ E(M ) ⊆ M(M(E(M ),F(M )),F(M )) . By Corollary 3.6 of [3] and Proposi-
tion 3, we have

‖y‖E(M )F(M )F(M ) = ‖|y|‖E(M )F(M )F(M )

= sup{‖|y|x‖F(M ) : 0 � x ∈ M(E(M ),F(M )),‖x‖M = 1}

� sup

{
‖|y|x‖F(M ) :

0 � x ∈ M(E(M ),F(M )), 0 � z ∈ E(M ),
‖xz‖F(M ) = ‖zx‖F(M ) � ‖z‖E(M )

}
� ‖y‖E(M ).

(ii) and (iii) follow from the definition of ‖ ·‖M . (iv) follows immediately from
(i) and (ii) .

(v) : Let x ∈ M(E0(M ),E1(M )) . Then xz ∈ E1(M ) holds for all z ∈ E0(M ) .
Therefore, for every y ∈ M(E1(M ),F(M )) , we have yxz ∈ F(M ) . A similar dis-
cussion to the proof of (i) shows that zx ∈ E1(M ) holds for all z ∈ E0(M ) , and so
yzx ∈ F(M ) . This implies that |yz|x ∈ F(M ) . Moreover, (yz)∗x ∈ F(M ) . A simi-
lar discussion to the proof of (i) shows that xyz ∈ F(M ) . That is xy ∈ E0(M )F(M ) ,
i.e., x ∈ M(E1(M )F(M ),E0(M )F(M )) . Since F,E1 ⊆ L1 , we have F(M ) , E1(M ) ⊆
L1(M ) . Thus, by Lemma 2 of [2], we have

‖x‖M(E1(M )F(M ),E0(M )F(M )) = ‖|x|‖M(E1(M )F(M ),E0(M )F(M ))

= sup{‖|x|y‖E0(M )F(M ) : 0 � y ∈ E1(M )F(M ),‖y‖E1(M )F(M ) = 1}

� sup

{
‖|x|yz‖F(M ) :

0 � y ∈ E1(M )F(M ),‖y‖E1(M )F(M ) = 1,

0 � z ∈ E0(M ),‖z‖E0(M ) = 1

}

= sup

{
‖z|x|y‖F(M ) :

0 � y ∈ E1(M )F(M ),‖y‖E1(M )F(M ) = 1,

0 � z ∈ E0(M ),‖z‖E0(M ) = 1

}
� sup{‖|x|z‖E1(M ) : 0 � z ∈ E0(M ),‖z‖E0(M ) = 1}
= ‖x‖M(E0(M ),E1(M )).

This completes the proof.
(vi) : A similar discussion to the proof of (i) shows that E(M ) ⊆ E1(M )F(M ) if

and only if E1(M ) ⊆ E(M )F(M ) . If ‖x‖E(M ) � ‖x‖E1(M )F(M ) , then we have

‖y‖E(M )F(M ) = ‖|y|‖E(M )F(M )

= sup{‖|y|x‖F(M ) : 0 � x ∈ E(M ),‖x‖E(M ) � 1}
� sup{‖|y|x‖F(M ) : 0 � x ∈ E(M ),0 � z ∈ E1(M ),‖xz‖F(M ) � ‖z‖E1(M )}
� ‖|y|‖E1(M ) = ‖y‖E1(M ).

Similarly, if ‖y‖E1(M ) � ‖y‖E(M )F(M ) , we have ‖x‖E(M ) � ‖x‖E1(M )F(M ) and the
proof is complete.

(vii) : By (i) we have

E(M )F(M ) ↪→1 E(M )F(M )F1(M )F1(M ).
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Let F(M ) = F(M )F1(M )F1(M ) . By (i) and (v) , we obtain

E(M ) ↪→1 E(M )F(M )F(M ) ↪→1 M(E(M )F(M )F1(M )F1(M ),F(M )F1(M )F1(M ))

= M(E(M )F(M )F1(M )F1(M ),F(M )).

Thus, by (vi) , we obtain E(M )F(M )F1(M )F1(M ) ↪→1 E(M )F(M ) . It follows that
E(M )F(M )F1(M )F1(M ) = E(M )F(M ) and the proof is complete. �

By Proposition 5 and Proposition 6, we obtain the following corollary.

COROLLARY 1. Let E,F be symmetric function spaces.

(i) E(M ) and M are E(M )-perfect spaces.

(ii) E(M )F(M ) ↪→1 F(M ) if and only if M ↪→1 E(M )F(M )F(M ) .

(iii) F(M ) ↪→1 E(M )F(M ) if and only if E(M )F(M )F(M ) ↪→1 M .

(iv) E(M )F(M )F(M ) ↪→1 F(M ) if and only if E(M ) ↪→1 F(M ) if and only if M ↪→1

E(M )F(M ) .

(v) F(M ) ↪→1 E(M )F(M )F(M ) if and only if E(M )F(M ) ↪→1 M .

Proof. The same proof as of Corollary 1 of Maligranda and Persson [16] works. �

EXAMPLE 1.

(i) Let 1 � p < r � ∞ and M be a semifinite von Neumann algebra. Then

M(Lp(M ),Lr(M )) = {0}.
Indeed, suppose that there exists x ∈ M(Lp(M ),Lr(M )) and x �= 0. Then there
exists a projection e ∈ P(M ) such that ex = xe and 0 < τ(e) < ∞ . Let en =
e[ 1

n ,n](|exe|) , n = 1,2,3 · · · . Hence, en ↑ e and τ(en) > 0 for n > n0. Moreover,

if y ∈ Lp(enM en) , then |y|en ∈ Lp(M ) and

μ
(1

n
yen

)
� μ

(1
n
|y|en

)
= μ

(
(|y|en)

1
2
1
n
(|y|en)

1
2

)
� μ((|y|en)

1
2 |enxen|(|y|en)

1
2 )

� μ(enxen(|y|en)) � μ(x|y|en).

