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SOME RESULTS FOR HAUSDORFF OPERATORS
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(Communicated by L.-E. Persson)

Abstract. In this paper, we give the sufficient conditions for the boundedness of the (fractional)
Hausdorff operators on the Lebesgue spaces with power weights. In some special cases, these
conditions are the same and also necessary. As an application, we obtain a better lower bound of
fractional Hardy operators on the Lebesgue spaces compared with a result of the paper [25].

1. Introduction

Hausdorff operators (Hausdorff summability methods) are an very useful tool for
solving certain classical problems in analysis. They have a deep root in the study of the
one dimensional Fourier analysis, particularly the summability of the classical Fourier
series. Modern theory of Hausdorff operators started with the work of Siskakis [23] in
complex analysis setting and with the work of Georgakis [10] and Liflyand and Móricz
[19] in the Fourier transform setting. A brief overview of the study for Hausdorff op-
erators can be found in [18]. One can see [1–6, 16–24] to find details of some recent
developments for Hausdorff operators.

The one-dimensional Hausdorff operator is defined by

hΦ f (x) =
∫ ∞

0

Φ(t)
t

f
(x

t

)
dt,

where Φ is a locally integrable function on (0,∞) . Liflyand and Móricz [19] proved
that hΦ generated by a function Φ ∈ L1(R) is a bounded linear operator on the real
Hardy space H1(R) by the theory of Fourier transform and Hilbert transform. Fol-
lowing this, Hausdorff operators were considered in various spaces, for example, see
[2, 13, 20, 22].

The one-dimensional Hausdorff operator contains the classical Hardy operator and
its adjoint operator if we choose suitable functions Φ . For x > 0, when one chooses
Φ(t) as t−1χ(1,∞)(t) and χ(0,1](t), we obtain the classical Hardy operator h and the
adjoint Hardy operator h∗ respectively, where

h f (x) :=
1
x

∫ x

0
f (t)dt, and h∗ f (x) :=

∫ ∞

x

f (t)
t

dt.
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It is well known that Hardy operators are important operators in Harmonic analysis, for
instance, see [12, 14]. On the other hand, if we choose Φ(t) = α(1− t)α−1χ(0,1)(t)
for α = 1,2, ..., then HΦ =Cα is called the Cesàro operator of order α . A brief history
of the study of the Cesäro operator can be found in [13].

For multidimensional Hausdorff operators, there are many kinds of definitions [1,
3, 4, 16–18, 21, 22]. One of the interesting definitions of the Hausdorff operators is

HΦ f (x) =
∫

Rn

Φ(x/|y|)
|y|n f (y)dy.

Similar to hΦ , HΦ contains the high dimensional Hardy operator H and its adjoint
operator H∗ (see the below definitions). Recently, Chen, Fan and Li [4] obtained that
if Φ is a radial function and 1 � p � ∞ , then

‖HΦ f‖Lp(Rn) � ωn−1

∫ ∞

0
|Φ(t)|t−1+ n

p dt · ‖ f‖Lp(Rn). (1.1)

For a general function Φ , Wang [24] proved

‖HΦ f‖Lp(Rn) � ω
1
p′

n−1

∫ ∞

0

(∫
Sn−1

|Φ(tϕ)|pdϕ
) 1

p

t−1+ n
p dt · ‖ f‖Lp(Rn). (1.2)

In [22], Lin and Sun defined the n -dimensional fractional Hausdorff operator for
a radial function Φ as follows

HΦ,β f (x) =
∫

Rn

Φ(|x|/|y|)
|y|n−β f (y)dy, 0 � β < n.

They obtained that

THEOREM A. Let 1 � p, q < ∞ , 0 < β < n, γ > β p−n and n+γ
p −β = n+γ

q . If∫ ∞
0 |Φ(t)| p

p−1 t
γ−β p+n−p+1

p−1 ±εdt < ∞ for small ε > 0 , then

‖HΦ,β f‖Lq(Rn,|x|γ ) � C‖ f‖Lp(Rn,|x|γ ), p > 1

and if ‖| · |n−β+γ±εΦ(·)‖L∞(Rn) < ∞, then

‖HΦ,β f‖Lq(Rn,|x|γ ) � C‖ f‖L1(Rn,|x|γ ).

