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INEQUALITIES FOR THE BETA FUNCTION

LOÏC GRENIÉ AND GIUSEPPE MOLTENI

(Communicated by T. Erdélyi)

Abstract. Let g(x) := (e/x)xΓ(x+ 1) and F(x,y) := g(x)g(y)/g(x + y) . Let D(k)
x,y be the k th

differential in Taylor’s expansion of logF(x,y) . We prove that when (x,y) ∈ R
2
+ one has

(−1)k−1D(k)
x,y (X ,Y ) > 0 for every X ,Y ∈ R+ , and that when k is even the conclusion holds

for every X ,Y ∈ R with (X ,Y ) �= (0,0) . This implies that Taylor’s polynomials for logF pro-
vide upper and lower bounds for logF according to the parity of their degree. The formula
connecting the Beta function to the Gamma function shows that the bounds for F are actually
bounds for Beta.

Notation

We will denote

�x�,{x} the integral and fractional parts of x, respectively;
Bk(x) the kth Bernoulli polynomial;
Bk := Bk(0) the kth Bernoulli number;
θ a number in [−1,1] whose value may change in each occurrence;
ζ (s,x) Hurwitz’s zeta function: ζ (s,x) := ∑∞

j=0( j + x)−s for Re(s) > 1, x > 0.

1. Motivations and main result

Functions f : (0,+∞) → R having derivatives of all orders and satisfying the in-
equalities

(−1)k f (k)(x) � 0 ∀x > 0, k = 0,1,2, . . .

are called completely, or even totally, monotone. This notion is the analogue for func-
tions on (0,+∞) of the totally monotone sequences introduced by Hausdorff [27,28,29]
in connection to his solution of the moment problem in the case of a compact interval. It
has quickly gained importance when Bernstein proved [15] that f is completely mono-
tone if and only if there exists a nonnegative Borel measure dν on [0,+∞) such that

f (x) =
∫ +∞

0−
e−xt dν(t),
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and that f has a finite limit in 0 if and only if ν(R+) is finite (see [41, p. 161] and
[11, Ths. 6.13 and 6.14]). Several functions, defined in terms of Gamma and other
special functions, are completely monotone [1,2,6,7,9,13,30,39]: this allows to derive
many inequalities [10, 14, 17, 19, 23, 24, 25, 31, 34, 36] with applications in probability
theory [16,21,33], in potential theory [12], and numerical and asymptotic analysis [23,
24, 25, 42].

A very general inequality was found by Kimberling [33, Th. 3] as an almost im-
mediate consequence of Bernstein’s representation. It states that

f (x+ y)
f (x) f (y)

� 1 ∀x,y > 0 (1)

whenever f : (0,+∞) → (0,1] is completely monotone.
Let ψ(x) := Γ′(x)/Γ(x) be the digamma function. Using the representation

h(x) :=
1
x
− logx+ ψ(x) =

∫ +∞

0
e−xtϕ(t)dt

with ϕ(t) := 1+ t−1− (1− e−t)−1 (see [8, Th. 1.6.3]) and Bernstein’s criterion, one
proves that h(x) is completely monotone. Let

H(x) := x− x logx+ log(Γ(x+1)),

a nonnegative primitive of h(x) in [0,+∞) . Then exp(−H(x)) is completely monotone
as well (see [21, p. 441]). As a consequence, from (1) one gets that

Γ(x+1)Γ(y+1)
Γ(x+ y+1)

� xxyy

(x+ y)x+y ∀x,y > 0. (2)

This is essentially a lower bound for Euler’s Beta function

B(x,y) :=
∫ 1

0
zx−1(1− z)y−1 dz ∀x,y > 0,

since it can be written as

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

∀x,y > 0, (3)

(see [8, Ch. 1, Th. 1.1.4]), so that (2) means that

B(x,y) � xx−1yy−1

(x+ y)x+y−1 ∀x,y > 0. (4)

