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POLYNOMIALS WITH A SHARP CAUCHY BOUND
AND THEIR ZEROS OF MAXIMAL MODULUS

HARALD K. WIMMER

(Communicated by 1. Franjic)

Abstract. The moduli of zeros of a complex polynomial are bounded by the positive zero of an
associated auxiliary polynomial. The bound is due to Cauchy. This note describes polynomials
with a sharp Cauchy bound and the location of peripheral zeros.

1. Introduction

Let
g(z) = "= (e T Fez+co) (1.1)

be a complex polynomial.

Define

8a(2) = 2" (Jem1]2" 1 + -+ |er]z+ o))

If g(z) # 7" then (see e.g. [4, p. 122], [7, p. 3], [8, p. 243]) there exists a unique
positive zero R(g) of g,(z), and all zeros of g(z) have modulus less or equal to R(g).
The number R(g) is known (see [8]) as Cauchy bound of g(z).

Set

o(g) = {2 €Cig(A) =0} and p(g) = max{|A]: A € 6(g)}.

Then p(g) < R(g). In general, the numbers p(g) and R(g) do not coincide, that is,
p(g) < R(g). For example, the polynomials

8(2) =2 —(z— 1) = (z— /) (z— e 27/6)

and
2(2) =2 — (z+ 1) = (z— 155) (. + 155)

satisfy 1 = p(g) < R(g) = (1++/5)/2. We say that the Cauchy bound is sharp, if

p(g) =R(g). Clearly, if g(z) = ga(z) then p(g) = R(g), and R(g) € o(g). But the
Cauchy bound may be sharp, even if g(z) # g4(z). An example is the polynomial

8@) =2 —(-z+2)=(z—1)(z+2)
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1388 H. K. WIMMER
with
2.(2) =22 —(z+2)=(z+1)(z—2) and R(g)=p(g) =2.

In this note we are concerned with polynomials g(z) which have the property that
R(g) = p(g) and we describe their zeros of maximal modulus. For the straightforward
proof of the following result I am indebted to a referee.

THEOREM 1.1. Let g(z) € C[z] be given as in (1.1). Then p(g) = R(g) if and
only if
8(z) =A"ga(A7'2) (1.2)

forsome A € C with |A| = 1.

Proof. Suppose g(z) # 7". Let R be the Cauchy bound of g(z), that is,

R" = Z’;;Ol ;IR (1.3)

Then g(z) has a zero of modulus R if and only if
(AR =3 ¢;(AR) (1.4)
for some A € C with |A| = 1. Because of (1.3) the equation (1.4) is equivalent to
S lei IR =3 e R, (1.5)
All terms on the left-hand side of (1.5) are nonnegative. Thus it is easy to see that (1.5)

holds if and only if ‘
‘C./":Cjz’ierJ? j:O7"'am_17 (16)
which is equivalent to (1.2). [

In Section 2 we apply Theorem 1.1 to obtain a result on rotational symmetry of ze-
ros of maximal modulus and we consider polynomials with real coefficients. A different
approach to deal with the Cauchy bound and its sharpness is described in Section 3. It is
based on companion matrices and the Perron-Frobenius theory of nonnegative matrices.

2. Zeros of maximal modulus

Throughout this paper g(z) will be a polynomial of the form (1.1) and we assume
g(z) # 7". The following notation will be used. With regard to (1.2) we define

(k-8)(z) =Kk"g(k '2),

where k € C, K #0. If g(z) =TI}, (z — 4;) then
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and therefore o(x-g) = ko (g). Let JD denote the unit circle and let E, be the group
of n-th roots of unity,

E,=0("—1)={?™/" k=0,....n—1}.

The support £(q) of a polynomial g(z) = Y%_,g,z/ is the set of indices j with nonzero
coefficient ¢;. Thus, for the polynomial g(z) in (1.1) we have

Leg)={i0<j<m—1,¢c; #0}U{m}.

Define
d(g) = ged{j € Z(g)} and {(g) =m/d(g).
If d(g) =d and ¢(g) = { then

14 (-1
8(z) = (Z") - (C(/Ifl)d (z") +---+cdzd+co>. 2.1)
Set ¢ =cra, k=0,1,...,0—1,and
@) =2~ (G "+ a1z + ). (2.2)

Then g(z) = g(z%). Moreover, £(g) = d2(g) implies d(g) = 1. In accordance with [1]
we denote by 7! the set of real polynomials p(z) = Y5} a;z’ satisfying

O<a<a < <q =1

Define S(g) = 2'}1;11 lcj|. Then S(g) =1 is equivalent to 1 € 6(g,). On the other
hand, R(g) = 1 means that A = 1 is the (unique) positive zero of g,(z). Hence we
have R(g) =1 if and only if S(g) =1.

In this section we deal with polynomials g(z) with a sharp Cauchy bound and we
focus on zeros of g(z) of maximal modulus. For the sake of simplicity we shall assume
0 ¢ o(g). The following theorem can be traced back to Hurwitz [3]. We include a
proof to make the note self-contained. The theorem has an interesting history, which is
indicated in [1]. Only the special case with d(g) = 1 seems to be widely known [0, p.
920, [7, p. 31.

THEOREM 2.1. (Hurwitz) Assume g(z) = ga(z). Suppose R(g) =1 and g(0) #
0. Let d(g) =d and ((g) = (. Then g(z) = (z* — 1)p(z?) with p(z) € n'~' and
p(p) < 1. The unimodular zeros of g(z) are simple, and c(g) NdD =E,.