If we choose Φ as the following radial functions |t|β−nχ(1,∞)(|t|) and χ(0,1](|t|),
HΦ,β f becomes the high dimensional fractional Hardy operator Hβ and its adjoint
operator H∗

β respectively, where

Hβ f (x) =
1

|x|n−β

∫
|y|<|x|

f (y)dy, x ∈ R
n \ {0} and H∗

β f (x) =
∫
|y|�|x|

f (y)
|y|n−β dy.

For some results about Hβ and H∗
β , please refer to [8] and [25]. Let Hβ := ν−1+ β

n
n Hβ ,

where νn is the volume of the unit ball in R
n . Recently, Lu, Yan and Zhao [25] proved

that the following result.
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THEOREM B. Suppose that 0� β < n, 1 < p � n
β and 1

p − 1
q = β

n . If f ∈ Lp(Rn) ,
then

‖Hβ f‖Lq(Rn) � C‖ f‖Lp(Rn),

where ( p
q

) 1
q
( p

p−1

) 1
q
( q

q−1

)1− 1
q
(
1− p

q

) 1
p− 1

q � C �
( p

p−1

) p
q
.

In this paper, we consider the general function Φ for HΦ,β for 0 � β < n . In Sec-
tion 2, we give sufficient conditions for the boundedness of the one-dimensional (frac-
tional) Hausdorff operators hΦ,β defined on R

+ on the Lebesgue spaces with power
weights. In Section 3, we give two sufficient conditions for the boundedness of the high
(fractional) Hausdorff operators on the Lebesgue spaces with power weights. In Sec-
tion 4, as applications, we obtain some explicit bounds of fractional Hardy operators on
the Lebesgue spaces. In particular, we have a better lower bound of fractional Hardy
operators on the Lebesgue spaces compared with a result of the paper by Lu, Yan and
Zhao [25].

Throughout this paper, ωn−1 denotes the area of the unit sphere Sn−1 and νn is
the volume of the unit ball in R

n . We use B(0,R) to denote the ball of radius R in R
n

centered at the origin and B(0,R)c = R
n \B(0,R) . We denote HΦ,β := HΦ , H0 := H

and H∗
0 := H∗ .

2. Estimates for one-dimensional Hausdorff operators

It is well known that using Minkowski inequality and scaling, we can show the
operator hΦ is bounded on Lp(R) for 1 � p � ∞ , if

KΦ,p =
∫ ∞

0
|Φ(t)|t−1+ 1

p dt < ∞

and
‖hΦ f‖Lp(R) � KΦ,p‖ f‖Lp(R).

Here we point out that hΦ can be regarded as convolution in the multiplicative group
R

+ with Haar measure dx
x . So we can use Young’s inequality (see Lemma 2.1) to obtain

the boundedness of hΦ on Lp(R+) . In this section, we can prove the boundedness of
hΦ on the Lesbesgue spaces with power weights. Moreover, we can extend these results
to the fractional Hausdorff operator hΦ,β , where

hΦ,β f (x) =
∫ ∞

0

Φ(xt−1)
t1−β f (t)dt, x > 0.

THEOREM 2.1. Let 1 � p, q � ∞ and 0 � β < 1 satisfy 1
q = 1

p −β . If

KΦ,β ,q =
(∫ ∞

0
|Φ(t)| 1

1−β t
−1+ 1

q(1−β) dt

)1−β
< ∞,
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then the operator hΦ,β from Lp(R+) into Lq(R+) is bounded, i.e.,

‖hΦ,β f‖Lq(R+) � KΦ,β ,q‖ f‖Lp(R+)

for all f ∈ Lp(R+) .

More generally, we have the following estimate.

THEOREM 2.2. Let 1 � p, q � ∞ , 0 � β < 1 and α, γ ∈ R satisfy γ+1
q = α+1

p −
β . If

KΦ,s,q,γ =
(∫ ∞

0
|Φ(t)|st−1+ s(γ+1)

q dt

) 1
s

< ∞,

where s satisfies 1
q = 1

p + 1
s −1 , then the operator hΦ,β from Lp(R+,xα ) into Lq(R+,xγ )

is bounded, i.e.,
‖hΦ,β f‖Lq(R+,xγ ) � KΦ,s,q,γ‖ f‖Lp(R+,xα )

for all f ∈ Lp(R+,xα) .

