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HARTLEY–FOURIER COSINE GENERALIZED

CONVOLUTION INEQUALITIES
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(Communicated by S. Saitoh)

Abstract. In this paper, we study some inequalities related to a certain generalized convolution
for the Hartley-Fourier cosine integral transforms. Specially, we will apply these inequalities to
estimate the solutions of some integral equations, differential equations and partial differential
equations.

1. Introduction

Recall that the Hartley-Fourier cosine convolution ( f ∗
1
g) of functions f and g is

introduced in [13]

( f ∗
1
g)(x) =

1√
2π

∞∫
0

[g(x+u)+g(x−u)] f (u) du, x ∈ R, (1)

and the following factorization properties hold

H{ 1
2}( f ∗

1
g)(y) = (Fc f )(y) · (H{ 1

2}g)(y), ∀y ∈ R. (2)

Here, the Hartley integral transforms of f ∈ L1(R) are of the form (see [3, 16])

(H{ 1
2} f )(y) =

1√
2π

∞∫
−∞

f (x)cas(±xy)dx, y ∈ R, (3)

where casu = cosu+ sinu is the cosine-and-sine, or Hartley kernel.
The Fourier cosine transform is of the form (see [8])

(Fc f )(y) =

√
2
π

∞∫
0

f (x)cos(xy)dx, y ∈ R. (4)
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In case Fc f ∈ L1(R+) its inverse formula has the form

f (x) =

√
2
π

∞∫
0

cos(yx) · (Fc f )(y)dy. (5)

The following Young’s Theorem for the Fourier convolution is well-known (see
[2]):

PROPOSITION 1. ([2]) For f ∈ Lp(R) , g∈ Lq(R) , h∈ Lr(R) , here p > 1 , q > 1 ,

r > 1 such that
1
p

+
1
q

+
1
r

= 2 , we have

∣∣∣∣∣∣
∞∫

−∞

( f ∗
F
g)(x) ·h(x)dx

∣∣∣∣∣∣� ‖ f‖Lp(R) · ‖g‖Lq(R) · ‖h‖Lr(R). (6)

An important corollary of this theorem is the so-called Young’s inequality [2] for
the Fourier convolution

‖ f ∗
F
g‖Lr(R) � ‖ f‖Lp(R) · ‖g‖Lq(R), f ∈ Lp(R), g ∈ Lq(R),

1
p

+
1
q

= 1+
1
r
. (7)

Here, ( f ∗
F
g)(x) is the well-known convolution of two functions f and g for the Fourier

integral transform (see [8])

( f ∗
F
g)(x) =

1√
2π

∞∫
−∞

f (x− y)g(y)dy, x ∈ R, f ,g ∈ L1(R). (8)

In this paper, the following inequality idea is basic:

PROPOSITION 2. ([11]) For two non-negative functions ρ j ∈ L1(R) ( j = 1,2) ,
the Lp(R) (p > 1) weighted convolution inequality

‖((F1ρ1)∗
F
(F2ρ2))(ρ1 ∗

F
ρ2)

1
p−1‖Lp(R) � ‖F1‖Lp(R,ρ1) · ‖F2‖Lp(R,ρ2) (9)

holds for Fj ∈ Lp(R,ρ j) ( j = 1,2) .

Here

‖F‖Lp(R,ρ) =
{ ∞∫
−∞

|F(x)|pρ(x)dx
} 1

p
.

Unlike Young’s inequality, inequality (9) holds also in case p = 2. Furthermore,
in many cases of interest, the convolution is given in the form

ρ2(x) ≡ 1, F2(x) ≡ G(x), (10)
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where G(x− ξ ) is some Green’s function. Then the inequality (9) takes the form

‖(Fρ)∗
F
G‖Lp(R) � ‖ρ‖1− 1

p

L1(R+) · ‖G‖Lp(R) · ‖F‖Lp(R,ρ), (11)

where ρ , F , and G are such that the right hand side of (11) is finite.
Inequality (11) enables us to estimate the output function

∞∫
−∞

(Fρ)(y) ·G(x− y)dy, (12)

in terms of the input function F in the related differential equation. For various appli-
cations, we refer the reader to [9, 10, 11, 12] and references therein. An inequality of
this type for the Fourier cosine transform has introduced in [5].