It follows that yen ∈ Lr(M ) and so y ∈ Lr(enM en) . Thus, Lr(enM en) ⊇
Lp(enM en) , τ(en) > 0. But, the embedding cannot holds even in the classical
case. This contradiction implies that M(Lp(M ),Lr(M )) = {0} .

(ii) Let 1 � p � r � ∞ with 1
q = 1

r − 1
p and M be a semifinite von Neumann algebra.

Then
M(Lp(M ),Lr(M )) = Lq(M ).
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3. Multipliers of noncommutative Calderón-Lozanovskiı̆ spaces

LEMMA 1. Let ϕ ∈ Y1∪Y2 and x = ∑N
k=1 ckek , where ek ∈ P(M ) , ei⊥e j , i �= j

and τ(ek) < ∞. Then ρϕ
M ( x

‖x‖ϕ
) = ρϕ( μ(x)

‖μ(x)‖Eϕ
) = 1.

Proof. Let x = ∑N
k=1 ckek . It is clear that |x|= ∑N

k=1 |ck|ek . Without loss of gener-
ality, we suppose |c1|> |c2|> · · ·> |cN | . Let d j = ∑ j

k=1 τ(ek) , 1 � j � N and d0 = 0.
Then

μ(x) = μ(|x|) = |c1|χ(d0,d1) +
N

∑
j=2

|c j|χ[d j−1,d j).

Hence, the result follows immediately from Lemma 5.1 of [9] and ρϕ
M (x) = ρϕ(μ(x)) .

�

THEOREM 1. Let E be a symmetric function space with Fatou property and ϕ ,
ϕ1 , ϕ2 be Young functions. Assume also that at least one of the following conditions
holds:

(i) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for large arguments and M ↪→ E(M ) ,

(iii) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for small arguments and E(M ) ↪→ M .

Then Eϕ2(M ) ↪→ M(Eϕ1(M ) , Eϕ(M )) .

Proof. (i) . Let x ∈ Eϕ1(M ) and y ∈ Eϕ2(M ) , then μ(x) ∈ Eϕ1 and μ(y) ∈ Eϕ2 .
Since D2 : Eϕ1 → Eϕ1 and D2 : Eϕ2 → Eϕ2 are bounded, then D2(μt(x)) ∈ Eϕ1 and
D2(μt(y)) ∈ Eϕ2 . By Theorem 4.1 of [9], we have D2(μ(x))D2(μ(y)) ∈ Eϕ . It follows
from Lemma 2.5 of [6] that

μt(yx) � μ t
2
(x)μ t

2
(y) = D2(μt(x))D2(μt(y)),

and so μ(yx) ∈ Eϕ , i.e., yx ∈ Eϕ(M ) . Therefore, by Theorem 4.1 of [9], we deduce

‖yx‖Eϕ(M ) = ‖μ(yx)‖Eϕ � c‖D2‖Eϕ1→Eϕ1
‖D2‖Eϕ2→Eϕ2

‖x‖Eϕ1(M )‖y‖Eϕ2(M ), (3.1)

where the constant c is taken from the proof of Theorem 4.1 in [9]. From inequality
(3.1) we obtain

‖y‖M = sup{‖yx‖ϕ : ‖x‖ϕ1 � 1} � A‖y‖ϕ2 , (3.2)

where A = c‖D2‖Eϕ1→Eϕ1
‖D2‖Eϕ2→Eϕ2

.

On the other hand, the fact M ↪→ E(M ) and E(M ) ↪→ M imply L∞ ↪→ E and
E ↪→ L∞ , respectively. Thus, a similar discussion to the proof of the case (i) shows that
the inequality (3.2) holds for the case (ii) and (iii) . This completes the proof. �

The idea of the proof of the following theorem is taken from Theorem 5.2 of [9]
and Theorem 1 of [15].
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THEOREM 2. Let E be a symmetric function space with Fatou property and ϕ ,
ϕ1 , ϕ2 be Young functions with bϕ2 = bϕ1 = bϕ . Assume also that at least one of the
following conditions holds:

(i) ϕ−1
1 ϕ−1

2 � ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 � ϕ−1 for large arguments and M ↪→ E(M ) ,

(iii) ϕ−1
1 ϕ−1

2 � ϕ−1 for small arguments and E(M ) ↪→ M .

Then M(Eϕ1(M ),Eϕ(M )) ↪→ Eϕ2(M ) .

Proof. (i) : Let ϕ ,ϕ2 ∈ Y1∪Y2 and let

x ∈ K =

{
x :

x = ∑n
k=1 ckek, ck ∈ C,

ek ∈ P(M ),ek⊥e j, if k �= j,τ(ek) < ∞, j,k = 1,2, · · · ,n

}

with x �= 0. Since M(Eϕ1(M ),Eϕ (M )) and Eϕ2(M ) are Banach spaces, then x ∈
M(Eϕ1(M ),Eϕ (M )) and x ∈ Eϕ2(M ) . By Lemma 3.1, we have ρϕ2(

μ(x)
‖x‖ϕ2

) = 1.