In this paper we are interested mainly in explicit upper and lower bounds for B(x,y) ,
and the inequality in (4) is the typical result we would like to improve. In fact Stirling’s
formula, if necessary in one on its versions with explicit remainder term [35, 38], gives
bounds for B(x,y) which are well tuned for the case where one of the arguments di-
verges, but that are not optimal in the opposite scenario where the arguments are kept
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close to a fixed point. For example, in [40, p. 263 Ex. 45] it is reported a formula which
implies immediately the bound

B(x,y) >
√

2π
xx−1/2 yy−1/2

(x+ y)x+y−1/2
∀x,y > 0.

The right hand side equals what we get from the first two terms of Stirling’s expansion
of Γ(x) . Observe that it is poorer than (4) when x−1 + y−1 � 2π . Using a different
method, Alzer proved a bound for the region x,y � 1 in [3].

Recently bounds in the square (0,1]× (0,1] have been proved by Alzer, among
other results, in [4]. These bounds have been improved by Ivády [32]. Another set of
bounds for Beta is proved in [5].

An interesting survey of the study of Beta and Gamma functions is provided
in [20].

In essence, we prove a different set of approximations for B(x,y) coming from a
kind of complete monotonicity for the function H(x + y)−H(x)−H(y) . In order to
formulate our result more easily it is convenient to introduce the functions

g(x) := exp(H(x)) = (e/x)x Γ(x+1)

and

F(x,y) :=
g(x)g(y)
g(x+ y)

=
Γ(x+1)Γ(y+1)

Γ(x+ y+1)
· (x+ y)x+y

xx yy .

In this way every bound for F(x,y) is actually a bound for B(x,y) , taken apart the factor
(x+y)x+y−1x1−xy1−y which we can consider as essentially elementary; for example, (2)
simply says that F(x,y) � F(0+,0+) = 1.

Let Taylor’s series for the logarithm of F at the point x,y > 0 be written as

logF(x+X ,y+Y) = H(x+X + y+Y)−H(x+X)−H(y+Y) =
+∞

∑
k=0

1
k!

D(k)
x,y(X ,Y ),

where each D(k)
x,y(X ,Y ) is the k th differential of F in X and Y . For positive k it can be

written in terms of g as

D(k)
x,y(X ,Y ) = −

(g′

g

)(k−1)
(x+ y)(X +Y )k +

(g′

g

)(k−1)
(x)Xk +

(g′

g

)(k−1)
(y)Yk. (5)

The representation

−g′

g
(x) = γ +

+∞

∑
j=1

( 1
j + x

− 1
j

)
+ logx

(see [8], p. 13) gives

−
(g′

g

)(k−1)
(x) = (−1)k(k−1)!

( 1
(k−1)xk

−
+∞

∑
j=1

1
( j + x)k

)
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when k � 2, therefore the coefficients of every differential can be explicitly computed
in terms of Hurwitz’s zeta function ζ (s,x) := ∑+∞

j=0( j + x)−s . Consider the following
claim:

(−1)k−1D(k)
x,y(X ,Y ) is positive for X ,Y > 0 and if k is even then it is

positive definite in X ,Y .
(∗)

Some numeric experiments suggest the validity of (∗) for every k , independently
of the point x,y where it is computed; our main result is the proof of this conjecture.

THEOREM. (∗) holds for every k � 1 and every point x,y > 0 .

The theorem produces lower and upper bounds for F(x,y) and then for B(x,y)
simply by taking the truncated Taylor approximations of any even or odd order in (any)
point. It is particularly useful when an explicit bound is needed in a neighborhood of a
given point. For example, we can use it to bound F(x,y) in terms of F(�x� ,�y�) and
the fractional parts {x} , {y} . Here is a concrete example: for x,y∈ [1,2) the first three
differentials give the bounds

F(x,y) � F(1,1) = 2, F(x,y) � 2exp
(
(log2− 1

2 )({x}+{y})),
F(x,y) � 2exp

(
(log2− 1

2 )({x}+{y})− 1
8 ({x}2−2(7−4ζ (2)){x}{y}+{y}2)

)
.