In this paper, we are interested in the following famous reverse Hölder’s inequality
(see [7]).

PROPOSITION 3. ([7]) For two positive functions f and g satisfying

0 < m � f
g

� M < ∞ (13)

on the set X , and for p,q > 1 ,
1
p

+
1
q

= 1,

(∫
X

f dμ
) 1

p
(∫

X
gdμ

) 1
q � Ap,q

(m
M

)∫
X

f
1
p g

1
q dμ , (14)

if the right hand side integral converges. Here

Ap,q(t) = p−
1
p q−

1
q

t−
1
pq (1− t)(

1− t
1
p

) 1
p
(
1− t

1
q

) 1
p

.

By using Proposition 3, in [12], S. Saitoh, V. K. Tuan, M. Yamamoto obtained the
following reverse inequality.

PROPOSITION 4. ([12]) Let F1,F2 be positive functions satisfying

0 < m
1
p
1 � F1(x) � M

1
p
1 < ∞; 0 < m

1
p
2 � F2(x) � M

1
p
2 < ∞, p > 1, x ∈ R. (15)

Then for any positive continuous functions ρ1,ρ2 we have the reverse Lp -weighted
convolution inequality

‖(F1ρ1 ∗
F
F2ρ2) · (ρ1 ∗

F
ρ2)

1
p−1‖Lp(R) � C−1 ‖F1‖Lp(R,ρ1) · ‖F2‖Lp(R,ρ2), (16)

if the left hand side is finite. Here C = Ap,q

(
m1m2

M1M2

)
.
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In formula (16), replacing ρ1 by 1 and F2(x− ξ ) by G(x− ξ ), and integrating
with respect to x from c to d, S. Saitoh and co-operations arrive at the following
inequality (see [12])

d∫
c

( ∞∫
−∞

F(ξ )ρ(ξ )G(x− ξ )dξ
)p

dx

� A−p
p,q

(m
M

)( ∞∫
−∞

ρ(ξ )dξ
)p−1

∞∫
−∞

F p(ξ )ρ(ξ )dξ
d−ξ∫

c−ξ

Gp(x)dx, (17)

if positive continuous functions ρ , F and G satisfy

0 < m
1
p � F(ξ ) ·G(x− ξ ) � M

1
p < ∞, x ∈ [c, d], ξ ∈ R. (18)

Inequality (17) is specially important when G(x−ξ ) is a Green’s function. An reverse
inequality of this type for the Laplace transform has been studied in [12]. However,
similar problems for other integral transforms and generalized convolutions have not
been studied.

The integral equation with the Toeplitz plus Hankel kernel is of the form [6, 15]

f (x)+
∞∫

0

[k1(x+ y)+ k2(x− y)] f (y)dy = g(x), x > 0, (19)

here g , k1 , k2 are given, and f is an unknown function. This equation has many
useful applications [6, 15]. However, this integral equation can be solved in closed
form only in some particular cases of the Hankel kernel k1 and the Toeplitz kernel k2 .
The solution of equation (19) in closed form in the general case is still open.

This paper is organized as follows. In Section 2, we study some inequalities for
the generalized convolution (1) which related to the Hartley and the Fourier cosine
transforms. In Section 3, we will apply the above inequalities in estimating the solu-
tions of some integral equations, integral equation with the Toeplitz plus Hankel kernel,
differential equations and partial differential equations.

2. Hartley-Fourier cosine generalized convolution inequalities

In this section, we will prove analogue Young inequalities and an analogue of
inequality (9) for the Hartley-Fourier cosine generalized convolutions.