Thus ‖x‖
‖x‖ϕ2

� bϕ2 . Indeed, let bϕ2 < ∞ . If for some t0 > 0 we had
μt0 (x)
‖x‖ϕ2

> bϕ2 , then

μt(x)
‖x‖ϕ2

� μt0 (x)
‖x‖ϕ2

> bϕ2 for all 0 < t � t0 , which would force

ρϕ2

(
μt(x)
‖x‖ϕ2

)
� ρϕ2

(
μt(x)
‖x‖ϕ2

χ(0,t0]

)
= ρϕ2(∞χ(0,t0]) = ∞.

Thus we have μt(x)
‖x‖ϕ2

� bϕ2 , t > 0. This means that ‖x‖
‖x‖ϕ2

= limt→0
μt(x)
‖x‖ϕ2

� bϕ2 . If bϕ2 =

∞ , we clearly have that ‖x‖
‖x‖ϕ2

� bϕ2 . Therefore, ‖x‖
‖x‖ϕ2

� bϕ2 . Let |x| = ∫ ‖x‖
0 λdeλ (|x|)

be the spectral decomposition of |x| and let

y = ϕ2

( |x|
‖x‖ϕ2

)
∈ L0(M )+

and

z = ϕ−1
1

(
ϕ2

( |x|
‖x‖ϕ2

))
e[‖x‖ϕ2aϕ2 ,‖x‖)(|x|) ∈ L0(M )+.

Lemma 3.1 of [9] and the Borel functional calculus tell us that ϕ1(z) � y and ρϕ1
M (z) �

ρϕ2
M

( |x|
‖x‖ϕ2

)
� 1. This means that ‖z‖ϕ1 � 1 and zx ∈ Eϕ (M ) . The assumption (i)

implies that there exists a constant c > 0 such that

ϕ−1(t) � cϕ−1
1 (t)ϕ−1

2 (t) for all t > 0.
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Combining this and the fact ‖x‖
‖x‖ϕ2

� bϕ2 with Lemma 3.1 of [9], we obtain

ϕ
(

cϕ−1
1

(
ϕ2

(
t

‖x‖ϕ2

))
χ[‖x‖ϕ2aϕ2 ,‖x‖)(t)

t
‖x‖ϕ2

)
= ϕ

(
cϕ−1

1

(
ϕ2

(
t

‖x‖ϕ2

))
ϕ−1

2

(
ϕ2

(
t

‖x‖ϕ2

)))
χ[‖x‖ϕ2aϕ2 ,‖x‖)(t)

� ϕ
(

ϕ−1
(

ϕ2

(
t

‖x‖ϕ2

)))
χ[‖x‖ϕ2aϕ2 ,‖x‖)(t)

= ϕ2

(
t

‖x‖ϕ2

)
χ[‖x‖ϕ2aϕ2 ,‖x‖)(t).

On the other hand, if 0 � t < ‖x‖ϕ2aϕ2 , then ϕ2( t
‖x‖ϕ2

) = 0 and

ϕ
(

cϕ−1
1

(
ϕ2

(
t

‖x‖ϕ2

))
χ[‖x‖ϕ2aϕ2 ,‖x‖)(t)

t
‖x‖ϕ2

)
= 0.

Therefore,

ϕ
(

cϕ−1
1

(
ϕ2

(
t

‖x‖ϕ2

))
χ[‖x‖ϕ2aϕ2 ,‖x‖)(t)

t
‖x‖ϕ2

)
� ϕ2

(
t

‖x‖ϕ2

)
holds for 0 � t < ‖x‖ . Thus, by the Borel functional calculus, we deduce

ϕ
(

c
∣∣∣z |x|
‖x‖ϕ2

∣∣∣)= ϕ
(

cz
|x|

‖x‖ϕ2

)
� ϕ2

( |x|
‖x‖ϕ2

)
= y.

Since

ϕ
(

μ
(

c|z x
‖x‖ϕ2

|
))

= ϕ
(

cμ
(

z
x

‖x‖ϕ2

))
= ϕ

(
cμ
(

x
‖x‖ϕ2

z

))

= ϕ

(
cμ
(

z
x∗

‖x‖ϕ2

x
‖x‖ϕ2

z

) 1
2
)

= ϕ

(
cμ(z

|x|2
‖x‖2

ϕ2

z)
1
2

)

= ϕ
(

μ
(

cz
|x|

‖x‖ϕ2

))
,

we have ρϕ
M (cz x

‖x‖ϕ2
) = ρϕ

M (cz |x|
‖x‖ϕ2

) . From Lemma 1, we infer

ρϕ
M

(
cz

x
‖x‖ϕ2

)
=
∥∥∥ϕ
(

c
∣∣∣z |x|
‖x‖ϕ2

∣∣∣)∥∥∥
E(M )

� ‖y‖E(M )

=
∥∥∥ϕ2

(
x

‖x‖ϕ2

)∥∥∥
E(M )

= ρϕ2
M

(
x

‖x‖ϕ2

)
= 1.

Therefore, ‖x‖M � ‖zx‖ϕ � 1
c‖x‖ϕ2 . Let x ∈ M(Eϕ1(M ),Eϕ (M )) and |x| =∫ ∞

0 λdeλ (|x|) be the spectral decomposition of |x| . Let fk(t) = ∑n2n

j=1
j−1
2n χ[ j−1

2n , j
2n ) , then
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0 � fk(t) � fk+1(t) � t. It is clear that 0 � fk(t)χ[ 1
k ,∞) � fk+1(t)χ[ 1

k+1 ,∞) � t. We write

xn = fn(|x|)e[ 1
n ,∞)(|x|) = (

n2n

∑
j=1

j−1
2n e[ j−1

2n , j
2n )(|x|))e[ 1

n ,∞)(|x|).

