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WEIGHTED NORM INEQUALITIES FOR
BILINEAR FOURIER MULTIPLIER OPERATORS

GUOEN HuU

(Communicated by J. Pecari¢)

Abstract. In this paper, by kernel estimates of the bilinear Fourier multiple operator and the
weighted theory for the bilinear singular integral operators, some weighted norm inequality with
general weights are established for the biilinear Fourier multiplier operators.

1. Introduction

In their seminal works [3, 4], Coifman and Meyer considered the mapping prop-
erties of the multilinear multiplier operators. Let o € L*(R™). Define the m-linear
Fourier multiplier operator T by

m

Tolfivofu)) = [ exp@mis(Gi+...+En)0 (e 6n) [ PA(EE (1)

k=1

initially for f1, ..., fin € Z(R") (the space of Schwartz functions), where and in the

following, dE =d¢&;...d&,, and for a function f € . (R"), Zf denotes its Fourier
transform. Coifman and Meyer [4] proved that if o € C*(R™"\ {0}) satisfying that

105" .. g0 (&1, v, Em)| < Cay oty (161 o+ 1Em]) (o |+l om]) (12)

forall |og|+...+ || <s with s a positive integer large enough, then T, is bounded
from LP1(R") x ... x LPn(R") to LP(R") for all 1 < py,..., pm, p < oo, with 1/p =
Yi<k<m1/pk. By the multilinear Calderén-Zygmund operator theory developed in
[10], we know that if o satisfies (1.2) for some integer s > nm+ 1, then T, is bounded
from LPL(R") x ... x LPm(R") to LP=(R") forall 1 < py, ..., pm < oo, I/m< p <oo
with 1/p =¥y <x<m 1/ P, and is bounded from LP!(R") x ... x LP"(R") to LP*(R")
forall 1 < py,..., pm < oo. In recent years, there has been significant progress in
the study of the behavior on function spaces for the multilinear multiplier operator
when the multiplier satisfies certain Sobolev regularity. Let ® € .(R™) such that
supp®@ C {(&ry - Em)  1/2< & |+ ... +|En] <2} and

T2 E, . 27 = 1, for (&, ..., En) € R™\ {0},

IeZ
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Set

oi(&y, .. En) =D&, ....E) 0 (218, .. 2, (1.3)

and

1/2

ol = ([ (A IGP+ +1EPIF oG, ., &) PAE)

Rmn

Tomita [ 18] proved that if
sup |0y [[ws gy < oo, (1.4)
IeZ

for some s € (mn/2, mn|, then Ty is bounded from L7 (R") x ... x LP»(R") to LP(R")
provided that py, ..., pm, p € (1,00) and 1/p = ¥ <4<n1/pi. Using the L"-based
Sobolev space (1 < r < 2), Grafakos and Si [9] considered the mapping properties
from LP1(R") x ... x LPm(R") to LP(R") for T5 when p < 1. Fairly recently, Miyachi
and Tomita [15] considered the problem to find the minimal smoothness conditions for
the boundedness of T when m = 2 (note that the arguments in [15] also apply to the
case of m > 2) under the Sobolev regularity that

Dy, 5,(0) := Suchlemvz(Rh) <eo, 51,5 >n/2, (1.5)
le

where and in the following, for a suitable function f on R?" and sy, s € (0, o),

Il = ( /Rz,,@l)z”@z)z”\ff(éh &)1aE),

with (&) = (14 |&|?)"/2. For the mapping properties of 75 when o satisfies (1.5),
see also [5, 8, 11] and the references therein.

The weighted estimates for the multilinear Fourier multiplier operators are also
of interest. When o satisfies (1.2) for some s > mn+ 1, it is well known that T
is a standard multilinear Calder6n-Zygmund operator (see [10]), and so 75 enjoys
the weighted estimates with multiple Az(R™") weights as the multilinear Calder6n-
Zygmund operators established in [14]. By a suitable kernel estimate and the theory
of multilinear singular integral operators, Bui and Duong [1] established the weighted
estimates with multiple A5(R*") weights for 75 when o satisfies (1.2) for m =2 and
n+1< s < 2n. For the weighted estimates with A, weights of T; when o satisfies
(1.5) with sq, ..., sm € (n/2,n], see [5] and [11].