THEOREM 1. (Young’s type theorem) Let p,q,r > 1 be such that 1
p + 1

q + 1
r = 2

and let f ∈ Lp(R) , g ∈ Lq(R) , h ∈ Lr(R). Then, the following inequality holds true∣∣∣∣∣∣
∞∫

−∞

( f ∗
1
g)(x) ·h(x)dx

∣∣∣∣∣∣� (2π)−
1
2 2

1
p ‖ f‖Lp(R) · ‖g‖Lq(R) · ‖h‖Lr(R). (20)
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Proof. Let p1,q1,r1 be the conjugate exponentials of p,q,r , respectively, it means

1
p

+
1
p1

= 1,
1
q

+
1
q1

= 1,
1
r

+
1
r1

= 1.

Then it is obviously that
1
p1

+
1
q1

+
1
r1

= 1 and
q
p1

+
q
r1

= 1,
r
p1

+
r
q1

= 1,
p
q1

+
p
r1

=

1.
Put

F(x,u) = |g(x+u)+g(x−u)|
q
p1 · |h(x)| r

p1 , (x ∈ R,u ∈ R+);

G(x,u) = | f (u)|
p

q1 · |h(x)| r
q1 , (x ∈ R,u ∈ R+);

H(x,u) = | f (u)|
p
r1 · |g(x+u)+g(x−u)|

q
r1 , (x ∈ R,u ∈ R+).

We see that F,G,H are functions defined in Ω = R×R+ , moreover,

(F ·G ·H)(x,u) = | f (u)| · |h(x)| · |[g(x+u)+g(x−u)]|. (21)

On the other hand, in the space Lp1(Ω) , we have

‖F‖p1
Lp1 (Ω) =

∫
Ω

|g(x+u)+g(x−u)|q|h(x)|rdudx

=
∞∫

−∞

⎛
⎝ ∞∫

0

|g(x+u)+g(x−u)|qdu

⎞
⎠ |h(x)|rdx.

Note that tq (q > 1) is a convex function, therefore, by changing variables we have

∞∫
0

|g(x+u)+g(x−u)|qdu � 2q−1
( ∞∫

0

|g(x+u)|qdu+
∞∫

0

|g(x−u)|qdu
)

= 2q−1

∞∫
−∞

|g(t)|qdt.

It yields

‖F‖p1
Lp1 (Ω) � 2q−1

∞∫
−∞

⎛
⎝ ∞∫
−∞

|g(t)|qdt

⎞
⎠ |h(x)|rdx = 2q−1‖g‖q

Lq(R) · ‖h‖r
Lr(R).

Therefore

‖F‖Lp1 (Ω) � 2
q−1
p1 ‖g‖

q
p1
Lq(R) · ‖h‖

r
p1
Lr(R). (22)

Similarly,

‖H‖Lr1(Ω) � 2
q
r1 ‖ f‖

p
r1
Lq(R) · ‖g‖

q
r1
Lr(R). (23)



1398 H. T. V. ANH AND N. X. THAO

It is obviously that ‖G‖Lq1(Ω) = ‖ f‖
p
q 1
Lp(R+) · ‖h‖

r
q 1
Lr(R+) . Hence, from (22) and (23), we

have

‖F‖Lp1 (Ω) · ‖G‖Lq1(Ω) · ‖H‖Lr1(Ω) � 2
1
p ‖ f‖Lp(R+) · ‖g‖Lq(R) · ‖h‖Lr(R). (24)

From (21) and (24), by the three-function form of Hölder’s inequality (see [2]):
We have∣∣∣∣∣∣

∞∫
0

( f ∗
1
g)(x) ·h(x)dx

∣∣∣∣∣∣�
1√
2π

∞∫
−∞

∞∫
0

| f (u)| |[g(x+u)+g(x−u)]||h(x)|dudx

=
1√
2π

∞∫
−∞

∞∫
0

F(x,u) ·G(x,u) ·H(x,u)dudx

� (2π)−
1
2 ‖F‖Lp1(Ω) · ‖G‖Lq1(Ω) · ‖H‖Lr1(Ω)

� (2π)−
1
2 2

1
p ‖ f‖Lp(R+) · ‖g‖Lq(R) · ‖h‖Lr(R).