It follows that xn � xn+1 � |x| , n = 1,2,3 · · · and

μ3t(x− xn) � μt(|x|e[0, 1
n ))+ μt(|x|e[ 1

n ,n)(|x|)− xn)+ μt(|x|e[n,∞)(|x|))

� 1
n

+
1
2n + μt(|x|)χ(0,τ(e[n,∞)(|x|))).

From Proposition 21 of [Chapter I, [21]], we have τ(e[n,∞)(|x|)) → 0 as n → ∞, and
so μ3t(x− xn) → 0 as n → ∞ . From [Lemma 3.1, Lemma 2.5 and Lemma 3.4 of [6]]
we deduce xn ↑ |x| in the measure topology and μ(xn) ↑ μ(x) . It is clear that ‖x‖M �
‖xn‖M � 1

c‖xn‖ϕ2 . The Fatou property of Eϕ(M ) tells us that ‖x‖M � 1
c‖x‖ϕ2 .

If ϕ or ϕ2 is in Y3 , we consider only the case that both ϕ and ϕ2 are in Y3 ,
since other cases are similar. For 0 < δ < 1, there exist ψ ,ψ2 ∈ Y2 such that

ψ(δ t) � ϕ(t) � ψ(t), ψ2(δ t) � ϕ2(t) � ψ2(t)

for all t > 0 (cf. property (iv) of [p. 254, [15]]). This ensures that

δϕ−1(t) � ψ−1(t) � ϕ−1(t), δϕ−1
2 (t) � ψ−1

2 (t) � ϕ−1
2 (t), 0 < δ < 1

and
δ‖x‖ψ � ‖x‖ϕ � ‖x‖ψ , δ‖x‖ψ2 � ‖x‖ϕ2 � ‖x‖ψ2 , 0 < δ < 1.

Moreover,

δ‖x‖M(Eϕ1(M ),Eψ (M )) � ‖x‖M(Eϕ1 (M ),Eϕ(M )) � ‖x‖M(Eϕ1(M ),Eψ (M )), 0 < δ < 1.

Therefore, the fact ϕ−1 ≺ ϕ−1
1 ϕ−1

2 implies that

ψ−1(t) � c
δ

ϕ−1
1 (t)ψ−1

2 (t), 0 < δ < 1.

It follows from the above case that ‖x‖M(Eϕ1(M ),Eψ (M )) � δ
c ‖x‖ψ2 , 0 < δ < 1. Thus,

‖x‖M(Eϕ1(M ),Eϕ (M )) � δ 2

c
‖x‖ϕ2

holds for all 0 < δ < 1. This indicates that

‖x‖M(Eϕ1 (M ),Eϕ(M )) � 1
c
‖x‖ϕ2 .

(ii) : If M ↪→ E(M ) , put α > aϕ2 with ϕ2(α)‖1‖E(M ) < 1
2 . For this ϕ2(α) > 0,

Lemma 3.2 of [9] indicates that there exists c1 � c such that

ϕ−1(t) � c1ϕ−1
1 (t)ϕ−1

2 (t) (3.3)
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for any t � ϕ2(α) , where the constant c is taken from the definition of ϕ−1
1 ϕ−1

2 � ϕ−1

for large arguments. Thus

ρϕ2(ze[α ,∞(|z|)) � 1
2

(3.4)

for each z with ρϕ2(z) = 1. Otherwise, the inequality μλt(z)(z) � t ensures that

1 = ρϕ2
M (z) � ρϕ2

M (ze[α ,∞)(|z|))+ ρϕ2
M (ze[0,α)(|z|)) <

1
2

+ ϕ2(α)‖1‖E(M ) < 1,

and we get a contradiction. Let ϕ ,ϕ2 ∈ Y1 ∪Y2 and x ∈ K . Then we have

x ∈ M(Eϕ1(M ),Eϕ (M )) and x ∈ Eϕ2(M ).

A similar discussion to the proof of the case (i) shows that ‖x‖
‖x‖ϕ2

� bϕ2 . Moreover, we

have ϕ2(
|x|

‖x‖ϕ2
) ∈ L0(M ) . We write y = ϕ2(

|x|
‖x‖ϕ2

) and z = ϕ−1
1 (y) . It follows from

Lemma 3.1 of [9] and Borel functional calculus that ϕ1(z) � y , and so

ρϕ1
M (z) � ρϕ2

M

( |x|
‖x‖ϕ2

)
= 1.

Then ‖z‖ϕ1 � 1 and zx ∈ Eϕ(M ) . Applying Lemma 3.1 of [9], we infer

t
‖x‖ϕ2

χ[α‖x‖ϕ2 ,∞)∩σ(|x|)(t) � ϕ−1
2

(
ϕ2

(
t

‖x‖ϕ2

))
χ[α‖x‖ϕ2 ,∞)∩σ(|x|)(t).

Together this with Borel functional calculus, we deduce |x|
‖x‖ϕ2

e1 � ϕ−1
2 (y)e1 ,

ϕ
(

2c1|e1z
|x|

‖x‖ϕ2

|
)

= ϕ
(

2c1e1z
|x|

‖x‖ϕ2

)
� ϕ(2c1e1ϕ−1

1 (y)ϕ−1
2 (y)e1)

� ϕ(2ϕ−1(y))e1 � 2ϕ(ϕ−1(y))e1 = 2ye1,

where e1 = e[α‖x‖ϕ2 ,∞)(|x|) . Since

ϕ
(

μ
(

c
∣∣∣e1z

x
‖x‖ϕ2

∣∣∣))= ϕ
(

μ
(

ce1z
|x|

‖x‖ϕ2

))
,

Applying Lemma 1, we have ρϕ2
M ( x

‖x‖ϕ2
) = 1. Consequently, by (3.4), we obtain

ρϕ
M

(
2c1e1z

|x|
‖x‖ϕ2

e1

)
� 2ρϕ2

M

( |x|
‖x‖ϕ2

e1

)
� 1.

