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POLYNOMIALS WITH A SHARP CAUCHY BOUND

AND THEIR ZEROS OF MAXIMAL MODULUS

HARALD K. WIMMER

(Communicated by I. Franjić)

Abstract. The moduli of zeros of a complex polynomial are bounded by the positive zero of an
associated auxiliary polynomial. The bound is due to Cauchy. This note describes polynomials
with a sharp Cauchy bound and the location of peripheral zeros.

1. Introduction

Let
g(z) = zm − (cm−1z

m−1 + · · ·+ c1z+ c0) (1.1)

be a complex polynomial.
Define

ga(z) = zm − (|cm−1|zm−1 + · · ·+ |c1|z+ |c0|
)
.

If g(z) �= zm then (see e.g. [4, p. 122], [7, p. 3], [8, p. 243]) there exists a unique
positive zero R(g) of ga(z) , and all zeros of g(z) have modulus less or equal to R(g) .
The number R(g) is known (see [8]) as Cauchy bound of g(z) .

Set

σ(g) = {λ ∈ C; g(λ ) = 0} and ρ(g) = max{|λ |; λ ∈ σ(g)}.
Then ρ(g) � R(g) . In general, the numbers ρ(g) and R(g) do not coincide, that is,
ρ(g) < R(g) . For example, the polynomials

g(z) = z2 − (z−1) =
(
z− e2π i/6)(z− e−2π i/6)

and
ga(z)) = z2 − (z+1) =

(
z− 1+

√
5

2

)(
z+ 1+

√
5

2

)

satisfy 1 = ρ(g) < R(g) = (1 +
√

5)/2. We say that the Cauchy bound is sharp, if
ρ(g) = R(g) . Clearly, if g(z) = ga(z) then ρ(g) = R(g) , and R(g) ∈ σ(g) . But the
Cauchy bound may be sharp, even if g(z) �= ga(z) . An example is the polynomial

g(z) = z2− (−z+2) = (z−1)(z+2)

Mathematics subject classification (2010): 11C08, 26C10, 15B48.
Keywords and phrases: Zeros of polynomials, Cauchy bound, companion matrix, nonnegative matrix.

c© � � , Zagreb
Paper MIA-18-108

1387

http://dx.doi.org/10.7153/mia-18-108


1388 H. K. WIMMER

with
ga(z) = z2 − (z+2) = (z+1)(z−2) and R(g) = ρ(g) = 2.

In this note we are concerned with polynomials g(z) which have the property that
R(g) = ρ(g) and we describe their zeros of maximal modulus. For the straightforward
proof of the following result I am indebted to a referee.

THEOREM 1.1. Let g(z) ∈ C[z] be given as in (1.1). Then ρ(g) = R(g) if and
only if

g(z) = λ mga(λ−1z) (1.2)

for some λ ∈ C with |λ | = 1 .

Proof. Suppose g(z) �= zm . Let R be the Cauchy bound of g(z) , that is,

Rm = ∑m−1
j=0 |c j|Rj. (1.3)

Then g(z) has a zero of modulus R if and only if

(λR)m = ∑m−1
j=0 c j(λR) j (1.4)

for some λ ∈ C with |λ | = 1. Because of (1.3) the equation (1.4) is equivalent to

∑m−1
j=0 |c j|Rj = ∑m−1

j=0 c jλ−m+ jR j. (1.5)

All terms on the left-hand side of (1.5) are nonnegative. Thus it is easy to see that (1.5)
holds if and only if

|c j| = c jλ−m+ j, j = 0, . . . ,m−1, (1.6)

which is equivalent to (1.2). �

In Section 2 we apply Theorem 1.1 to obtain a result on rotational symmetry of ze-
ros of maximal modulus and we consider polynomials with real coefficients. A different
approach to deal with the Cauchy bound and its sharpness is described in Section 3. It is
based on companion matrices and the Perron-Frobenius theory of nonnegativematrices.

2. Zeros of maximal modulus

Throughout this paper g(z) will be a polynomial of the form (1.1) and we assume
g(z) �= zm . The following notation will be used. With regard to (1.2) we define

(κ ·g)(z) = κm g(κ−1z),

where κ ∈ C , κ �= 0. If g(z) = ∏m
j=1(z−λ j) then

(κ ·g)(z) = ∏m
j=1(z−κλ j),
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and therefore σ(κ ·g) = κσ(g) . Let ∂D denote the unit circle and let En be the group
of n -th roots of unity,

En = σ(zn −1) = {e2kπ i/n; k = 0, . . . ,n−1}.
The support Σ(q) of a polynomial q(z) = ∑k

j=0 q jz j is the set of indices j with nonzero
coefficient q j . Thus, for the polynomial g(z) in (1.1) we have

Σ(g) = { j; 0 � j � m−1, c j �= 0}∪{m}.
Define

d(g) = gcd{ j ∈ Σ(g)} and �(g) = m/d(g).

