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Abstract. In this paper, we first establish some necessary and sufficient conditions for the exis-
tence of Hermitian and nonnegative definite solutions of AX = B subject to CXC∗ � D , where
D is Hermitian matrix. Furthermore, general expressions for this constrained Hermitian and
nonnegative definite solutions are derived, several special cases are also considered.

1. Introduction

Let Cm×n denote the set of all m× n matrices over the complex field C , C
m×m
H

denote the set of all m×m Hermitian matrices, C
n×n
� denote the set of all n×n nonneg-

ative definite matrices. For A ∈ Cm×n , its rank, conjugate transpose, any {1} -inverse
and Moore-Penrose inverse will be denoted by r(A) , A∗ , A− and A† respectively. For
nonnegative definite matrix A � 0, its positive and negative index of inertia are symbol-
led by i+(A) and i−(A) respectively. For convenience, we denote EA = I −AA† and
FA = I−A†A .

Linear matrix equations play a very important role in matrix theory and other disci-
plines, such as statistics and control theory. And researches on linear matrix equations
have received more and more attentions and has had lots of nice results. Recently, a
challenging research topic is to solve matrix equations subject matrix inequality con-
straint concerning Löwner partial ordering. For example, Li et al. [3] presented some
necessary and sufficient conditions for X � (�, >, <)P , where X is a Hermitian least
squares solution to the matrix equation AXB = C . Zhang al. [9] derived necessary
and sufficient conditions for X � (�, >, <)P , where X is common Hermitian least
squares solution to the matrix equations A1XA∗

1 = B1 and A2XA∗
2 = B2 . However, the

general expressions weren’t established for these two constrained solutions concerning
inequality restrictions.

In this article, we consider the Hermitian and nonnegative definite solutions of
AX = B subject to CXC∗ � D , where A,B ∈ Cm×n , C ∈ Cp×n and D ∈ C

p×p
H are

given, X ∈ Cn×n is variable matrix.
Before proceeding to the next section, we first introduce the following results

which will come in handy in the proofs of our theorems.
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LEMMA 1.1. [2] Let A,B ∈ Cm×n .
(1) Matrix equation AX = B has a Hermitian solution if and only if AA†B = B

and BA∗ is Hermitian. In this case, the general Hermitian solution can be written in
the parametric form

X = A†B+FA(A†B)∗ +FAUFA,

where U ∈ C
n×n
H is arbitrary.

(2) Matrix equation AX = B (or AXX∗ = B) has a nonnegative definite solution
if and only if BA∗ is nonnegative definite and r(BA∗) = r(B) . In this case, the general
nonnegative definite solution can be written in the parametric form

X(or XX∗) = B∗(AB∗)†B+FAWW ∗FA,

where W ∈ Cn×n is arbitrary.

LEMMA 1.2. [5] Let A∈Cm×n and B∈C
m×m
H . Then the matrix equation AXA∗ =

B has a Hermitian solution if and only if AA†B = B. In this case, the general Hermitian
solution can be written in the parametric form

X = A†B(A†)∗ +FAZ +Z∗FA,

where Z ∈ Cn×n is arbitrary.

LEMMA 1.3. [1] Let A∈Cm×n and B∈C
m×m
� . Then the matrix equation AXA∗ =

B has a nonnegative definite solution if and only if AA†B = B. In this case, the general
nonnegative definite solution can be written in the parametric form

X = A=B(A=)∗ +FAUFA with A= = A† +FAZ(B
1
2 )−,

where Z ∈ Cn×m and U ∈ C
n×n
� are arbitrary.

LEMMA 1.4. [4] Let A ∈ C
m×m
H , B ∈ Cm×n , and denote M =

(
A B
B∗ 0

)
. Then

i±(M) = r(B)+ i±(EBAEB).

LEMMA 1.5. [8] Let A ∈ Cm×n , B ∈ Cm×k and C ∈ Cl×n . Then

r
(
A B

)
= r(A)+ r(EAB), r

(
A
C

)
= r(A)+ r(CFA),

r

(
A B
C 0

)
= r(B)+ r(C)+ r(EBAFC).
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2. Main results

In this section, our purpose is to investigate the Hermitian and nonnegative definite
solutions of AX = B subject to CXC∗ � D . First, we present some necessary and
sufficient conditions for the existence of these constrained solutions, and then establish
their general expressions.

LEMMA 2.1. [7] Let C ∈Cp×n and D∈C
p×p
H . Then CXC∗ � D has a Hermitian

solution if and only if ECDEC � 0 and r(ECDEC) = r(ECD) . In which case, a general
expression of the Hermitian solution is given by

X = C†[D−DEC(ECDEC)†ECD+WW ∗](C†)∗ +Y −C†CYC†C,

which is equivalent to

X = C†[D−DEC(ECDEC)†ECD+WW ∗](C†)∗ +FCZ +Z∗FC, (2.1)

where W,Z ∈ Cn×n and Y ∈ C
n×n
H are arbitrary.