The theorem is proved. �

Like Young’s inequality for the Fourier convolution, the following Young’s type
inequality for the Hartley, Fourier cosine convolution is a direct corollary of the above
theorem.

COROLLARY 1. (Young’s type Inequality) Let p,q,r > 1 be such that
1
p

+
1
q

=

1+
1
r

. Let f ∈ Lp(R+), g ∈ Lq(R) , then ( f ∗
1
g) ∈ Lr(R) , moreover

‖ f ∗
1
g‖Lr(R) � (2π)−

1
2 2

1
p ‖ f‖Lp(R+) · ‖g‖Lq(R). (25)

This inequality, however, also does not hold for the typical case of f ∈ L2(R+) ,
g ∈ L2(R) .

Next, we are interested in analogue inequality of Lp(R) weighted inequality (9)
for the Hartley-Fourier cosine convolution, which also has the meaning in case p = q =
2.

Our main result is the following theorem.

THEOREM 2. (Saitoh’s type Inequality) For two non-vanishing positive functions
ρ j , ( j = 1,2) , the following Lp(R+)-weighted inequality for the Hartley-Fourier co-
sine convolution holds for any F1 ∈ Lp(R+,ρ1) , F2 ∈ Lp(R,ρ2) , p > 1 ,

‖((F1ρ1)∗
1
(F2ρ2)) · (ρ1 ∗

1
ρ2)

1
p−1‖Lp(R) �

√
2
π
‖F1‖Lp(R+ ,ρ1) · ‖F2‖Lp(R,ρ2). (26)
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Proof. By raising the left hand side of (26) to power p we obtain

‖((F1ρ1)∗
1
(F2ρ2)) · (ρ1 ∗

1
ρ2)

1
p−1‖p

Lp(R)

=
∞∫

−∞

∣∣∣∣((F1ρ1)∗
1
(F2ρ2))(x) · (ρ1 ∗

1
ρ2)

1
p−1(x)

∣∣∣∣
p

dx

=
(

1√
2π

)p( 1√
2π

)1−p ∞∫
−∞

∣∣∣∣∣∣
∞∫

0

(F1ρ1)(u)[(F2ρ2)(x+u)+ (F2ρ2)(x−u)]du

∣∣∣∣∣∣
p

×
∣∣∣∣∣∣

∞∫
0

ρ1(u)[ρ2(x+u)+ ρ2(x−u)]du

∣∣∣∣∣∣
1−p

dx.

Thus

‖((F1ρ1)∗
1
(F2ρ2)) · (ρ1 ∗

1
ρ2)

1
p−1‖p

Lp(R)

=
1√
2π

∞∫
−∞

∣∣∣∣∣∣
∞∫

0

(F1ρ1)(u)[(F2ρ2)(x+u)+ (F2ρ2)(x−u)]du

∣∣∣∣∣∣
p

A1−p, (27)

here A =
∞∫
0

ρ1(u)[ρ2(x+u)+ ρ2(x−u)]du.

On the other hand,∣∣∣∣∣∣
∞∫

0

(F1ρ1)(u)[(F2ρ2)(x+u)+ (F2ρ2)(x−u)]du

∣∣∣∣∣∣
�

∞∫
0

|(F1ρ1)(u)||(F2ρ2)(x+u)|du+
∞∫

0

|(F1ρ1)(u)||(F2ρ2)(x−u)|dy. (28)

We have
∞∫

0

|F1(u)|ρ1(u)|F2(x+u)|ρ2(x+u)du

=
∞∫

0

[
(|F p

1 (u)|(ρ1(u))
1
p (|F p

2 (x+u)|(ρ2(x+u))
1
p

][
(ρ1(u))

1
q (ρ2(x+u))

1
q

]
du.