REMARK 2.1. Obviously, let α = γ = 0 in Theorem 2.2, then we can obtain
s = 1

1−β . Furthermore, we know that Theorem 2.1 holds. If β = 0 in Theorem 2.1,

then we obtain the boundedness of hΦ on Lp(R+) .

REMARK 2.2. Let β = 0, γ = α and Φ � 0, then s = 1 and

KΦ,1,q,γ =
∫ ∞

0
Φ(t)t−1+ γ+1

q dt < ∞

is the sufficient and necessary condition for the operator hΦ on Lq(R+,xγ ) . See [27]
for the detail.

Before proving the main results, we first recall the following Young’s inequality
for convolution.

LEMMA 2.1. ([11]) Let 1 � p, q, r � ∞ satisfy 1
q = 1

p + 1
r −1 , and μ be a Haar

measure on a locally compact group G, then

‖ f ∗ g‖Lq(G, μ) � ‖g‖Lr(G,μ)‖ f‖Lp(G, μ)

for all f in Lp(G, μ) and for all g in Lr(G, μ) satisfying ‖g‖Lr(G, μ) = ‖g̃‖Lr(G, μ),

where g̃(x) = g(x−1) .

Proof of Theorem 2.2. The proof is based on an idea used in [7] for proving the
boundedness of Hardy operator on Lp(R). It is well known that the multiplicative group
R

+ is a locally compact group with Haar measure dx
x . Note that γ+1

q = α+1
p −β , we

have

‖hΦ,β f‖Lq(R+,xγ ) =
(∫ ∞

0

∣∣∣∫ ∞

0
Φ(xt−1)x

γ+1
q f (t)tβ dt

t

∣∣∣q dx
x

) 1
q

=
(∫ ∞

0

∣∣∣∫ ∞

0
Φ(xt−1)(xt−1)

γ+1
q f (t)t

α+1
p

dt
t

∣∣∣q dx
x

) 1
q

�
(∫ ∞

0

(∫ ∞

0

∣∣Φ(xt−1)
∣∣(xt−1)

γ+1
q

∣∣ f (t)t α+1
p

∣∣dt
t

)q dx
x

) 1
q

.
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Because the right side of the above inequality is a convolution inequality on the mul-
tiplicative group R

+ with Haar measure dx
x , so by Lemma 2.1 for 1

q = 1
p + 1

s −1, we
get

(∫ ∞

0

(∫ ∞

0

∣∣Φ(xt−1)
∣∣(xt−1)

γ+1
q

∣∣ f (t)t α+1
p

∣∣dt
t

)q dx
x

) 1
q

� KΦ,s,q,γ‖ f‖Lp(R+,xα ),

where

KΦ,s,q,p,γ =
(∫ ∞

0
|Φ(t)|st−1+ s(γ+1)

q dt

) 1
s

.

Therefore, we finish the proof. �

3. High-dimensional case: n � 2

In this section, we consider the n -dimensional fractional Hausdorff operator for a
general function Φ as follows

HΦ,β f (x) =
∫

Rn

Φ(x/|y|)
|y|n−β f (y)dy, 0 � β < n.

First of all, we formulate our main results.

THEOREM 3.1. Let 1 � p, q � ∞ , 0 � β < n and α, γ ∈ R satisfy γ+n
q = α+n

p −
β . If

KΦ,s,n,q,γ =
(∫ ∞

0

(∫
Sn−1

|Φ(tϕ)|qdϕ
) s

q

t−1+ (n+γ)s
q dt

) 1
s

< ∞, (3.1)

where s satisfies 1
q = 1

p + 1
s −1 , then the operator HΦ,β from Lp(Rn, |x|α) into Lq(Rn, |x|γ )

is bounded, i.e.,

‖HΦ,β f‖Lq(Rn,|x|γ ) � ω
1
p′

n−1KΦ,s,n,q,γ‖ f‖Lp(Rn,|x|α ) (3.2)

for all f ∈ Lp(Rn, |x|α) .