It is important to point out that the representation of (2.1) can be derived by Lemma
1.2 by the same method used in [Theorem 4.1, 7].

Similarly, the following result follows from Lemma 1.1 and Lemma 1.3.

LEMMA 2.2. Let C ∈ Cp×n and D ∈ C
p×p
� . Then CXX∗C∗ � D has a nonneg-

ative definite solution XX∗ if and only if ECDEC � 0 and r(ECDEC) = r(ECD) . In
which case, a general expression of the nonnegative definite solution is XX∗ with

XX∗ = C=(D+VV ∗)(C=)∗ +FCUFC with C= = C† +FCZ[(D+VV ∗)
1
2 ]−,

where VV ∗ = −DEC(ECDEC)†ECD+CC†WW ∗CC† , W,Z ∈ Cn×n and U ∈ C
n×n
� are

arbitrary.

Next, we will derive the main results of this paper.

THEOREM 2.1. Let A,B ∈ C
m×n , C ∈ C

p×n and D ∈ C
p×p
H . Then there exists a

Hermitian solution of AX = B subject to CXC∗ � D if and only if AA†B = B, BA∗ is
Hermitian, and

i+

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠ = r

(
A
C

)
, r

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠ = r

(
D C

BC∗ A

)
+ r

(
A
C

)
. (2.2)

If the above conditions are satisfied, then a general constrained Hermitian solution is
given by

X = A†B+FA(A†B)∗ +(CFA)†[D̃− D̃ECFA(ECFAD̃ECFA)
†ECFAD̃+WW ∗](FAC

∗)†

FAFCFAZFA +FAZ∗FCFAFA, (2.3)

where D̃ = D−CA†BC∗ −CFA(CA†B)∗ , W,Z ∈ C
n×n are arbitrary.
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Proof. In view of Lemma 1.1, AX = B has a Hermitian solution if and only if
AA†B = B and BA∗ is Hermitian. In this case, the general Hermitian solution can be
written in the parametric form

X = A†B+FA(A†B)∗ +FAUFA, (2.4)

where U ∈ C
n×n
H is arbitrary. Substituting (2.4) into CXC∗ � D produces

CFAU(CFA)∗ � D−CA†BC∗ −CFA(CA†B)∗, (2.5)

Applying Lemma 2.1, (2.5) is consistent if and only if

ECFA(D−CA†BC∗ −CFA(CA†B)∗)ECFA � 0,

r[ECFA(D−CA†BC∗)ECFA ] = r[ECFA(D−CA†BC∗)].

By Lemma 1.4, Lemma 1.5, and the fact that Hermitian matrix M � 0 if and only if
i+(M) = 0, we have

0 = i+[ECFA(D−CA†BC∗ −CFA(CA†B)∗)ECFA ]

= i+

(
D−CA†BC∗ −C(A†B)∗C∗ +CA†A(A†B)∗C∗ CFA

FAC∗ 0

)
− r(CFA)

= i+

⎛
⎝D−CA†BC∗ −C(A†B)∗C∗ +CA†A(A†B)∗C∗ C 0

C∗ 0 A∗
0 A 0

⎞
⎠− r(A)− r(CFA)

= i+

⎛
⎝D+CA†A(A†B)∗C∗ C CB∗

C∗ 0 A∗
BC∗ A 0

⎞
⎠− r

(
A
C

)

= i+

⎛
⎝D+CA†A(A†B)∗C∗ C 0

C∗ 0 A∗
0 A −2BA∗

⎞
⎠− r

(
A
C

)

= i+

⎛
⎝ D C − 1

2CA†AB∗
C∗ 0 A∗

− 1
2BA†AC∗ A −2BA∗

⎞
⎠− r

(
A
C

)

= i+

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠− r

(
A
C

)
,
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r[ECFA(D−CA†BC∗)ECFA ] = r

(
D−CA†BC∗ CFA

FAC∗ 0

)
−2r(CFA)

= r

⎛
⎝D−CA†BC∗ C 0

C∗ 0 A∗
0 A 0

⎞
⎠−2r

(
A
C

)

= r

⎛
⎝ D C 0

C∗ 0 A∗
BC∗ A 0

⎞
⎠−2r

(
A
C

)

= r

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠−2r

(
A
C

)
,

r[ECFA(D−CA†BC∗)] = r
(
CFA D−CA†BC∗ )− r(CFA)

= r

(
C D−CA†BC∗
A 0

)
− r(A)− r(CFA)

= r

(
C D
A BC∗

)
− r

(
A
C

)
.

Therefore, (2.2) is obvious. And,

U = (CFA)†[D̃− D̃ECFA(ECFAD̃ECFA)
†ECFAD̃+WW ∗](FAC

∗)† +FCFAZ +Z∗FCFA ,

where W,Z ∈ Cn×n are arbitrary.
Substituting U into (2.4) yields (2.3). �
Specially, taking C = I in Theorem 2.1, we have the following result, which was

considered by Tian [Theorem 5.3, 6].