If d(g) = d and �(g) = � then

g(z) =
(
zd

)� −
(
c(�−1)d

(
zd

)�−1
+ · · ·+ cdz

d + c0

)
. (2.1)

Set c̃k = ckd , k = 0,1, . . . , �−1, and

g̃(z) = z�− (
c̃�−1z

�−1 + · · ·+ c̃1z+ c̃0
)
. (2.2)

Then g(z) = g̃(zd) . Moreover, Σ(g) = dΣ(g̃) implies d(g̃) = 1. In accordance with [1]
we denote by πk−1

+ the set of real polynomials p(z) = ∑k−1
i=0 aizi satisfying

0 < a0 � a1 � · · · � ak−1 = 1.

Define S(g) = ∑m−1
j=1 |c j| . Then S(g) = 1 is equivalent to 1 ∈ σ(ga) . On the other

hand, R(g) = 1 means that λ = 1 is the (unique) positive zero of ga(z) . Hence we
have R(g) = 1 if and only if S(g) = 1.

In this section we deal with polynomials g(z) with a sharp Cauchy bound and we
focus on zeros of g(z) of maximal modulus. For the sake of simplicity we shall assume
0 /∈ σ(g) . The following theorem can be traced back to Hurwitz [3]. We include a
proof to make the note self-contained. The theorem has an interesting history, which is
indicated in [1]. Only the special case with d(g) = 1 seems to be widely known [6, p.
92]), [7, p. 3].

THEOREM 2.1. (Hurwitz) Assume g(z) = ga(z) . Suppose R(g) = 1 and g(0) �=
0 . Let d(g) = d and �(g) = � . Then g(z) = (zd − 1)p̃(zd) with p̃(z) ∈ π�−1

+ and
ρ(p̃) < 1 . The unimodular zeros of g(z) are simple, and σ(g)∩∂D = Ed .

Proof. Suppose first that d = 1 such that g(z) = g̃(z) . The assumption gcd{ j ∈
Σ(g)} = 1 yields a Bezout identity ∑ j∈Σ(g) γ j j = 1 with γ j ∈ Z . Let λ ∈ σ(g)∩ ∂D .
From the proof of Theorem 1.1 we know that λ satisifies (1.6). We have c j = |c j| for
all j . Then g(0) = c0 �= 0 and (1.6) imply λ m = 1, and we obtain j ∈ Σ(g) if and only
if λ j = 1. Hence λ = ∏ j∈Σ(g) λ γ j j = 1, that is, σ(g)∩∂D = {1} . From

g′(1) = m−∑m−1
j=1 jc j > m− (m−1)∑m−1

j=1 c j > 1
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we see that λ = 1 is a simple zero of g(z) . Hence g(z) = (z− 1)p(z) for some poly-
nomial p(z) = ∑m−1

k=0 akzk with ak−1 = 1 and ρ(p) < 1. The coefficients of g(z) and
p(z) satisfy ak = ∑k

i=0 c j , k = 0, . . . ,m−1. Thus p(z) ∈ πm−1
+ . In the general case, if

d(g) = d , it suffices to note that g(z) = g̃(zd) with d(g̃) = 1. �

Combining Theorem 2.1 with Theorem 1.1 we obtain the following.

COROLLARY 2.2. Let d(g) = d and g(0) �= 0 . Suppose ρ(g) = R(g) = R. If
|λ | = R and g(λ ) = 0 then σ(g)∩R∂D = λEd . In other words, the zeros of maximal
modulus are the vertices of a regular d -sided polygon in the complex plane.

We now consider polynomials g(z) with real coefficients.

THEOREM 2.3. Let g(z) ∈ R[z] and d = d(g) . Suppose g(0) �= 0 . Then ρ(g) =
R(g) if and only if g(z) = ga(z) or

g(z) = η ·ga(z) = z�d − (−1)�∑�−1
ν=0(−1)ν |cνd |zνd (2.3)

where �d = m and η = eπ i/d .