Thus ‖zx‖ϕ � ‖e1zx‖ϕ � 1
2c1

‖x‖ϕ2 , which means that

‖x‖M � 1
2c1

‖x‖ϕ2 .



PRODUCTS OF NONCOMMUTATIVE CALDERÓN-LOZANOVSKIĬ SPACES 1359

For x ∈ M(Eϕ1(M ),Eϕ(M )) , a similar discussion to the proof of the case (i) shows
that there exists {xn} ⊆ K such that 0 � xn ↑ |x| in measure topology. Thus the Fatou
property of Eϕ2(M ) implies that ‖x‖M � 1

2c1
‖x‖ϕ2 holds for all x ∈ M(Eϕ1(M ),

Eϕ(M ))) .
If ϕ or ϕ2 is in Y3 , we consider only the case that both ϕ and ϕ2 are in Y3 ,

since other cases are similar. For 0 < δ < 1, there exist ψ ,ψ2 ∈ Y2 such that

ψ(δ t) � ϕ(t) � ψ(t), ψ2(δ t) � ϕ2(t) � ψ2(t)

for all t > 0 (cf. property (iv) of [p. 254, [15]]). Using a similar discussion to the proof
of the case (i) , we have ‖x‖M � 1

2c1
‖x‖ϕ2 .

(iii) : If Eϕ(M ) ⊆ M , put x ∈ Eϕ(M ) with ‖x‖ϕ � 1, then ‖x‖ � bϕ and

ϕ(|x|) =
∫ ∞

0
ϕ(λ )deλ ∈ M .

Write r = max{‖ϕ(|x|)‖,‖x‖} , by Lemma 3.2 of [9], there exists a constant c2 > c
such that ϕ−1(t) � c2ϕ−1

1 (t)ϕ−1
2 (t) for any 0 < t � r . The rest of the proof goes as in

case (i) . �

THEOREM 3. Let E be a symmetric function space with Fatou property and ϕ ,
ϕ1 , ϕ2 be Young functions with bϕ2 = bϕ1 = bϕ . Assume also that at least one of the
following conditions holds:

(i) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for large arguments and M ↪→ E(M ) ,

(iii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for small arguments and E(M ) ↪→ M .

Then M(Eϕ1(M ),Eϕ(M )) = Eϕ2(M ) .

Proof. It follows immediately from Theorem 1 and Theorem 2. �

4. The product of noncommutative Calderón-Lozanovskiı̆ spaces

Given two noncommutative symmetric function spaces E(M ) and F(M ) . We
define the product space E(M ) ·F(M ) as

E(M ) ·F(M ) = {xy : x ∈ E(M ) and y ∈ F(M )}
with a functional ‖ · ‖E(M )·F(M ) defined by

‖x‖E(M )·F(M ) = inf{‖y‖E(M )‖z‖F(M ) : x = yz,y ∈ E(M ),z ∈ F(M )},
where the product xy being the closure of the algebraic product. Pointwise product
of some Banach ideal spaces were investigated by several authors, see for example
[10, 12, 15, 20].
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REMARK 1.

(i) If x ∈ E(M ) ·F(M ) , then ‖x‖E(M )·F(M ) = ‖|x|‖E(M )·F(M ).

(ii) If 0 � x � y , then ‖x‖E(M )·F(M ) � ‖y‖E(M )·F(M ) .

THEOREM 4. Let E be a symmetric function space with Fatou property and ϕ ,
ϕ1 , ϕ2 be Young functions. Assume also that at least one of the following conditions
holds:

(i) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for large arguments and M ↪→ E(M ) ,

(iii) ϕ−1
1 ϕ−1

2 ≺ ϕ−1 for small arguments and E(M ) ↪→ M .

Then Eϕ2(M ) ·Eϕ1(M ) ↪→ Eϕ(M ) .

Proof. Let y ∈ Eϕ1(M ) and z ∈ Eϕ2(M ) . Using Theorem A of [10], we get

‖zy‖ϕ � ‖D2‖Eϕ→Eϕ‖μ(y)μ(z)‖Eϕ

� c‖D2‖Eϕ→Eϕ‖μ(y)μ(z)‖Eϕ1 ·Eϕ2

� c‖D2‖Eϕ→Eϕ‖μ(y)‖Eϕ1
‖μ(z)‖Fϕ1

= c‖D2‖Eϕ→Eϕ‖y‖Eϕ1(M )‖z‖Fϕ1(M ),

where the constant c is taken from the Theorem A of [10]. This ensures that

‖zy‖ϕ � c‖D2‖Eϕ→Eϕ‖zy‖Eϕ2(M )·Eϕ1 (M ). �

The idea of the proof of the following theorem is derived from that of the Theorem
5 of [10].

THEOREM 5. Let E be a symmetric function space with Fatou property and ϕ ,
ϕ1 , ϕ2 be Young functions with bϕ2 = bϕ1 = bϕ . Assume also that at least one of the
following conditions holds:

(i) ϕ−1
1 ϕ−1

2 � ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 � ϕ−1 for large arguments and M ↪→ E(M ) ,

(iii) ϕ−1
1 ϕ−1

2 � ϕ−1 for small arguments and E(M ) ↪→ M .