The main purpose of this paper is to consider the weighted estimates with general
weights for the multilinear Fourier multiplier operator when the multiplier ¢ enjoys
the Sobolev regularity (1.5). For the sake of simplicity, we only consider the case of
m=2. Foraweight w and p € (0, e), let LP(R", w) and L?**(R", w) be the weighted
LP(R") space, the weighted weak LP(R") spaces with weight w respectively. For a
cube Q CR", § €0, =) and a suitable function f, set

. 1
P o= >0: gy | 70t o v}
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Define the maximal operator M; ., ;)5 by
ML(logL)5f(x) = sup ||fHL(logL)57Q’
0>x

where the supremum is taken over all cubes containing x. It is easy to see that for

0=0,M, LiogL)? is just M, the standard Hardy-Littlewood maximal operator.

THEOREM 1.1. Let 0 be a bilinear multiplier satisfying (1.5) for some sy, sy €
(n/2,n], and Ty be the multiplier operator defined by (1.1). Let w be a weight and
0> 0. Set ty =n/s.

() If pr € (tg, 0], 1 <k <2, pe(l,o0) suchthat 1/p=1/p;+1/pa, then

2

1 Ts(frs P)llzr@nwy S TT I fill e e ogryp 8%’ (1.6)

k=1

where and in the following, for p; = o and a weight u,
replaced by | f1|=(rn) ;

(i) if p1 € (n/(2s1 —n), ], ps € (t2,%0), p € (1/2,0) such that 1/p =1/py +
1/pa, then

1T (f1: L) ler@e,wy S N filleen e, o) | 2]l o2 e ma

| zr1 (mr, )y Should be

Lltogryp2 3" (1.7)

THEOREM 1.2. Let ¢ be an bilinear multiplier satisfying (1.5) for some s| €
(n/2,n] and sy > n, T be the multiplier operator defined by (1.1). Let w be a weight
and 6 > 0. Then for py € (n/(2s1 —n), |, pa € (1,00) p € (1/2,00) with 1/p =
1/p1+1/p2,

1T (f1, f2) o ®ew) S fillzen @, s 1 2]l 202 (e m L togryr- 18"’ (1.8)

REMARK 1.1. To prove Theorem 1.1 and 1.2, we will introduce a class of mul-
tilinear singular integral operators, and establish the weighted norm inequality with
general weights for these operators. By establishing the kernel estimates for the mul-
tiplier operator with multiplier satisfying the assumptions in our theorems, we will see
that this multiplier operator can be regarded as multilinear singular integral operators
which enjoy the properties (1.6)-(1.8).

Throughout this paper, C always denotes a positive constant that is independent of
the main parameters involved but whose value may differ from line to line. We use the
symbol A < B to denote that there exists a positive constant C such that A < CB. For a
ball B, let So( ) =B and S;(B) = 2'B\ 2/~ !B for positive integer. For any set E C R",
xe denotes its characteristic function. For p € [1, 0], p’ denotes the dual exponent
of p, namely, 1/p+1/p’ = 1. For a locally integrable function f, M*f denote the
Fefferman-Stein sharp function of f, that is,

# _
M f(x) sup‘B‘/\f dx,
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where the sup is taken over all balls containing x, and Vpf is the mean value of f on
B. For r€ (0,1), Mi(f) is the function defined by

r 1
ME(f)() = (1)) "
2. Estimates for multilinear singular integrals

In this section, we will establish some estimates for the multilinear singular in-
tegral operators, which will be used in the proof of Theorem 1.1 and 1.2, and are of
independent interest.