Proof. Suppose ρ(g) = R(g) . Let g̃(z) be the polynomial in (2.2). Then ρ(g̃) =
R(g̃) , and it follows from Theorem 1.1 that g̃(z) = λ �g̃a(λ−1z) for some λ ∈ ∂D .
Assuming R(g) = 1 we apply Theorem 2.1. Because of d(g̃) = 1 we obtain σ(g̃a)∩
∂D = {1} . Therefore

g̃(z) = λ �(λ−1z−1)p̃(λ−1z) = (z−λ )λ �−1 p̃(λ−1z) = (z−λ )λ · p̃(z).

The real polynomial q̃(z) = λ · p̃(z) satisfies ρ(q̃) < 1. Thus g̃(z) ∈ R[z] implies
λ ∈ {1,−1} . If λ = 1 then g̃(z) = g̃a(z) , and therefore

g(z) = ga(z).

If λ = −1 then

g̃(z) = (−1)�g̃a(−z) = z� − (−1)�∑�−1
ν=0 (−1)ν |c̃ν |zν .

Hence
g(z) = g̃(zd)

and η ·g = ηd · g̃ imply (2.3). �

The real polynomial g(z) = z2 +1 is an example with a sharp Cauchy bound and
g(z) �= (±1) ·ga(z) . Here we have d = 2, � = 1, η = i , ga(z) = z2 −1, and

g(z) = i ·ga(z).
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3. Companion matrices

A different approach to study zeros of polynomials uses companion matrices and
takes advantage of the theory of Perron-Frobenius-Wielandt (see e.g. [9], [1], [8]). We
indicate how results of this note can be viewed in that context. Let

F =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
0 0 0 . . . 1
c0 c1 c2 . . . cm−1

⎞
⎟⎟⎟⎟⎠

and Fa =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
0 0 0 . . . 1
|c0| |c1| |c2| . . . |cm−1|

⎞
⎟⎟⎟⎟⎠

(3.1)

be companion matrices associated with the polynomials g(z) and ga(z) , respectively.
Thus, g(z) = det(zI − F) and ga(z) = det(zI − Fa) . If σ(F) and ρ(F) denote the
spectrum and the spectral radius of F then σ(F) = σ(g) , ρ(F) = ρ(g) and ρ(Fa) =
R(g) . The matrix Fa is a nonnegativematrix, and Fa is irreducible if and only if c0 �= 0.

Let A = (ai j) ∈ Rm×m be a nonnegative matrix and let B = (bi j) ∈ Cm×m . We
write |B| � A if |bi j| � ai j for all i, j . The following theorem is due to Wielandt (see
[2, Theorem 8.4.5] or [5, Chapter 8]).

THEOREM 3.1. Let A∈ Rm×m be nonnegative and irreducible. Suppose |B|� A.
Then

ρ(B) � ρ(A). (3.2)

We have ρ(B) = ρ(A) if and only if

B = eiφ DAD−1 for some D = diag(eiθ1 , . . . ,eiθm). (3.3)

If B = F and A = Fa are given by (3.1) then (3.2) yields ρ(g) � R(g) . Moreover,
if ρ(g) = R(g) then (3.3) implies

F =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
0 0 0 . . . 1
c0 c1 c2 . . . cm−1

⎞
⎟⎟⎟⎟⎠

= eiφ

⎛
⎜⎜⎜⎜⎝

0 ei(θ1−θ2) 0 . . . 0
0 0 ei(θ2−θ3) . . . 0
. . . . . . .

0 0 0 . . . ei(θm−1−θm)

ei(θm−θ1)|c0| ei(θm−θ2)|c1| ei(θm−θ3)|c2| . . . ei(θm−θm)|cm−1|

⎞
⎟⎟⎟⎟⎠

. (3.4)

It follows that θ1−θ2 +φ = 0, . . . , θm−1−θm +φ = 0. Therefore θm−θ1 = (m−1)φ ,
. . . , θm −θm−1 = φ . Set λ = eiφ . Then (3.4) yields F = Fλ where

Fλ =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
0 0 0 . . . 1

|c0|λ m |c1|λ m−1 |c2|λ m−2 . . . |cm−1|λ |

⎞
⎟⎟⎟⎟⎠

.
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The matrix Fλ is the companion matrix of

zm − (|c0|λ m + |c1|λ m−1z+ · · ·+ |cm−1|λ
)

= λ mga

( z
λ

)
= λ ·ga(z).

Hence the polynomial g(z) satisfies (1.2), in accordance with Theorem 1.1.

Acknowledgement. I thank a referee for useful comments and suggestions.
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tische Werke von A. Hurwitz, 2. Band, 627–631, Birkhäuser, Basel, 1933.
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