COROLLARY 3.1. Let 1 � p, q � ∞ and 0 � β < n satisfy 1
q = 1

p − β
n . If

KΦ,s,n,q =
(∫ ∞

0

(∫
Sn−1

|Φ(tϕ)|qdϕ
) s

q
t−1+ ns

q dt

) 1
s

< ∞,

where s = n
n−β , then the operator HΦ,β from Lp(Rn) into Lq(Rn) is bounded, i.e.,

‖HΦ,β f‖Lq(Rn) � ω
1
p′

n−1KΦ,s,n,q‖ f‖Lp(Rn)

for all f ∈ Lp(Rn) .
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THEOREM 3.2. Let 1 � p, q � ∞ , 0 � β < n and α, γ ∈ R satisfy γ+n
q = α+n

p −
β .

(i) For any radial function Φ(x) , if

K̃Φ,s,n,q,γ =
(∫

Rn
|Φ(x)|s|x|−n+ (γ+n)s

q dx

) 1
s

< ∞, (3.3)

where s satisfies 1
q = 1

p+ 1
s−1 , then the operator HΦ,β from Lp(Rn, |x|α) into Lq(Rn, |x|γ )

is bounded, i.e.,
‖HΦ,β f‖Lq(Rn,|x|γ ) � K̃Φ,s,n,q,γ‖ f‖Lp(Rn,|x|α ) (3.4)

for all f ∈ Lp(Rn, |x|α);
(ii) For any general function Φ(x) , if

˜̃KΦ,s,n,q,γ = ω
1
p′

n−1

(∫
Sn−1

(∫ ∞

0
|Φ(ρϕ)|sρ−1+ (γ+n)s

q dρ
) q

s
dϕ

) 1
q

< ∞,

where s satisfies 1
q = 1

p+ 1
s−1 , then the operator HΦ,β from Lp(Rn, |x|α) into Lq(Rn, |x|γ )

is bounded, i.e.,

‖HΦ,β f‖Lq(Rn,|x|γ ) � ˜̃KΦ,s,n,q,γ‖ f‖Lp(Rn,|x|α ) (3.5)

for all f ∈ Lp(Rn, |x|α) .

REMARK 3.1. When Φ(x) is a radial function, then by (3.1), we have

KΦ,s,n,q,γ = ω
1
q
n−1

(∫ ∞

0
|Φ(t)|st−1+ (n+γ)s

q dt

) 1
s

,

and by (3.3) we obtain

K̃Φ,s,n,q,γ = ˜̃KΦ,s,n,q,γ = ω
1
p′ +

1
q

n−1

(∫ ∞

0
|Φ(t)|st−1+ (n+γ)s

q dt

) 1
s

.

Therefore, compared (3.2) and (3.4), we obtain that Theorem 3.1 coincides with Theo-
rem 3.2 if Φ is a radial function. For any general function Φ(x) , by Minkowski’s in-

equality, we get ˜̃KΦ,s,n,q,γ � ω
1
p′

n−1KΦ,s,n,q,γ , see the proof of Theorem 3.1 for the details.
But we point out that the proofs of Theorem 3.1 and Theorem 3.2 are very different.

REMARK 3.2. Let β = 0, γ = α and Φ be a non-negative radial function, then

K̃Φ,s,n,q,γ = ωn−1

∫ ∞

0
Φ(t)t−1+ (n+γ)

q dt < ∞

is the sufficient and necessary condition for the operator hΦ on Lq(Rn, |x|γ ) . See [27]
for the detail.

REMARK 3.3. Obviously, if β = 0, then s = 1 and p = q . Therefore using
Corollary 3.1, we obtain the inequality (1.2). Furthermore, if we choose Φ is a radial
function, then we have (1.1).
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REMARK 3.4. Unluckily, our results are not comparable to Theorem A. Our idea
and method are different from [22].