Let K(x;y1, y2) be a locally integrable function defined away from the diagonal
x=7y; =y, in R¥. An operator T, defined on .7 (R") x .#(R") and taking values in
the space of tempered distributions, is said to be a bilinear operator with kernel K if T
is bilinear, and satisfies that

T(h ) = [ Ky AF0f )y .1)

for bounded functions f1, f> with compact supports, and x € R\ l’ﬁ:lsupp f;j. For the
mapping properties on various function spaces of the operator T defined by (2.1), see
[7, 10, 1, 11, 14] and the references therein.

THEOREM 2.1. Let T be a bilinear singular integral operator with associated
kernel K in the sense of (2.1). For y,y',y1,y2 € R", let

Uo(y, y1,v2:Y') = [K(yi y1, y2) = K(Y3 y1, y2)|-
Suppose that

(1) for bounded functions fi, f> with compact supports,
1T (1, )@y S il @l 21l ey

(i) there exists a constant p > 0, such that for any ball B with radius R and any
integer j, > 4,

RP

L / < 2
oy o 000325 oz, oy 02) 5 1B

Then for any v € (0, 1) and bounded functions f1, f> with compact supports,

M(T(fi, £2))(x) S | fill =y M2 ().

Proof. Without loss of generality, we may assume that || fi[|z=®~) = 1. For each
fixed x € R", ball B containing x and bounded function f, with compact support,
decompose f> as fo = f) + f22 with

HO)=H0xss(), H0)=FL0)xrmss0)-
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Observe that for any y' € B,

1
N
dy)y

int (o7 [T 0 =elas)” 5 (o7 [ |rnoho) =701 )0

<=

(g [ o)

Thus,

int (7 I )0 —clay)” < |B|2//|Tf1,f2 Y =T, )

(o [t o)

Recall that y € (0, 1), and T is bounded from L' (R") x L=(R") to L'»*(R"), an argu-
ment similar to that used in the proof of Kolomogrov inequality then leads to that

1 1/ 1
(137 170 YO @) S Wl g [ 12002 S M£A).

For each fixed y, y' € B, it is easy to verify that

| LI o) =10 Ay’ < Y / A02)IAGY y2) dya,

=4

with
A(y7y’7yz)=/// [Uo(y, y1, y2:)ldyrdydy’.
BJBJR"

This, together with our assumption (ii), then gives us that

1
B, LT C B0 =T, )0 < Mp(w
and then completes the proof of Theorem 2.1. [

THEOREM 2.2. Let T be a bilinear singular integral operator with associated
kernel K in the sense of (2.1). Let ri,ry € (1, ). Suppose that

() for any weight w and some py € (ry, ), T satisfies the estimate that

1T (f1, £ llere e, wy S I =gy 12| 22 (e, ) s

where N is an operator such that N h(x) = Mh(x) for any function h on R"
and any x € R";
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(ii) Foreach R >0, there exists a function Hy g such that for any ball B with radius
R, function fi with supp fi C B, and [g. fi(y1)dy1 =0, y e R"\ 8B, y| € B,

IT(f1, 2) )| S Mr, f2(y) /Rn A1) Hi,z (v, y1, Y1)y,

and for any j, > 4,
17 Rnfn/rler
AT 1
(/B\HLR()’, yi, )| ‘d}’1> ijl(B)(Y) S i B[P/

Then for any pj € (r1, ), any weight w,
IT(f1, ) lp=r,w) S i llzey e, aw) 12l o2 e, arw)
with 1/p=1/p1+1/pa.
Proof. Let fi, f» be bounded functions with compact supports, such that
I fillzer e, aawy = 1 2]l o1 (e, prw) = 1
Our aim is to prove that for any A >0,
w({x eR": T (fi, L)) >A}) S AP

To do this, we apply the Calderén-Zygmund decomposition to |f1[P! at level A7, and
then obtain a sequence of non-overlapping cubes {Q) };, such that

1
re o [ IAmIndy S,
‘Ql‘ 0}

and
1f1(x)| S AP/PY ae.x € RM\ UiQL.
Set
810) = i) xmm v ) + ZV i () xg;
bi(y) = filx Zbl , with 6(y) = (f1(y) = Vig; (/1)) xg; (9);

with Vi (f1) the mean value of f; on Q). For each fixed i, let ¥\ and ¢(Q}) be the

center and the side length of Q) and B} be the ball which is centered at y| and having
radius R} = 8/nl(Q}). Set Q = U;4B] . It is obvious that