Using Hölder’s inequality, for q is the exponential conjugate to p , we have
∞∫

0

|F1(u)|ρ1(u)|F2(x+u)|ρ2(x+u)du

�

⎛
⎝ ∞∫

0

|F p
1 (u)|ρ1(u)|Fp

2 (x+u)|ρ2(x+u)du

⎞
⎠

1
p
⎛
⎝ ∞∫

0

ρ1(u)ρ2(x+u)du

⎞
⎠

1
q

. (29)
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Similarly,

∞∫
0

|F1(u)|ρ1(y)|F2(x−u)|ρ2(x−u)du

�

⎛
⎝ ∞∫

0

|F p
1 (u)|ρ1(u)|Fp

2 (x−u)|ρ2(x−u)du

⎞
⎠

1
p
⎛
⎝ ∞∫

0

ρ1(u)ρ2(x−u)du

⎞
⎠

1
q

. (30)

Therefore, recalling that t
1
p , t

1
q are concave functions we have

∞∫
0

|(F1ρ1)(u)||(F2ρ2)(x+u)|du+
∞∫

0

|(F1ρ1)(u)||(F2ρ2)(x−u)|du

�

⎛
⎝ ∞∫

0

|Fp
1 (u)|ρ1(u)|F p

2 (x+u)|ρ2(x+u)du

⎞
⎠

1
p
⎛
⎝ ∞∫

0

ρ1(u)ρ2(x+u)du

⎞
⎠

1
q

+

⎛
⎝ ∞∫

0

|F p
1 (u)|ρ1(u)|Fp

2 (x−u)|ρ2(x−u)du

⎞
⎠

1
p
⎛
⎝ ∞∫

0

ρ1(u)ρ2(x−u)du

⎞
⎠

1
q

� 2

⎛
⎝ ∞∫

0

|F p
1 (u)|ρ1(u)

(|Fp
2 (x+u)|ρ2(x+u)+ |Fp

2 (x−u)|ρ2(x−u)
)
du

⎞
⎠

1
p

×
⎛
⎝ ∞∫

0

ρ1(u)
(
ρ2(x+u)+ ρ2(x−u)

)
du

⎞
⎠

1
q

.

Thus
∞∫

0

|(F1ρ1)(u)||(F2ρ2)(x+u)|du+
∞∫

0

|(F1ρ1)(u)||(F2ρ2)(x−u)|du

�

⎛
⎝ ∞∫

0

|F p
1 (u)|ρ1(u)

(|F p
2 (x+u)|ρ2(x+u)+ |Fp

2 (ux−u)|ρ2(x−u)
)
du

⎞
⎠

1
p

A
1
q . (31)

From formulas (27), (28) and (31), using the Fubini theorem to interchange the order
of integrations, we have

‖((F1ρ1)∗
1
(F2ρ2)) · (ρ1 ∗

1
ρ2)

1
p−1‖p

Lp(R)

� A
p
q +1−p

√
2π

∞∫
−∞

⎛
⎝ ∞∫

0

|F p
1 (u)|ρ1(u)

(|F p
2 (x+u)|ρ2(x+u)+ |Fp

2 (x−u)|ρ2(x−u)
)
du

⎞
⎠
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=
1√
2π

∞∫
0

⎛
⎝ ∞∫
−∞

(|F p
2 (x+u)|ρ2(x+u)+ |Fp

2 (x−u)|ρ2(x−u)
)
dx

⎞
⎠ |F p

1 (u)|ρ1(u)du

=

√
2
π

∞∫
−∞

|Fp
2 (v)|ρ2(v)dv ·

∞∫
0

|F p
1 (u)|ρ1(u)du

=

√
2
π
‖F1‖p

Lp(R+,ρ1)
· ‖F2‖p

Lp(R,ρ2)
.

The proof is completed. �
In particular, for ρ1 ≡ 1, ρ2 = ρ , the inequality (26) takes the form

‖F1 ∗
1
(F2ρ)‖Lp(R) � 2 ‖ρ‖1− 1

p

L1(R+)‖F1‖Lp(R) · ‖F2‖Lp(R+,ρ). (32)

The inequality (32) enables us to estimate the output function

y(x) =
∞∫

0

F(y)ρ(y) ·G(x,y)dy, (33)

in term of the input function F in the related differential equation, where for some F2 ,
G(x,y) = F2(x+ y)+F2(x− y) is a Green function.