Proof of Theorem 3.1. By polar coordinates, we know

HΦ,β f (x) =
∫ ∞

0

∫
Sn−1

Φ
(x
t

)
tβ f (tθ )dθ

dt
t

and

‖HΦ,β f‖q
Lq(Rn,|x|γ ) =

∫ ∞

0

∫
Sn−1

∣∣∣∫ ∞

0

∫
Sn−1

Φ(ρϕt−1)ρ
γ+n
q f (tθ )tβ dθ

dt
t

∣∣∣qdϕ
dρ
ρ

.

We apply γ+n
q = α+n

p −β and then to Fubini’s theorem to interchange the integrals in
ρ and ϕ . Then

‖HΦ,β f‖q
Lq(Rn,|x|γ )

=
∫ ∞

0

∫
Sn−1

∣∣∣∫ ∞

0

∫
Sn−1

Φ(ρϕt−1)(ρt−1)
γ+n
q f (tθ )t

n+α
p dθ

dt
t

∣∣∣qdϕ
dρ
ρ

�
∫ ∞

0

∫
Sn−1

(∫ ∞

0

∫
Sn−1

|Φ(ρϕt−1)|(ρt−1)
γ+n
q | f (tθ )|t n+α

p dθ
dt
t

)q

dϕ
dρ
ρ

=
∫

Sn−1

∫ ∞

0

(∫
Sn−1

∫ ∞

0
|Φ(ρϕt−1)|(ρt−1)

γ+n
q | f (tθ )|t n+α

p
dt
t

dθ
)q dρ

ρ
dϕ .

By Minkowski’s inequality, we obtain

(∫ ∞

0

(∫
Sn−1

∫ ∞

0
|Φ(ρϕt−1)|(ρt−1)

γ+n
q | f (tθ )|t n+α

p
dt
t

dθ
)q dρ

ρ

) 1
q

�
∫

Sn−1

(∫ ∞

0

∣∣∣∣
∫ ∞

0
|Φ(ρϕt−1)|(ρt−1)

γ+n
q | f (tθ )|t n+α

p
dt
t

∣∣∣∣q dρ
ρ

) 1
q

dθ .

For
∫ ∞
0 |Φ(ρϕt−1)|(ρt−1)

γ+n
q | f (tθ )|t n+α

p dt
t , we can regard it as a convolution inequal-

ity on the multiplicative group R
+ with Haar measure dx

x . Applying Lemma 2.1 for
1
q = 1

s + 1
p −1, we have

(∫ ∞

0

(∫ ∞

0
|Φ(ρϕt−1)|(ρt−1)

γ+n
q | f (tθ )|t n+α

p
dt
t

)q dρ
ρ

) 1
q

�
(∫ ∞

0
|Φ(ρϕ)|sρ (γ+n)s

q
dρ
ρ

) 1
s
(∫ ∞

0
| f (ρθ )|pρn+α dρ

ρ

) 1
p

=
(∫ ∞

0
|Φ(tϕ)|st−1+ (γ+n)s

q dt

) 1
s
(∫ ∞

0
| f (tθ )|ptα+n−1dt

) 1
p

.
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Therefore,

‖HΦ,β f‖q
Lq(Rn,|x|γ )

�
∫

Sn−1

(∫
Sn−1

(∫ ∞

0
|Φ(tϕ)|st−1+ (γ+n)s

q dt

) 1
s
(∫ ∞

0
| f (tθ )|ptα+n−1dt

) 1
p

dθ
)q

dϕ

=
(∫

Sn−1

(∫ ∞

0
|Φ(tϕ)|st−1+ (γ+n)s

q dt

) q
s

dϕ
)(∫

Sn−1

(∫ ∞

0
| f (tθ )|ptα+n−1dt

) 1
p

dθ
)q

.

Applying Hölder’s inequality, we deduce that

∫
Sn−1

(∫ ∞

0
| f (tθ )|ptα+n−1dt

) 1
p

dθ � |Sn−1|
1
p′

(∫
Sn−1

∫ ∞

0
| f (tθ )|ptα+n−1dtdθ

) 1
p

= ω
1
p′
n−1 · ‖ f‖Lp(Rn,|x|α ).

Hence, we have

‖HΦ,β f‖Lq(Rn,|x|γ ) � ω
1
p′

n−1

(∫
Sn−1

(∫ ∞

0
|Φ(tϕ)|st−1+ (γ+n)s

q dt

) q
s

dϕ
) 1

q

‖ f‖Lp(Rn,|x|α ).