Q) < Yw(0) AP [ 1A d int Mw(y) SA7.
i i 1 YeLi

The fact that ||g1 (=& S AP/P1_and T is bounded from L=(R") x LP2(R", A 'w) to
LP2=(R", w), implies that

w{x €R": T (g1, 2)(0)] > A/2}) S A2 81lI72 oy £l T2 gy S A7
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On the other hand, for x € R"\ Q, a straightforward computation leads to that

T8 PIWIS |, 1600 Hy g (530, diM ()

= Li()M,, (),
where M., f>(x) = {M(|f|"2)( )}l/rz,and
i N /n
L) = 04 e ), g ) R )
1

It follows from assumption (ii) that
w({xeR"\Q: ZLi(x) > AP/PY)

<A P/PIZ/ L;(x)w(x) dx

n\Q
1
SRS e z/ (U (B ()} ) e
J1=4
) 11 . - 1
<SAPIPYY b} |04 [P {L(Q)YNH inf M —
< 2 Bt e Q17 {£(21)) inf W(Z)ﬂz:ﬂz./lB’l\P/n

< 201 inf Mw(z) SA7P.
i €0}
This, together with the fact that

w({x ER": My, fo(x) > %MM}) < QL‘P/RH o ()72 Mw(x) dx S AP,

then leads to that

w({rer": |71, ) )] > %}) < w({x €R": My, fox) > AP/P2))
+w({xeR": ZLi(x) > %)LP/PI})

SATP

and then completes the proof of Theorem 2.2. [
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3. Proof of Theorems

To prove Theorem 1.1 and 1.2, we will employ some preliminary lemmas. For
o € L*(R?), let o; be the same as in (1.3).

LEMMA 3.1. Let g1, q2 € [2,), and s1, 52 > 0. Then

(L, (L 1osta e ea

For the proof of Lemma 3.1, see Appendix A in [5].

@/q s /gy
) <§2>‘2d§2> 5 ||GKHW51/41‘32/‘12(R2")'

LEMMA 3.2. Let 51,52 € [0,00), and o, 0y € Z', be multi-indices. For x € Z,

set
G (&1, &) = E[1 &7 0w (&1, &)
Then
HC)?I’QZHW%Q(RH) S ?UEHGZHW%SZ(RZW
S

This lemma was given in [15, Remark 2.5].
Let @ € .(R?") be the same as in Section 1. For [ € 7Z, set

G1(&1, &) =0(&, &)P(27'E,27'8),

and

Ki(x;y1,2) = F 16 (x —y1,x— ).

For y, y, y1,y2 € R", let
Uo,i(y, y1,y2:Y) = Ki(vi y1, y2) = Ki(Y's y1, y2),

Uri(v v1, 25 31) = Ki(v: yi, v2) — Ki(y; v, v2).
For ry, rp € (1,00), | € Z and ball B with radius R, set

J

Jd2 (o ) g )
a0 = ([ ([, Wt vhian) ) Vs, w0). - G
2

where O (x) = B(x, R) and OF(x) = 2/B(x, R)\2/"'B(x, R) for j € N.

LEMMA 3.3. Let 0 be a bilinear multiplier satisfying (1.5) for some sy, s, >n/2.

() If ri,r2 € (1,2] and B is a ball with radius R, y} € B and | € Z such that
2!R < 1, then for nonnegative integers j; >4 and j, >0, the inequality
szl(.\'ﬁr.\'zfn/rl7n/r271)

J1,Ja N< Do
A 0:1) 3 D (0) |2/1BJs1/7| 272 B|s2/n

; (3.2)
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(ii) for each | € Z, there exists a function Hy ; on R" x R" such that, for any ball B
with radius R, any function fi with supp fi C B, and any y € R"\ 8B,

L K AGDAG2)lnds S [ 100G )M 0,

(3.3)
and for j1 =3 and ry € (1,2]

! 2—l(s1=n/r1)

</B [Hy, (v, )’1)|’,1dy1) 7‘%5,-1 B ) < Dxmz(G)W- (3.4)

Proof. For simplicity, we assume that Dy, 5,(0) = 1. We will employ the ideas
used in the proof of Lemma 3.3 and Lemma 3.4 of [11].