THEOREM 3. (Reverse Saitoh’s type Inequality) Let F1(u) and F2(x) be positive
functions satisfying

0 < m
1
p
1 � F1(u) � M

1
p
1 < ∞; 0 < m

1
p
2 � F2(x) � M

1
p
2 < ∞, p > 1, u ∈ R+, x ∈ R.

(34)
Then for any positive functions ρ1(u) , ρ2(x) , we have the reverse Hartley-Fourier
cosine convolution inequality

‖(F1ρ1 ∗
1
F2ρ2) · (ρ1 ∗

1
ρ2)

1
p−1‖Lp(R) � 2C−1 ‖F1‖Lp(R+,ρ1) · ‖F2‖Lp(R,ρ2), (35)

here C = Ap,q

(
m1m2

M1M2

)
.

This inequality has validity in case the left hand side of (35) is finite.

Proof. Set

f (ξ ) = F p
1 (ξ )[F2(x+ ξ )+F2(x− ξ )]pρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )],

g(ξ ) = ρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )].

Then the condition (34) implies

0 < 2pm1m2 � f (ξ )
g(ξ )

� 2pM1M2 < ∞, ξ ∈ R.
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Using the reverse Hölder’s inequality (14), we get

⎛
⎝ ∞∫

0

Fp
1 (ξ )[F1(x+ ξ )+F2(x− ξ )]pρ1(ξ )[ρ1(x+ ξ )+ ρ2(x− ξ )]dξ

⎞
⎠

1
p

(36)

×
⎛
⎝ ∞∫

0

ρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )]dξ

⎞
⎠

1
q

� C

∞∫
0

F1(ξ )ρ1(ξ )[F2(x+ ξ )+F2(x− ξ )][ρ2(x+ ξ )+ ρ2(x− ξ )]dξ .

Exponent p on either side of the inequality, we have

∞∫
0

F p
1 (ξ )[F2(x+ ξ )+F2(x− ξ )]pρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )]dξ× (37)

×
⎛
⎝ ∞∫

0

ρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )]dξ

⎞
⎠

p−1

� C

⎛
⎝ ∞∫

0

F1(ξ )ρ1(ξ )[F2(x+ ξ )+F2(x− ξ )][ρ2(x+ ξ )+ ρ2(x− ξ )]dξ

⎞
⎠

p

.

Therefore

C−p

∞∫
0

F p
1 (ξ )[F2(x+ ξ )+F2(x− ξ )]pρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )]dξ

�

⎛
⎝ ∞∫

0

F1(ξ )ρ1(ξ )[F2(x+ ξ )+F2(x− ξ )][ρ2(x+ ξ )+ ρ2(x− ξ )]dξ

⎞
⎠

p

×
⎛
⎝ ∞∫

0

ρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )]dξ

⎞
⎠

1−p

.

Taking integration to both side of (37) with respect to x form −∞ to ∞ , we obtain the
inequality

C−p

∞∫
0

F p
1 (ξ )ρ1(ξ )dξ

∞∫
−∞

[F2(x+ ξ )+F2(x− ξ )]p[ρ2(x+ ξ )+ ρ2(x− ξ )]dx

�
∞∫

−∞

⎛
⎝ ∞∫

0

(F1ρ1)(ξ )[F2ρ1(x+ ξ )+F2ρ2(x− ξ )]dξ

⎞
⎠

p
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×
⎛
⎝ ∞∫

0

ρ1(ξ )[ρ2(x+ ξ )+ ρ2(x− ξ )]dξ

⎞
⎠

1−p

dx.