Note that s � q and then by Minkowski’s inequality, so we obtain

(∫
Sn−1

(∫ ∞

0
|Φ(tϕ)|st−1+ (γ+n)s

q dt

) q
s

dϕ
) 1

q

�
(∫ ∞

0

(∫
Sn−1

|Φ(tϕ)|qdϕ
) s

q

t−1+ (γ+n)s
q dt

) 1
s

.

Therefore, we have

‖HΦ,β f‖Lq(Rn,|x|γ ) � ω
1
p′

n−1

(∫ ∞

0

(∫
Sn−1

|Φ(tϕ)|qdϕ
) s

q

t−1+ (γ+n)s
q dt

) 1
s

‖ f‖Lp(Rn,|x|α )

= ω
1
p′

n−1KΦ,s,n,q,γ‖ f‖Lp(Rn,|x|α ). �

Proof of Theorem 3.2. We adapt some ideas and methods used in [9]. Let

g f (x) =
1

ωn−1

∫
Sn−1

f (|x|ϕ)dϕ .

Obviously, g f is a radial function. We can obtain ‖g f ‖Lp(Rn,|x|γ ) � ‖ f‖Lp(Rn,|x|γ ) , be-
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cause

‖g f‖Lp(Rn,|x|γ ) � 1
ωn−1

∫
Sn−1

(∫
Rn

∣∣ f (|x|ϕ)
∣∣p|x|γdx

) 1
p

dϕ

=
1

ω1/p′
n−1

∫
Sn−1

(∫ ∞

0

∣∣ f (rϕ)
∣∣p

rγ+n−1dr

) 1
p

dϕ

�
(∫

Sn−1

∫ ∞

0

∣∣ f (rϕ)
∣∣p

rγ+n−1drdϕ
) 1

p

= ‖ f‖Lp(Rn,|x|γ ).

Note that we have used Minkowski’s inequality, polar coordinates and Hölder’s inequal-
ity. On the other hand, by Fubini’s Theorem, we have

HΦ,β (g f )(x) =
1

ωn−1

∫
Sn−1

∫
Rn

Φ(x|y|−1)
|y|n−β f (|y|ϕ)dydϕ

=
1

ωn−1

∫
Sn−1

∫ ∞

0

∫
Sn−1

Φ(xr−1)
rn−β f (rϕ)rn−1dσdrdϕ

=
∫

Sn−1

∫ ∞

0

Φ(xr−1)
rn−β f (rϕ)rn−1drdϕ

= HΦ,β ( f )(x).

In consequence,

‖HΦ,β ( f )‖Lq(Rn,|x|γ )

‖ f‖Lp(Rn,|x|γ )
�

‖HΦ,β (g f )‖Lq(Rn,|x|γ )

‖g f ‖Lp(Rn,|x|γ )
.

Therefore, this implies that if we want to obtain the operator norm of HΦ,β from
Lp(Rn, |x|γ ) to Lq(Rn, |x|γ ) , we can restrict to f radial functions. So we can assume
that f (x) is a radial function in the following proof.

‖HΦ,β ( f )‖Lq(Rn,|x|γ )

=
(∫ ∞

0

∫
Sn−1

∣∣∣∫ ∞

0

∫
Sn−1

Φ(ρϕr−1)
r1−β f (r)dσdr

∣∣∣qργ+n−1dϕdρ
) 1

q

= ωn−1

(∫
Sn−1

∫ ∞

0

∣∣∣∫ ∞

0

Φ(ρϕr−1)
r1−β f (r)dr

∣∣∣qργ+n−1dρdϕ
) 1

q

.