We first consider conclusion (i). For the fixed ball B with radisu R, let Bg =
B(0, R). We consider the following two cases

Case 1. j, > 1. Write

|ﬁ_151(21,12) —9_161(21 +y1 _y/1a12)|

=22 716 (2121, 2'20) — F o2l + 2/ (v — ¥)), 2 20)

1
<2y |2l(y1_y/1)|a/o 10907 1 0;(2' (21 + 0(y1 —¥1)), 2'22)|d6.

la|=1
By the Minkowsky inequality, Lemmas 3.1 and 3.2,

/
4

. 1 7 4 1
Al () < /(/ (/ L (0:21,)[d0) “der ) 2 dzy ) 1222 R
RS ( o s, U |91y, -y, (0521,22)] zz) Z1>

la|=1

S Z </CR <[Sj2(BR)

|o|=1 i

< Z (0, (g

o] =1

AoNE N\
80"09’_161(212172%2)‘ 2dZ2> " dzl> 122mlR

r/
F o) (25, 2)|

r/

L 1 1 2In
2'R2
X |Z2|rl2s'"dzz> 7 |z1 \rllsldm) 1

(271R)1 (272R)
2/R
SJ Z ||§IIZO-IHWS1‘$2(R2") (ZJIR)” (2]’2R).\'2

la|=1

—l(sy+s2—n/ri—n/rz)

< szl(.\'ﬁrszfn/rl*n/’?*l)
~ QiRyI(22R)" ’

where Cﬁ ={z: 2172R < 7| < Zjl+2R}. So (3.2) holds in this case.
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Case 2. j, =0. Forindex o € Z" and 2'R < 1,

(L (L.

p
N
9“’09_161(2121,2122)‘ 2d22> 7 le> 122l

/ 4] l 2[ 22ln
< a—1 o 21 21 ’er )72— l\ld )
S (/Cﬁ (/n F(E0)(2'71,2'22) | Tdza ) 2 |z dzy 2R

< 2IR(2NR) S~ l1=n/ri=n/m2)
< 2ZR(2j1R)_SIR_SZZ_I(SIJ"SZ_’Z/H—}’Z/rz).

Our desired conclusion (3.2) then follows directly.
To prove conclusion (ii), let r, € (1, 2] and r, > n/s, and set

1
Hubon) =27( [ 1771025 =) 2y )@y =y Edn) B

For y € §;,(B) with j; >4, we deduce from Lemma 3.1 that

(/B‘HI,Z(YaYIM 'dy1>

—2([ ([ 177 0@ =) 2y - )2y o) )

N

€1
X[2(y =yl ) T 2120 R)

Ny

1

L 1
s2( [ (17 oiter )l e)todz) 2 ()i ) T2 2Ry

< Q*I(Slfn/rl)(zle)*-\'l
The Holder inequality now gives us that
L 17 0=y =)0 02)ld
= 2% /Rz" 1 Z (2 (v —y1), 2' (v = y2)) A1) o (v2) [
s [ ([ 1F @ 6=y 26—l x40 ) 1 )l
n 1/r

(L, %d@ 2

S [ HLG DA M fo(0).