Proof. Suppose first that d = 1 such that g(z) = §(z). The assumption gecd{; €
%(g)} = 1 yields a Bezout identity 3. ;c5(,) 7/ = 1 with 7; € Z. Let A € 6(g) NJD.
From the proof of Theorem 1.1 we know that A satisifies (1.6). We have c¢; = |c;| for
all j. Then g(0) =co # 0 and (1.6) imply A™ = 1, and we obtain j € X(g) if and only
if 2/ =1. Hence A =]jex(,) A%/ =1, thatis, 6(g)NdD = {1}. From

m—1 . m—1
g'(1) =m—2j:1 jej >m—(m— 1)21':1 cj>1
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we see that A =1 is a simple zero of g(z). Hence g(z) = (z— 1)p(z) for some poly-
nomial p(z) = ¥} axz* with @y = 1 and p(p) < 1. The coefficients of g(z) and
p(z) satisfy ax =35 jc;, k=0,...,m—1. Thus p(z) € nj’: ! In the general case, if
d(g) = d, it suffices to note that g(z) = g(z¢) with d(g) = O

Combining Theorem 2.1 with Theorem 1.1 we obtain the following.

COROLLARY 2.2. Let d(g) =d and g(0) # 0. Suppose p(g) =R(g) =R. If
[A| =R and g(A) =0 then o(g) NRID = AE,. In other words, the zeros of maximal
modulus are the vertices of a regular d -sided polygon in the complex plane.

We now consider polynomials g(z) with real coefficients.

THEOREM 2.3. Ler g(z) € R[z] and d = d(g). Suppose g(0) #0. Then p(g) =
R(g) if and only if g(z) = ga(z) or

8(2) =1 -8a(x) = 24— (1)) 3 (= 1)"|eyalz" (2.3)

where €d =m and 1 = e™/4.

Proof. Suppose p(g) =R(g). Let g(z) be the polynomial in (2.2). Then p(g) =
R(g), and it follows from Theorem 1.1 that g(z) = A°g,(2~'z) for some A € JD.
Assuming R(g) = 1 we apply Theorem 2.1. Because of d(g) =1 we obtain 6(g,)N
0D = {1}. Therefore

§@)=2" A= 1)p(A ") = =M p(A ") = (= 2)A-p(z).

The real polynomial §(z) = A - p(z ) satisfies p(§) < 1. Thus g(z) € R[z] implies
Ae{l,—1}.If A =1 then g(z) = g4(z), and therefore

8(z) = ga(2)-
If A = —1 then
g@) =(-1)ga(~2)=2"~ fz )Viey|z".

Hence

and n-g=n% g imply (2.3). O

The real polynomial g(z) = z> + 1 is an example with a sharp Cauchy bound and
g(z) # (£1)-g4(z). Here wehave d =2, £ =1, N =1, gu(z) =z — 1, and

g(z) =i-g4(2).
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3. Companion matrices

A different approach to study zeros of polynomials uses companion matrices and
takes advantage of the theory of Perron-Frobenius-Wielandt (see e.g. [9], [1], [8]). We
indicate how results of this note can be viewed in that context. Let

010... 0 0o 1 0 .. O
001... 0 0o 0 1 ... O
F=1. . . ... . and F,= e 3.1
000... 1 0 0 0 ... 1
cpCl C2 ... Cy—1 |Co‘ ‘Cl‘ ‘C2|...|Cm_1‘

be companion matrices associated with the polynomials g(z) and g,(z), respectively.
Thus, g(z) = det(zl — F) and g,(z) = det(zl — F,). If o(F) and p(F) denote the
spectrum and the spectral radius of F then o(F) = o(g), p(F)=p(g) and p(F,) =
R(g). The matrix F, is a nonnegative matrix, and F, is irreducible if and only if ¢o # 0.

Let A = (a;;) € R™™ be a nonnegative matrix and let B = (b;;) € C"™™. We
write |B| < A if |b;j| < a;; for all i, j. The following theorem is due to Wielandt (see
[2, Theorem 8.4.5] or [5, Chapter 8]).

THEOREM 3.1. Let A € R™™ be nonnegative and irreducible. Suppose |B| <A.
Then

p(B) < p(A). (3.2)
We have p(B) = p(A) if and only if
B=¢"DAD™"  forsome D =diag(e'®,... e%). (3.3)

If B=F and A = F, are given by (3.1) then (3.2) yields p(g) < R(g). Moreover,
if p(g) =R(g) then (3.3) implies

010... 0
001..0
000... 1
copCl1 C2 ... Cyp—1
0 el(01=62) 0 0
0 0 el02=6s) 0
= ¢ . ) . . . (3.4)
0 0 0 oo €(On-1=6m)

ei(em*el)|c()| ei(9n1*62)‘cl| ei(6m*e3)|02‘ ei(em*em)‘cm_”

It follows that 6 —6,+¢ =0, ..., 6,1 — 6+ ¢ = 0. Therefore 6, — 6, = (m—1)¢,
s B —06,_1 =0.Set L =¢?. Then (3.4) yields F = F; where

0 1 0 ... 0
0 0 1 ... 0
F=| . . S
0 0 0o ... 1

lco|A™ [e1| A [ea| A2 L Jemet|A]
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The

matrix F) is the companion matrix of

2" — (Jeo| A" + et A" o em [A) = ;nga(% — % ga(2).

Hence the polynomial g(z) satisfies (1.2), in accordance with Theorem 1.1.
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