COROLLARY 2.1. Let A,B ∈ Cm×n , and D ∈ C
p×p
H . Then there exists a Hermi-

tian solution of AX = B subject to X � D if and only if AA†B = B, BA∗ is Hermitian,
and

ADA∗ � BA∗, r(ADA∗ −BA∗) = r(AD−B).

If the above conditions are satisfied, then a general constrained Hermitian solution is
given by

X = A†B+FA(A†B)∗ +FA[D̃− D̃(A†A(D−A†B)A†A)†D̃+WW ∗]FA,

where D̃ = D−FA(A†B)∗ , W ∈ Cn×n are arbitrary.

THEOREM 2.2. Let A,B ∈ Cm×n , C ∈ Cp×n and D ∈ C
p×p
� . Then there exists a

nonnegative definite solution of AX = B subject to CXC∗ � D if and only if r(BA∗) =
r(B) , BA∗ is nonnegative definite, and

i+

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠ = r

(
A
C

)
, r

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠ = r

(
D C

BC∗ A

)
+ r

(
A
C

)
. (2.6)
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If the above conditions are satisfied, then a general constrained nonnegative definite
solution is given by

X = B∗(AB∗)†B+FAWW ∗FA, (2.7)

with

WW ∗ = (CFA)=(D̂+VV ∗)((CFA)=)∗ +FCFAUFCFA, (2.8)

(CFA)= = (CFA)† +FCFAZ[(D̂+VV ∗)
1
2 ]−,

VV ∗ = −D̂(ECFAD̂ECFA)
†D̂+C(CFA)†YY ∗C(CFA)†, (2.9)

D̂ = D−CB∗(AB∗)†BC∗,

Y,Z ∈ Cn×n and U ∈ C
n×n
� are arbitrary.

Proof. In view of Lemma 1.1, AX = B has a nonnegative definite solution if and
only if r(BA∗) = r(B) and BA∗ is nonnegative definite. In this case, the general non-
negative definite solution can be written in the parametric form

X = B∗(AB∗)†B+FAWW ∗FA, (2.10)

where W ∈ Cn×n is arbitrary. Substituting (2.10) into CXC∗ � D produces

CFAWW ∗(CFA)∗ � D−CB∗(AB∗)†BC∗, (2.11)

Applying Lemma 2.2, (2.11) is consistent if and only if

ECFA(D−CB∗(AB∗)†BC∗)ECFA � 0,

r[ECFA(D−CB∗(AB∗)†BC∗)ECFA ] = r[ECFA(D−CB∗(AB∗)†BC∗)].

By Lemma 1.4, Lemma 1.5, we have

0 = i+[ECFA(D−CB∗(AB∗)†BC∗)ECFA ]

= i+

⎛
⎝D−CB∗(AB∗)†BC∗ C 0

C∗ 0 A∗
0 A 0

⎞
⎠− r(A)− r(CFA)

= i+

⎛
⎝ D C 1

2CB∗
C∗ 0 A∗

1
2BC∗ A 0

⎞
⎠− r

(
A
C

)

= i+

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠− r

(
A
C

)
,
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r[ECFA(D−CB∗(AB∗)†BC∗)ECFA ] = r

⎛
⎝D−CB∗(AB∗)†BC∗ C 0

C∗ 0 A∗
0 A 0

⎞
⎠−2r

(
A
C

)

= r

⎛
⎝ D C 0

C∗ 0 A∗
BC∗ A 0

⎞
⎠−2r

(
A
C

)

= r

⎛
⎝ D C 0

C∗ 0 A∗
0 A −BA∗

⎞
⎠−2r

(
A
C

)
,

r[ECFA(D−CB∗(AB∗)†BC∗)] = r
(
CFA D−CB∗(AB∗)†BC∗ )− r(CFA)

= r

(
C D−CB∗(AB∗)†BC∗
A 0

)
− r(A)− r(CFA)

= r

(
C D
A BC∗

)
− r

(
A
C

)
.

Hence, (2.6) is obtained. Together with Lemma 2.2, (2.10) and (2.11), we get (2.8) and
(2.9). So, (2.7) is obvious. �

The following result is a direct consequence of Theorem 2.2.

COROLLARY 2.2. Let A,B ∈ C
m×n , and D ∈ C

n×n
� . Then there exists a nonneg-

ative definite solution of AX = B subject to X � D if and only if r(BA∗) = r(B) , BA∗
is nonnegative definite, and ADA∗ � BA∗ , r(ADA∗ −BA∗) = r(AD−B) .

If the above conditions are satisfied, then a general constrained nonnegative defi-
nite solution is given by

X = B∗(AB∗)†B+FA[D̂− D̂(A†AD̂A†A)†D̂]FA +FAYY ∗FA,

with D̂ = D−B∗(AB∗)†B, and Y ∈ Cn×n is arbitrary.
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