(3.6)

Now we prove the inequalities (3.4) and (3.5), respectively.
(i) If Φ is a radial function, then we have

‖HΦ,β ( f )‖Lq(Rn,|x|γ ) = ω
1+ 1

q
n−1

(∫ ∞

0

∣∣∣∫ ∞

0

Φ(ρr−1)
r1−β f (r)dr

∣∣∣qργ+n−1dρ
) 1

q

= ω
1+ 1

q
n−1 ‖hΦ,β f‖Lq(R+,ργ+n−1).
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By Theorem 2.2, note that γ+n
q = α+n

p − β and 1
q = 1

p + 1
s − 1, therefore we deduce

that

‖HΦ,β ( f )‖Lq(Rn,|x|γ )

� ω
1+ 1

q
n−1

(∫ ∞

0
|Φ(t)|st−1+ (γ+n)s

q dt

) 1
s

‖ f‖Lp(R+,ρα+n−1)

=
(∫ ∞

0

∫
Sn−1

|Φ(t)|st−1+ (γ+n)s
q dσdt

) 1
s
(∫ ∞

0

∫
Sn−1

| f (ρ)|pρα+n−1dσdρ
) 1

p

= K̃Φ,s,n,q,γ‖ f‖Lp(Rn,|x|α ),

where

K̃Φ,s,n,q,γ =
(∫

Rn
|Φ(x)|s|x|−n+ (γ+n)s

q dx

) 1
s

.

(ii) For a general function Φ , let

IΦ,β ,q,n(ϕ) =
(∫ ∞

0

∣∣∣∫ ∞

0

Φ(ρϕr−1)
r1−β f (r)dr

∣∣∣qργ+n−1dρ
) 1

q

. (3.7)

Noticing that γ+n
q = α+n

p −β , so

IΦ,β ,q,n(ϕ) =
(∫ ∞

0

∣∣∣∫ ∞

0
Φ(ρϕr−1)(ρr−1)

γ+n
q f (r)r

α+n
p

dr
r

∣∣∣q dρ
ρ

) 1
q

.

Using Lemma 2.1 for 1
q = 1

p + 1
s −1, we obtain that

IΦ,β ,q,n(ϕ) �
(∫ ∞

0
|Φ(ρϕ)|sρ (γ+n)s

q −1dρ
) 1

s
(∫ ∞

0
| f (ρ)|pρα+n−1dρ

) 1
p

.

Therefore, by (3.6), (3.7) and the above inequality, we have

‖HΦ,β ( f )‖Lq(Rn,|x|γ )

� ωn−1

(∫
Sn−1

(∫ ∞

0
|Φ(ρϕ)|sρ−1+ (γ+n)s

q dρ
) q

s
dϕ

) 1
q (∫ ∞

0
| f (ρ)|pρα+n−1dρ

) 1
p

� ω
1
p′

n−1

(∫
Sn−1

(∫ ∞

0
|Φ(ρϕ)|sρ−1+ (γ+n)s

q dρ
) q

s
dϕ

) 1
q
(∫ ∞

0

∫
Sn−1

| f (ρ)|pρα+n−1dϕdρ
) 1

p

= ˜̃KΦ,s,n,q,γ‖ f‖Lp(Rn,|x|α ).

This completes the proof of Theorem 3.2. �
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4. Applications

APPLICATION 1. Let Φ(t) = tβ−1χ(1,∞)(t) , then hΦ,β = hβ , where hβ is the
fractional Hardy operator. If α < p−1, then by Theorem 2.2 we get

‖hβ f‖Lq(R+,xγ ) �
( p

(p−α −1)s

) 1
s ‖ f‖Lp(R+,xα ) (4.1)

for all f ∈ Lp(R+,xα) , where 1
q = 1

p + 1
s − 1. Similarly, when Φ(t) = χ(0,1](t) and

α > pβ −1, we have

‖h∗β f‖Lq(R+,xγ ) �
( q

(γ +1)s

) 1
s ‖ f‖Lp(R+,xα ) (4.2)

for all f ∈ Lp(R+,xα ) , where 1
q = 1

p + 1
s −1. In particular, we have

COROLLARY 4.1. Let 1 < p, q � ∞ and 0 � β < 1 satisfy 1
q = 1

p −β . Then the

operators hβ and h∗β from Lp(R+) into Lq(R+) are bounded, i.e.,

‖hβ f‖Lq(R+) �
( p′

q
+1

) 1
p′ +

1
q ‖ f‖Lp(R+),

‖h∗β f‖Lq(R+) �
( q

p′
+1

) 1
p′ +

1
q ‖ f‖Lp(R+)

for all f ∈ Lp(R+) . When β = 0 , Wang, Lu and Yan [26] obtain the inequality (4.1).
In fact they obtain α < p− 1 and γ+1

q = α+1
p is a necessary condition for (4.1). For

(4.2), they have similar results. Furthermore, if s = 1 , we can obtain
( q

(γ+1)s

) 1
s = p

p−1 ,

which is the best possible constant for the boundedness of Hardy operator on Lp(R+) .
See [12].