Then Eϕ(M ) ↪→ Eϕ2(M ) ·Eϕ1(M ) .
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Proof. (i) : Let 0 �= x ∈ Eϕ(M ) . Then ‖ x
‖x‖ϕ

‖ϕ = 1. It follows from Lemma

1 that ρϕ
M ( |x|

‖x‖ϕ
) � 1. A similar argument to the proof of Theorem 2 implies that

‖x‖
‖x‖ϕ

� bϕ and so ϕ( |x|
‖x‖ϕ

) ∈ L0(M ) . We write y = ϕ( |x|
‖x‖ϕ

) . Put

gi(t) =

⎧⎪⎪⎨⎪⎪⎩
(

t

ϕ−1
1

(
ϕ
(

t
‖x‖ϕ

))
ϕ−1

2

(
ϕ
(

t
‖x‖ϕ

))
) 1

2

ϕ−1
i

(
ϕ
(

t
‖x‖ϕ

))
, if t ∈ σ(|x|),

0, otherwise.

(4.1)

The proof of Theorem 5 of [10] shows that

gi(t)

c
1
2 ‖x‖

1
2
ϕ

� ϕ−1
i

(
ϕ
(

t
‖x‖ϕ

))
,

it follows from Lemma 3.1 of [9] that

ϕi

⎛⎝ gi(t)

c
1
2 ‖x‖

1
2
ϕ

⎞⎠� ϕ
(

t
‖x‖ϕ

)
,

where the constant c is taken from the proof of Theorem 5 of [10]. Then, the Borel
functional calculus indicates that ϕi( xi

c
1
2 ‖x‖

1
2
ϕ

) � y , i = 1,2, where xi = gi(|x|) . This

implies that

ρϕi
M

⎛⎝ xi

c
1
2 ‖x‖

1
2
ϕ

⎞⎠� ‖y‖E(M ) = ρϕ
M

(
z

‖x‖ϕ

)
� 1, i = 1,2.

Therefore, ‖xi‖ϕi � (c‖x‖ϕ)
1
2 , i = 1,2. Consequently,

|x| = x2x1 and ‖x‖Eϕ2(M )·Eϕ1 (M ) � c‖x‖ϕ .

That is x ∈ Eϕ2(M ) ·Eϕ1(M ) .
(ii) : First we assume that bϕ < ∞ . Since M ↪→ E(M ) , then L∞ ↪→ E , which

means Eϕ = L∞ . It is clear that Eϕ(M ) = M . For x ∈ M , by the fact M ↪→ E(M )
and Borel functional calculus, there exists λi > 0 such that

ϕi(λi|x|) ∈ M ↪→ E(M ), i = 1,2.

This tells us that M ↪→ Eϕi(M ) , i = 1,2. Thus, Eϕ(M ) = M ↪→ Eϕ2(M ) ·Eϕ1(M ).
If bϕ = ∞, set s0 = ϕ−1(t0) , where t0 and the constant c are taken from the

definition of ϕ−1
1 ϕ−1

2 � ϕ−1 for large arguments. Take s > 0 with

max{ϕ1(s),ϕ2(s)}‖1‖E(M ) � 1
2
.
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For ‖x‖ϕ = 1, we write y = ϕ(|x|) ∈ L0(M ) , e1 = e[s0,∞)(|x|),e2 = e[0,s0)(|x|) and
define

gi(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
t

ϕ−1
1 (ϕ(t))ϕ−1

2 (ϕ(t))

) 1
2

ϕ−1
i (ϕ(t)), if t ∈ σ(|x|)∩ (s0,∞),

t
1
2 , t ∈ σ(|x|)∩ [0,s0],

0, otherwise.

(4.2)

for i = 1,2. Since ϕ(s0) > 0, the functions gi(t) are well defined. From ϕ−1
1 ϕ−1

2 �
ϕ−1 for large arguments and Lemma 3.1 of [9], we obtain

gi(t) �
(

ct
ϕ−1(ϕ(t))

) 1
2

ϕ−1
i (ϕ(t)) � c

1
2 ϕ−1

i (ϕ(t)), t ∈ σ(|x|)∩ (s0,∞).

Therefore,

ϕ1

(
g1(t)

2c
1
2

χ[s0,∞)(t)
)

� 1
2

ϕ1(ϕ−1
1 (ϕ(t))χ[s0,∞)(t)) � 1

2
ϕ(t),

where the constant c is taken from the case (i) . Put xi = gi(|x|) and y = ϕ(|x|) . It
follows from Borel functional calculus that

ρϕ1
M

(
x1

2c
1
2

e1

)
� 1

2
ρϕ1

M

(
x1

c
1
2

e1

)
� 1

2
‖y‖ϕ � 1

2
.

Since μτ(e1)(x1) � s0 , we obtain

ρϕ1
M

(
sx1e2

s0

)
=
∥∥∥ϕ1

(
μ
(

sx1e2

s0

))∥∥∥
E

�
∥∥∥ϕ1

(
s
s0

μ(x1)χ[τ(e1),∞)

)∥∥∥
E

�
∥∥∥ϕ1

(
s
s0

μτ(e1)(x1)χ[0,∞)

)∥∥∥
E

�
∥∥∥ϕ1

(
s
s0

μτ(e1)(x1)χ[0,∞)

)∥∥∥
E

� ‖ϕ1(s)χ[0,∞)‖E = ϕ1(s)‖1‖E(M ) � 1
2
.

Set λ = max{ s0
s ,2c

1
2 } and we deduce

ρϕ1
M

(x1

λ

)
� ρϕ1

M

(x1

λ
e1

)
+ ρϕ1

M

(x1

λ
e2

)
� ρϕ1

M

(
x1

2c
1
2

e1

)
+ ρϕ1

M

(
sx1

s0
e2

)
� 1.