This completes the proof of Lemma 3.3. [
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LEMMA 3.4. Let ¢ be a multiplier satisfying (1.5) for some sy,s2 >0, ry, 1 €
(1,2], B be a ball with radius R. Let ji >0, j, >4 and [ be integers. Then

(1) the inequality

1
// / [Uo,1 (v y1,52:)]| dyl)'ldydy’xS_,2(3>(yz)

< |B|1+r2 R2~Hsitsa=n/ri=n/r=1) (21 R) =51 (212R) 52, (3.5)
holds if 2R 1;
(ii)

1 p—l(s2—n/r2)

/B/R" |7 61y — 1.y —y2)ldyidyxs, 5 (v2) S [BI™ “RR (3.6)

Proof. For each fixed y, y1, v,y € R", set

771G,

o(y—yi,y—y2)—

7716,

Iy ysY) = Gi(y—yi,y — )

and write
| F o221, 2' (v —y2)) — F i (2'21, 2/ () — )

<2RZ/ 0%97 10y (221, 2/ (2 + 6 (y —))) | d6.

o =1

If j; > 1, it then follows that for any y, € S;,(B) with j, >4, and y’ € B,

1
/(/ |J1(y,y1,yz'y’)I'J1dy1>’1 dy
B \Js; (B)

J1

, 1
ZzlanZ// / 30’a9_101(2121,2l(y2+O(y—y/)))|r1d11>'Jldyde

lo|=1
1 é ,]L
5 2 / (/ (/R |307aﬁ7161(2lzl721(y2+e(y_y/)))’ lel> 1 d ) 5 d6
=170 B AJC
X22ln21R‘B|1/r2
21
< 22nolR|B|M 2 D (/ (/ 1090716 (2'21,2'22)) | le1> le2> ;
lo|=1 sz C;Ql

1rs R2—l(s1+s2—n/r1—n/r2—l)
(zle)Sl (2./'2R)-Y2

S |B|
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On the other hand, if j; = 0, a trivial computation leads to that

1
Tyt y2: )| v ) 1d
/B</S_(B)\1(yy1 2 )| YI> y

J1

st 3 ([,

o] =1

S
WS-

80’059_161 (21Z172ZZ2)) |'J1dZ1>

dz2>

szl(.\zfn/rlfn/rzfl)
(2]2R)S2

1rs R2—l(51+52—n/r1—n/r2—1)

(2./1R)-Y1 (zjzR)-Yz ’

< 1Bl

S 1Bl

since 2/R < 1. Similarly, if we set
Ly.y,ysY)=F (v —y,Y —v2) = F 6 — v,y — ),
it is easy to verify that, for any y € B and y, € S;,(B) with j, >4,

1
/(/ IJz(y,yl,yz;y’)\'Jldﬂ)’l dy’
B \Js; (B)

J1
Zfl(lerszfn/rlfn/rzfl)

(zle)Sl (z.sz)Sz

< gk

Note that
F o=y, y—y2) = F (Y =y, Y =) =110 y1, 523 Y) + 0, y1, v23 ).

The inequality (3.5) now follows directly.
To prove (3.6), let r; > n/s;. For each fixed y, € Sj,(B) with j, > 4, a straight-
forward computation leads to that

2 [ Rn\ff (2! (r=31). 2'(y = y2)ldyudy
s /7
2 [ ([ 177 a0 -3).2 0 -3l @ -y i)
1 1/r
x 7d> d
(/R,, =yt P
/ ;2' L/ 1
s2( [ ([ 17 a2y =y, 2=y @y =y iy ) Tay) % B

1 ' 1
< ([ (17 e 2 yian ) ez § (2R) 8l
C? R”
2
271(.\'27n/r2)

~ (2/'2 R)Sz
This finishes the proof of Lemma 3.4. [l

S

B
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LEMMA 3.5. Let sp,;j >n/2 and py j € (0,00] (k, j=1.2). For 6 € (0, 1), let

1/pd =0/pr1+(1—0)/pra,s? =0sp1+(1—0)sp2, k=1,2.

Suppose that for three weights u, wy and wo,

2
1T )l gt oy S U2 0yt zmy LTIl
’ KEZ k=1

and

2
1T P gn ) S SUPHGKHWHNM (R21) HkaHLf’k‘z(Rn,wky

Then for any 0 € (0, 1),

2
HT(f17f2)|| ]Rn )< Sup”GKH 31 AZ(RZ” Hka“ka R" )

with 1/p® =1/p§ +1/p§.