These bounds improve those coming from [3] in a wide subset of the square, but not
everywhere.

The theorem implies that − logF(x,y) is completely monotone along each ray of
the first quadrant. Hence for every base point x,y > 0 and every ϑ ∈ [0,π/2] there is a
nonnegative Borel measure νx,y,ϑ such that

− logF(x+ ρ cosϑ ,y+ ρ sinϑ) =
∫ +∞

0
e−ρt dνx,y,ϑ (t);

such a formula could probably be deduced from Binet’s identity (see [8, Th. 1.6.3]).
However, − logF(x,y) is not completely monotone as a bivariate function (see [11,
Ex. 6.27 p. 140]) since the sign of its mixed derivatives does not depend only on their
total order (∂ 2

x logF is negative while ∂x∂y logF is positive). This is probably the main
cause of our difficulties in the proof of the theorem.

Lastly, we remark that F(x,y) is the case d = 2 of the family of functions

Fd(x1,x2, . . . ,xd) :=
∏d

j=1 g(x j)
g(x1 + x2 + · · ·+ xd)

.

The result extends immediately to each Fd via the recursive identity

Fd(x1,x2, . . . ,xd) = Fd−1(x1,x2, . . . ,xd−1)F(x1 + · · ·+ xd−1,xd).



INEQUALITIES FOR THE BETA FUNCTION 1431

2. Proof

The proof is a patchwork of several techniques, each one proving (∗) in a proper
subset of the space of values for the parameters x , y and k .

We denote by G the derivative of −g′/g , thus

G(x) :=
1
x
−

∞

∑
j=1

1
( j + x)2 . (6)

The alternative representation

G(x) =
∫ +∞

0+

d{t}
(t + x)2

gives

(−1)kG(k)(x) = (k+1)!
∫ +∞

0+

d{t}
(t + x)k+2 = (k+2)!

∫ +∞

0+

{t} dt
(t + x)k+3 > 0 (7)

for every k , proving that G is completely monotone.
By (5) the first differential is

D(1)
x,y (X ,Y ) =

(
− g′

g
(x+ y)+

g′

g
(x)

)
X +

(
− g′

g
(x+ y)+

g′

g
(y)

)
Y,

thus its positivity for X ,Y > 0 and for every fixed x,y ∈ R
2
+ can be obtained showing

that − g′
g is a strictly increasing function. This is true since its derivative is G , which is

positive. This proves the case k = 1 of the theorem.
From now on we discuss only the other differentials, so that we assume k � 2. In

terms of G , Formula (5) reads

(−1)k−1D(k)
x,y(X ,Y ) = a(X +Y )k −bXk− cYk,

with

a := (−1)k−1G(k−2)(x+ y), b := (−1)k−1G(k−2)(x), c := (−1)k−1G(k−2)(y).

Constants a , b , c are negative by (7), and a � max{b,c} because x,y are nonneg-
ative and (−1)k−1G(k−2)(x) is a strictly increasing function (because its derivative is
(−1)k−1G(k−1)(x) , which is positive). In inhomogeneous coordinates, the positivity of
the differential means that the function

�(λ ) := a(1+ λ )k−b− cλ k

is positive in (0,+∞) , and the positive definiteness (for even k ) that it is positive in
R . The solutions of �′(λ ) = 0 satisfy (1+ 1/λ )k−1 = c/a , thus there are two roots
(one negative and one positive) when k is odd, and only one (positive) when k is even.
Moreover, � is evidently positive at 0 and +∞ (and at −∞ if k is even), therefore the
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function is positive in (0,+∞) (and in R for an even k ) if and only if its value at the
positive stationary point is positive. After some algebra this condition becomes