Exponent
1
p

on either side of the inequality, we have

C−1
(∫ ∞

0
Fp

1 (ξ )ρ1(ξ )dξ
∫ ∞

−∞
[F2(x+ ξ )+F2(x− ξ )]p[ρ2(x+ ξ )+ ρ2(x− ξ )]dx

) 1
p

�
(∫ ∞

−∞
(F1ρ1 ∗

1
F2ρ2)p · (ρ1 ∗

1
ρ2)1−pdx

) 1
p

. (38)

Moreover, since the fact that (a+b)p > ap +bp for all a,b, p > 0, we have

∞∫
−∞

[F2(x+ ξ )+F2(x− ξ )]p[ρ2(x+ ξ )+ ρ2(x− ξ )]dx

�
∞∫

−∞

(Fp
2 (x+ ξ )+Fp

2 (x− ξ ))(ρ2(x+ ξ )+ ρ2(x− ξ ))dξ

� 2

∞∫
−∞

F p
2 (ξ ) ·ρ2(ξ )dξ .

Combined with (38) we obtain

‖(F1ρ1 ∗
1
F2ρ2) · (ρ1 ∗

1
ρ2)

1
p−1‖Lp(R) � 2C−1 ‖F1‖Lp(R+,ρ1) · ‖F2‖Lp(R,ρ2).

The proof is completed. �

3. Applications

In this section, we will use inequality (32) to estimate the solutions of several
ordinary differential equations, integral equations, and partial differential equations.

REMARK 1. Suppose that f is a continuous and piecewise smooth of order 2n
such that f (k) ∈ L1(R) , and lim

|x|→∞
f (2k) = 0, (k = 1,n) , then we have

(
H1 f (2k)

)
(y) = (−1)ky2k (H1 f ) (y), (k = 0,n). (39)

a) Ordinary differential equations
Let a0,an > 0 and ak � 0, (k = 1,n−1) such that there exists Q ∈ L1(R+)∩

Lp(R+) defined by

(FcQ)(y) =
1

n
∑

k=0
aky2k

, y > 0.
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Consider the 2nth order linear ordinary differential equation with constant coefficients

( n

∑
k=0

(−1)kak
d2k

dx2k

)
f (x) = g(x) ·ρ(x), x ∈ R, (40)

here g,ρ are given such that g ∈ L1(R,ρ)∩Lp(R,ρ) , p > 1, ρ ∈ L1(R+) and f ∈
L1(R+) is an unknown function. We suppose in addition that

dk

dxk f (x) → 0 as |x| → ∞, k = 0,1, . . . ,2n. (41)

Applying the Hartley transform to both sides of (40) and using condition (41) we
get (

n

∑
k=0

aky
2k

)
(H1 f )(y) = H1(gρ)(y). (42)

Therefore, from (42) and the factorization property (2) of generalized convolution f ∗
1
g ,

we have

(H1 f )(y) =
1

n
∑

k=0
aky2k

(H1(gρ))(y)

= (FcQ)(y) · (H1(gρ))(y) = H1
(
Q∗

1
(gρ)

)
(y).

It yields
f (x) = (Q∗

1
(gρ))(x), x ∈ R.

Using inequality (32) we obtain

‖ f‖Lp(R) � ‖ρ‖1− 1
p

L1(R)‖g‖Lp(R,ρ) · ‖Q‖Lp(R+). (43)

b) Integral equations of Toeplitz plus Hankel type
Consider the integral equation with the Toeplitz plus Hankel kernel in cases k1 =

k2 = f :

f (x)+
1
2π

∞∫
0

k(y)[ f (x+ y)+ f (x− y)]dy = h(x)ρ(x), x ∈ R. (44)

Here, k ∈ L1(R+)∩ Lp(R+) , h ∈ L1(R,ρ)∩ Lp(R,ρ) are given; f is an unknown
function.

By Theorem (3.2) in [13], we have

f (x) = hρ(x)− (l ∗
1
hρ)(x), x ∈ R. (45)

Using inequality (32) we obtain

‖ f (x)‖Lp(R) = ‖hρ − (l ∗
1
hρ)‖Lp(R) � ‖hρ‖Lp(R+) +‖ρ‖1− 1

p

L1(R+)‖h‖Lp(R,ρ) · ‖l‖Lp(R+).
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c) Dirichlet’s problem on the half-plane
Let us consider the equation

uxx +utt = 0, −∞ < x < ∞, t > 0, (46)

with the boundary conditions

u(x,0) = f (x)ρ(x), −∞ < x < ∞, (47)

ux(x,t) → 0 as |x| → ∞, t → ∞, (48)

here, f ,ρ are given such that f ∈ L1(R,ρ)∩Lp(R,ρ) , p > 1.