By the interpolation theorem for analytic families of operators, Lemma 4.1 can be
proved by an argument similar to Step 1 in the proof of Theorem 6.1 in [8]. We omit
the details for brevity.

Proof of Theorem 1.1. For positive integer N, set

KN()’7Y17)’2): 2 yilazl(yayla)b)
1eZ,|l|<N

and let T5 y be the bilinear integral operator with associated kernel KV in the sense
of (2.1). As it was pointed out in [12], [11], it suffices to prove that the conclusions of
Theorem 1.1 are true for the operator T y with bounds independent of N .

We first prove that T  satisfies (1.6). By Lemma 3.5 and Lemma 3.6 in [11], a
standard argument shows that for any y» >,

M (To n (1, £2)) (%) S Dsy 53 (0) |1 fi | oy Mo fo (). (3.7)

For each fixed p, € (f2, ), we can take ¥ € (12, p2). By the clever idea of Lerner
(see [13]) and the inequality (3.7), we know that for each & € LP> (R", wl‘pIZ) with
121, <1,

Lp2 nw lp)

| Tonfh)|ar S [ M (Ton (i, £2)) (M) d
< Dy, 5, (0) 1A HLw(Rn)||Mnf2||Lr’z(Rn,ML(IOgL)pz,Mw)

x[1MA| (R, (M )1o12)

— w
L(logL)P2 1+8 )

S Dy, 5, (0)[| 1 HLw(Rn)||f2||LP2(Rn,ML(logL)m,;w),
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where the last inequality follows from the fact that
M(ML(logL)PrlM W) (x) S ML(logL),,2+5w(x),
see [2], and that for any weight u and p € (1, ),

HMf”Uz’(Rn’(M

L(logL)p—Hs")l”’, S ||fHLP(R”~,u1”’,)’

see [17]. Therefore, for ps € (t2, =),
| To.n(f15 f2) |l o1 (e, ) 5Ds1,sz(0)||f1||L°°(Rn)HfzHLPz(Rn,MmOgL)pr)- (3.8)

Similarly, we have that when p; € (#1, o),

| To. N (f1s L) e e o) S Dsy.sy () 11l e (re,m

L(IogL)I’1+5W)HszL‘”(Rn). (3.9)

The inequality (1.6) now follows directly, if we apply the bilinear Riesz-Thorin inter-
polation theorem ([6, p. 72]) to (3.8) and (3.9).
We now show that T y satisfies (1.7). Set

UYLy = Y Uni(yyyadh).
1€Z: 1| <N

Let H; ; be the same as in Lemm 3.3. For each fixed R > 0, set

HZIV,R(y7y17y/1) = z ‘Hl,l(y7yl)|
[[|<N2IR>1
1
+ ) 2 / |ULi(v y1, y23 00)] zd)’2> 2 (22R)™.

[I|<N,2'R<1j2=0

Then for ball B with radius R, function f; with suppf; C B and [g. fi(y1)dy; =0,
y€R"\ 8B and y| € B,

| Ton(f152)(y / AGDHY g0y, Y1) dyiMe, f(3).
On the other hand, it follows from Lemma 3.3 that for j; > 4,
1
b\
([ a0 5P ) s, )

DY /|Hll)’7)’17)’1)| 1dy1>7%s“( )

[[|<N2IR>1

0o il 1
. 3 1
+ Z Z (zjzR)n/m(/ (/R \Ul,l(y»yl,yz;y/lﬂ 2dy2> 2dy1> 'ijl(B)(y)
1:2!R<1j2=0 BXoj,
Rsi—n/r

5 DSI’SZ(O-)Wa
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if
re € (1,2], re >t (k=1,2),such thats; +s, —n/ri —n/rp—1<0. (3.10)