For high dimensional Hausdorff operators, choosing Φ as the radial functions
|t|β−nχ(1,∞)(|t|) and χ(0,1](|t|) respectively, according to Theorem 3.1 or Theorem 3.2
in the third section, we have

APPLICATION 2. Let 1 < p, q � ∞ and 0 � β < n satisfy 1
q = 1

p − β
n . Then the

operators Hβ and H∗
β from Lp(Rn) into Lq(Rn) are bounded, i.e.,

‖Hβ f‖Lq(Rn) �
( p′

q
νn + νn

) 1
p′ +

1
q ‖ f‖Lp(Rn),

‖H∗
β f‖Lq(Rn) �

( q
p′

νn + νn

) 1
p′ +

1
q ‖ f‖Lp(Rn)

for all f ∈ Lp(Rn) , where νn is the volume of the unit ball in R
n .

REMARK 4.1. In fact, we have the following inequalities:(∫
Rn

(
1

|B(0, |x|)|1− β
n

∫
B(0,|x|)

| f (y)|dy

)q

dx

) 1
q

�
(

p′

q
+1

) 1
p′ +

1
q
(∫

Rn
| f (y)|pdy

) 1
p

,

(4.3)
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(∫
Rn

(∫
B(0,|x|)c

| f (y)|
|B(0, |y|)|1− β

n

dy

)q

dx

) 1
q

�
(

q
p′

+1

) 1
p′ +

1
q
(∫

Rn
| f (y)|pdy

) 1
p

.

When β = 0, a simple calculation shows that

(∫
Rn

(
1

|B(0, |x|)|
∫

B(0,|x|)
| f (y)|dy

)p

dx

) 1
p

� p
p−1

(∫
Rn

| f (y)|pdy

) 1
p

, (4.4)

(∫
Rn

(∫
B(0,|x|)c

| f (y)|
|B(0, |y|)|dy

)p

dx

) 1
p

� p

(∫
Rn

| f (y)|pdy

) 1
p

.

Christ and Grafakos [7] proved that the inequality (4.4) holds and the constant p
p−1 is

the best possible for 1 < p < ∞ . In [25], the authors obtained

(∫
Rn

(
1

|B(0, |x|)|1− β
n

∫
B(0,|x|)

| f (y)|dy

)q

dx

) 1
q

�
(

p
p−1

) p
q
(∫

Rn
| f (y)|pdy

) 1
p

(4.5)
by the inequality (4.4) , see Theorem B in the Introduction. However, in the following

we will prove
( p′

q + 1
) 1

p′ +
1
q �

( p
p−1

) p
q for 1 < p � q � ∞ . Therefore we obtain the

better lower bound from (4.3) for the boundedness of the fractional Hardy operator
from Lp(Rn) into Lq(Rn) .

PROPOSITION 4.1. If 1 < p � q � ∞ , then

( p′

q
+1

) 1
p′ +

1
q �

( p
p−1

) p
q .

Equality holds if and only if p = q.

Proof. It is obvious that
( p′

q +1
) 1

p′ +
1
q �

( p
p−1

) p
q is equivalent to

(
1+

p
(p−1)q

) (p−1)q
p +1

�
(

1+
p

(p−1)p

) (p−1)p
p +1

.

Let g(t) = (1+ t)1+ 1
t , t > 0, then we can obtain g′(t) > 0, where g′ is the derivative

of the function g . So the function g(t) is strictly increasing. For 1 < p � q � ∞ ,
we have p

(p−1)q � p
p−1 · 1

p . Hence, g( p
(p−1)q) � g( p

(p−1)p), equality holds if and only if
p = q . �
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