Hence, ‖x1‖ϕ1 � λ and similarly ‖x2‖ϕ2 � λ . On the other hand, it is clear that
g1(t)g2(t) = t, t ∈ σ(|x|) . This means that |x| = x2x1 and so x ∈ Eϕ2(M ) ·Eϕ1(M ) .
Moreover, ‖x‖Eϕ2(M )·Eϕ1 (M ) � λ 2‖x‖ϕ holds for every x ∈ Eϕ(M ).

(iii) : The Lemma 3.2 of [9] and the fact ϕ−1≺ϕ−1
1 ϕ−1

2 for small arguments imply
that for every t1 > t0 , there exists a constant c1 � c such that ϕ−1(t) � c1ϕ−1

1 (t)ϕ−1
2 (t)
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for all t � t1 . By the fact E(M ) ↪→M , we have Eϕ(M )⊆ M . For x ∈ Eϕ(M ) with
‖x‖ϕ = 1, we get σ(|x|) ⊆ [0,‖x‖] . Put t1 = ‖x‖ , the rest of the proof goes as in case
(i) . �

Combining Theorem 3 and Theorem 4 with Theorem 5, we obtain the following
result.

THEOREM 6. Let E be a symmetric function space with Fatou property and ϕ ,
ϕ1 , ϕ2 be Young functions with bϕ2 = bϕ1 = bϕ . Assume also that at least one of the
following conditions holds:

(i) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for all arguments,

(ii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for large arguments and M ↪→ E(M ) ,

(iii) ϕ−1
1 ϕ−1

2 ≈ ϕ−1 for small arguments and E(M ) ↪→ M .

Then Eϕ2(M ) ·Eϕ1(M ) is a quasi-Banach space and Eϕ2(M ) ·Eϕ1(M ) = Eϕ(M ) .
Moreover,

Eϕ(M ) = M(Eϕ1(M ),Eϕ (M )) ·Eϕ1(M ) = (Eϕ2 ·Eϕ1)(M ).

5. Normability of the product spaces Eϕ1(M ) ·Eϕ2(M )

LEMMA 2. Let E and F be two symmetric function spaces with the Fatou prop-
erty. Let x ∈ L0(M ) with μt(x) ∈ (E ·F)′ and μt(x) �= 0,a.e. , we define

L1
x(M ) = {y ∈ L0(M ) : μ(y) ∈ L1((0,∞),μt(x)dt)},

with the norm ‖y‖L1
x(M ) = ‖μ(y)‖L1((0,∞),μt(x)dt) . Then L1

x(M ) is a Banach space and

L1
x(M ) ↪→ L0(M ) .

Proof. For convenience,we denote L1((0,∞),μt (x)dt) by L1
x . Given z,y∈L1

x(M ) .
By Theorem 4.4 of [6] and Proposition 3.6 of [Chapter 2, [1]], we have∫ ∞

0
μs(z+ y)μs(x)ds �

∫ ∞

0
(μs(z)+ μs(y))μs(x)ds, t > 0.

That is ‖y+ z‖L1
x(M ) � ‖y‖L1

x(M ) +‖z‖L1
x(M ) . If ‖z‖L1

x(M ) = 0, then we have

‖μ(z)μ(x)‖L1(R+) = ‖z‖L1
x(M ) = 0.

Combining this with the fact μ(x) is non-zero on (0, tx) , we obtain μ(z) = 0, a.e. on
(0,tx) and so z = 0, where tx = inf{t > 0 : μt(x) = 0} . Thus, ‖ · ‖L1

x(M ) is a norm.

Applying a similar proof to that of Theorem 7.1 of [18], we obtain L1
x(M ) is a Ba-

nach space and L1
x(M ) ↪→ L0(M ) . Indeed, let ε,δ > 0, ζ = ε‖χ[0,δ )‖L1

x
and let

y∈ L1
x(M ) with ‖y‖L1

x(M ) � ζ . Since μt(y) � μδ χ[0,δ )+μt(y)χ[δ ,∞) , we conclude that
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μδ (y)‖χ[0,δ )‖L1
x
� ‖y‖L1

x(M ). This implies that μδ (y) � ε and so L1
x(M ) ↪→ L0(M ) .

Let {yn}∞
1 be a Cauchy sequence in L1

x(M ) , then {yn}∞
1 is a Cauchy sequence in the

measure topology. Hence, there exists y ∈ L0(M ) such that yn → y , n → ∞ in the
measure topology. Theorem 6.6 of [18] and Proposition 3.6 of [Chapter 2, [1]] tell
us that {μ(yn)}∞

1 is a Cauchy sequence in L1
x . Thus, there exists f ∈ L1

x such that
‖μ(yn)− f‖L1

x
→ 0, n → ∞. Then it is clear that μ(yn) → f a.e. on (0,tx) . In fact,

for each A ⊂ (0, tx) , we write νx(A) =
∫ ∞
0 χA(t)μt(x)dt . Set νx(A) = 0, since μ(x) is

non-zero on (0, tx) , we have m(A) = 0, where m denotes Lebesgue measure. On the
other hand, It follows from Lemma 3.4 of [6] that μ(yn) → μ(y) a.e. on (0,∞) , which
means that f = μ(y) a.e. and y∈ L1

x(M ) . By Theorem 6.6 of [18] and Proposition 3.6
of [Chapter 2, [1]], we obtain

‖μ(y− yn)− μ(y− ym)‖L1
x
� ‖μ(ym− yn)‖L1

x

= ‖ym− yn‖L1
x(M ).