We know from (3.8) and Theorem 2.2 that if s; > n, s» € (n/2, n], then for weight w
and any 6 >0,

| To,n(f1s 2)llr=(®e ) S Dsy,sa (O fillzor e, paw) HfZHLPZ(R",ML(IOgL)pzMw) (3.11)
when py € (rg, o) (k=1,2) with ry, r, satisfying (3.10). Note that when p; € (1, o)
and p; € (12, ), we can choose ry, rp satisfies (3.10) and py € (rg, o). Therfore,
(3.11) still holds true if p; € (1, o) and pj € (t2, o). On the other hand, for each fixed
p1 € (1,0), p2 € (12, ), and fixed & >0, we can choose pi1, p12, P13; P21, P25 P23
and 8y, 0, 63 € (0, 0), such that

(@) pij€ (1,00) fork=1,2and j=1,2,3; pi; < pi,or p; > pj but p;;+6; <
p1+6 for j=1,2,3;

(b) (1/p1,1/p2, 1/p) is in the open convex hull of the points
(1/p11, 1/p21, 1/pY)s (1/p12, 1/ p22, 1/0%)s (113, 1/p2s, 1/pY)

where 1/p/ =32, 1/ps;.

We know from (3.11) that foreach j=1,2, 3,

1 To.n(f1s f2)ll = mn ) S Disyosa (Ol 21 (o sy 1721 727 (e

8 W)”
L(logL)Pz-/+§J )

This, via the multilinear Marcinkiewicz interpolation (see [6, p. 72]), shows that when
sy >n and sy > n/Z,

||TU7N(f17f2)HLI’(R",w)5DS[,-Yz(G)HflHLPI(R”,MW)||f2”L”Z(R”,ML(logL),,2+5w)a (3.12)
provided that p; € (1,0), py € (f2, o). By the inequalities (3.8) and (3.12), an appli-
cation of Lemma 3.5 then yields our desired conclusion (1.7). [

Proof of Theorem 1.2. Let & be the multiplier defined by (&1, &) =0 (&y, —&),
and Ty y be the multiplier operator with associated multiplier ¥;cz. /<y 61 - It is obvi-
ous that Ty y is the second transpose of 75 v in the sense that for Schwartz functions

ha f17 f2 s

L Tan (i )@ de = [ Ton(fi )00 .
Note that ¢ satisfies (1.5) for some sy, s, > n/2implies that & satisfies (1.5). Again
by Theorem 1.2 in [11] (see also [8]), we know that Ty y is bounded from L™ (R") x
Ll (Rn) to Ll’w(Rn) . For Yy Y1, Y2, y/ e R", let

Us 1y v y) = | Z 81y —y1, y—y2) — 61y —y1, ¥ — )|
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and

N, . .
Uy "nyysy) = Y Us (v yasy).
1€7:]1|<N

We have by Lemma 3.4 that, for any ball B with radius R and y, € Sj5(B) with j, >4,
N, *
/ / o U0 031, 3215 dyrdydy’

/// U 1 (v, y1, y2: )| dy1dydy’
l21R<1/1 0

+ Y // U (%, y1, y23 )| dy1dydy’

1:2IR>1
) n
< |B|2R,27
~ (2./2R)S2’

if we choose ry > n/s; closely to n/sy (k= 1,2) sufficiently such that s; +s, —n/r; —
n/ry—1<0. By Theorem 2.1, we know that if s; > n/2 and s, > n,

My (Ts n(f1, 1)) (x) SMBE)|fi l| = () -

This, via the argument used in the proof of Theorem 1.1 in [16], tells us that if s; >
n/2, sy > n, then for any p € (1, o), weight w and any 6 >0,

1T n(f1s 22) e w) S I fille ey | 2]l o e (3.12)

(1 o L)P— 14+6W)*

Lemma 3.3, along with Theorem 2.2 and the multilinear Marcinkiewicz interpolation
theorem, now states that for s; > n,s, > n and py, ps € (1,00), p € (1/2,00) with
1/p=1/p1+1/pa,

1 To N (15 Pl @ew) S il @oan) |2 lonae 5wy (3.13)

L(logL)P~

By (3.11) and (3.12), another application of Lemma 3.5 then gives us the estimate
(1.8). O
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