We introduce the Hartley transform with respect to x of a function of two variables
u(x,t)

(H1u)(y,t) ≡U(y,t) =
1√
2π

∞∫
−∞

u(x,t)cas(xy)dx. (49)

Applying the Hartley transform (49) to both sides of (46), using conditions (47)–(48)
we have

d2

dt2
U(y,t)− y2U(y,t) = 0, (50)

with the boundary condition

U(y,0) = (H1( fρ))(y). (51)

The solution of the equation (50) with condition (51) is of the form

U(y,t) = e−yt(H1( fρ))(y).

Using formula (1.4.1) in ([4], p. 23) and the factorization property of f ∗
1
g we have

U(y, t) =

√
2
π

Fc

(
t

t2 + τ2

)
(y) · (H1( fρ))(y) = H1

(
t

t2 + τ2 ∗1 ( fρ)(τ)
)

(y). (52)

Therefore,

u(x,t) =
(

t
t2 + τ2 ∗1 ( fρ)(τ)

)
(x). (53)

For each t > 0, using inequality (32) we obtain the following estimation

‖u‖Lp(R) � 22− 1
p

∥∥∥∥ t
t2 + ρ2

∥∥∥∥
Lp(R)

‖ρ‖1− 1
p

L1(R) · ‖ f‖Lp(R,ρ),

or

‖u‖Lp(R) � 21− 1
p

Γ(p− 1
2 )

Γ(p)
t1−p‖ρ‖1− 1

p

L1(R) · ‖ f‖Lp(R,ρ). (54)
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Here, Γ(·) denotes the Gamma function [1, 4]

Γ(s) =
∞∫

0

ts−1e−t dt.

d) Cauchy problem for the diffusion equation
Finally, consider the initial value problem for the one-dimensional diffusion equa-

tion with no sources or sinks

kuxx = ut , −∞ < x < ∞, t > 0, (55)

with the boundary conditions

ux(x,t) → 0 as |x| → ∞, (56)

u(x,t) → 0 as |x| → ∞, (57)

and the initial condition

u(x,0) = f (x)ρ(x), (58)

where f ∈ L1(R,ρ)∩Lp(R,ρ) , p > 1 is given, and k > 0 is a diffusivity constant.
Again, by applying the Hartley transform (49) with respect to x to both sides of

equation (55) and the condition (58) with set (H1u) = U, we obtain

d
dt

U(y,t) = −ky2U(y,t), (59)

with the initial condition

U(y,0) = (H1( fρ))(y). (60)

The solution of the problem (59)–(60) is of the form

U(y,t) = e−ky2t(H1( fρ))(y).

Using formula (1.4.11) in ([4], p. 24) we obtain

U(y, t) =

√
2
π

Fc

⎛
⎝e−

τ2
4kt√
kt

⎞
⎠(y) · (H1( fρ))(y) = H1

⎛
⎝e−

τ2
4kt√
kt

∗
1
( f τ)

⎞
⎠ (y).

Thus

u(x,t) =

⎛
⎝e−

τ2
4kt√
kt

∗
1
( f τ)

⎞
⎠ (x). (61)



HARTLEY-FOURIER COSINE GENERALIZED CONVOLUTION INEQUALITIES 1407

For each t > 0, using inequality (32) we get

‖u‖Lp(R+) � 22− 1
p ‖ρ‖1− 1

p

L1(R) · ‖ f‖Lp(R,ρ)

∥∥∥∥∥∥
e−

τ2
4kt√
kt

∥∥∥∥∥∥
Lp(R)

.

Therefore,

‖u‖Lp(R) � 22− 1
p

(
π√

p(
√

kt)p−1

) 1
p

‖ρ‖1− 1
p

L1(R) · ‖ f‖Lp(R,ρ). (62)
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