Hence {μ(y− yn)}∞
1 is a Cauchy sequence in L1

x . Thus, there exists g ∈ L1
x such that

‖μ(y−yn)−g‖L1
x
→ 0, n→ ∞ , which implies that μ(y−yn)→ g a.e. (since νx(A) = 0

means m(A) = 0). Using Lemma 3.1 of [6] and the fact yn → y , n→ ∞ in the measure
topology,we have μ(y−yn)→ 0, n→∞ . Therefore g = 0 a.e. on (0,tx) . Furthermore,
‖y− yn‖L1

x(M ) = ‖μ(y− yn)‖L1
x
→ 0, n → ∞ . �

PROPOSITION 7. Let A = {y ∈ L1
x(M ) : ‖y‖L1

x(M ) � r} and r > 0. Then A is
bounded in the measure topology, i.e., for all ε > 0 there exists 0 < t0 < ∞ such that
τ(e[t0,∞)(|y|)) < ε for all y ∈ A.

Proof. Without loss of generality, we suppose A = {y ∈ L1
x(M ) : ‖y‖L1

x(M ) � 1} .
If A is unbounded in the measure topology, then there exists ε0 > 0 and yn ∈ A such
that τ(e[n2n,∞)(|yn|)) � ε0 holds for all n ∈ N+ . Let y = Σ∞

n=1
|xn|
2n , we deduce

‖y‖L1
x(M ) � Σ∞

n=1

‖yn‖L1
x(M ))

2n � 1,

and

τ(e[n,∞)(|y|)) � τ(e[n2n,∞)(|yn|)) � ε0, for all n.

This implies that
lim
n→∞

λn(y) � ε0. (5.1)

On the other hand, from Proposition 21 of [Chapter I, [21]], we have limn→∞ λn(y) = 0,
which contradicts (5.1). Consequently, A is bounded in the measure topology. �

PROPOSITION 8. Let Eϕ1(M ),Eϕ2(M ) be two noncommutative Calderón-Loza-
novskiı̆ spaces, where E is a symmetric function space with Fatou property. If Eϕ1(M )·
Eϕ2(M ) is a quasi-Banach spaces and there exists x ∈ L0(M ) such that μ(x)Eϕ2 ⊆
E ′

ϕ1
and μ(x) �= 0 a.e. , then Eϕ1(M ) ·Eϕ2(M ) is normable.
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Proof. Let BEϕ1(M ) and BEϕ2(M ) be the unit balls of Eϕ1(M ) and Eϕ2(M ) ,
respectively. Set y ∈ BEϕ1 (M ) and z ∈ BEϕ2 (M ) , then by Theorem 4.2 of [6] and Propo-
sition 3.6 of [Chapter 2, [1]], we have∫ ∞

0
μs(yz)μs(x)ds �

∫ ∞

0
μs(y)μs(z)μs(x)ds. (5.2)

Combining μ(x)Eϕ2 ⊆ E ′
ϕ1

with the inequality (5.2) we obtain

‖yz‖L1
x(M ) =

∫ ∞

0
μs(yz)μs(x)ds

� ‖μ(x)‖(Eϕ1 ·Eϕ2 )′ ‖μ(y)μ(z)‖Eϕ1 ·Eϕ2

� ‖μ(x)‖(Eϕ1 ·Eϕ2 )′ < ∞.

Therefore, BEϕ1(M ) ·BEϕ2(M ) is a norm bounded subset of L1
x(M ) . Let

B = {y ∈ L1
x(M ) : ‖y‖L1

x(M ) � ‖z‖L1
x(M ) for some z ∈ BEϕ1(M ) ·BEϕ2(M )}.

It is clear that B is a norm bounded convex subset of L1
x(M ) . Let ρ(y) = inf{s > 0 :

1
s y ∈ B} , then

(i) ρ(y) = 0 if y = 0.

(ii) ρ(αy) = |α|ρ(y) .

(iii) ρ(y1 + y2) � ρ(y1)+ ρ(y2) ,

where y,y1,y2 ∈ Eϕ1(M ) ·Eϕ2(M ) . Given ε > 0, by Proposition 7, there exists t0 > 0
such that

τ(e(t0,∞)(|y|)) < ε for all y ∈ B.

If ρ(y) = 0, then there exists N0 such that ny ∈ B for all n � N0 . It follows that,
τ(e( t0

n ,∞)(|y|)) < ε for all n � N0 . Consequently, τ(e(0,∞)(|y|)) � ε for all ε > 0 and

so y = 0. If y = y1y2 ∈ Eϕ1(M ) ·Eϕ2(M ),y1 ∈ Eϕ1(M ),y2 ∈ Eϕ2(M ) , then

y
‖y1‖Eϕ1(M )‖y2‖Eϕ2(M )

=
y1

‖y1‖Eϕ1(M )

y2

‖y2‖Eϕ2 (M )
∈ B,

which implies that ρ(y) � ‖y1‖Eϕ1(M )‖y2‖Eϕ2(M ) . Moreover, ρ(y) � ‖y‖E(M )·F(M ) .
Conversely, for ε > 0, let y = y1y2 ∈ Eϕ1(M ) ·Eϕ2(M ),y1 ∈ Eϕ1(M ),y2 ∈ Eϕ2(M ) ,
we deduce y

ρ(y)+ε ∈ B . It follows from the definition of B that∥∥∥ y
ρ(y)+ ε

∥∥∥
Eϕ1 (M )·Eϕ2 (M )

� c,

which implies that ‖y‖Eϕ1(M )·Eϕ2(M ) � cρ(y) holds for some c > 0. Then the func-
tional ρ(·) is an equivalent norm to the original quasi-norm. �
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