(−a)−1/(k−1) > (−b)−1/(k−1) + (−c)−1/(k−1)

so that in order to prove the claim for a k � 2 we need to prove that

((−1)κG(κ)(x+ y))−1/(κ+1) > ((−1)κG(κ)(x))−1/(κ+1) + ((−1)κG(κ)(y))−1/(κ+1)

(8)
for x,y > 0, where κ := k− 2. In other words, we need to prove that the function
((−1)κG(κ)(x))−1/(κ+1) is strictly super-additive in (0,+∞) . This function admits a
regular continuation in x = 0 with value 0, hence (8) can be showed by proving that it
is a strictly convex function.

After some computations the condition d2

dx2

[
((−1)κG(κ)(x))−1/(κ+1)]> 0 becomes

(κ +2)(G(κ+1)(x))2 > (κ +1)G(κ)(x)G(κ+2)(x) x > 0. (9)

Hence, summarizing, we can prove (∗) for a given k � 2 by proving (9) for κ = k−2.

REMARK. In terms of fκ(x) := (−1)κ

(κ+1)!G
(κ)(x)=

∫ +∞

0+

d{t}
(t+x)κ+2 , Inequality (9) states

that

( f ′κ (x))2 >
κ +1
κ +2

fκ (x) f ′′κ (x) x > 0. (10)

However, we also have

( f ′κ (x))2 � fκ (x) f ′′κ (x) x > 0

because fκ is completely monotone (see [22, Th. 1] and [41, Ch. IV, Th. 16]). Thus,
up to a constant, this inequality is the opposite of (10). Together, they show that for a
very high index κ the values of functions ( f ′κ )2 and fκ f ′′κ are very close.

LEMMA 1. (9) holds for k � 25 , i.e. κ � 23 .

Proof. By (6) we have G(x) = 1
x − 1

1+x − 1
(1+x)2 + G(1 + x) . When iterated m

times this produces the equality

G(x) =
1
x
− 1

m+ x
−

m

∑
j=1

1
( j + x)2 +G(m+ x).

Deriving this equality κ times we get

(−1)κG(κ)(x)
κ!

=
1

xκ+1 −
1

(m+ x)κ+1 −
m

∑
j=1

κ +1
( j + x)κ+2 +

(−1)κG(κ)(m+ x)
κ!

. (11)

Equality (7) for κ may be also written as

(−1)κG(κ)(x)
(κ +1)!

= (κ +2)
∫ +∞

0+

{t} dt
(t + x)κ+3 =

1
2xκ+2 +(κ +2)

∫ +∞

0+

B1({t})dt
(t + x)κ+3 .
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The last integral is the typical integral appearing in Euler-McLaurin’s formula. Since
the map t �→ 1

(t+x)κ+3 decreases, from the usual bounds for the remainder term in this

formula we get
1

2xκ+2 −
κ +2

12xκ+3 � (−1)κG(κ)(x)
(κ +1)!

� 1
2xκ+2 (12)

(see [18, Ch. VI, Ex. to Par. 3, p. 296] or [26, Eq. 9.80, p. 475]). We already know that
(−1)κG(κ)(x) is positive, thus the lower bound is nontrivial only for x � (κ +2)/6.

Combining (11) and (12) with the shift x �→ x+m we get for m � (κ +3)/6

(−1)κ+1G(κ+1)(x)
(κ +1)!

� 1
xκ+2 −

1
(m+ x)κ+2 −

m

∑
j=1

κ +2
( j + x)κ+3

+
κ +2

2(m+ x)κ+3 −
(κ +3)(κ +2)
12(m+ x)κ+4 � 0

and

0 � (−1)κG(κ)(x)
(κ)!

� 1
xκ+1 −

1
(m+ x)κ+1 −

m

∑
j=1

κ +1
( j + x)κ+2 +

κ +1
2(m+ x)κ+2 .

Thus we can prove (9) by showing that there exists m = m(κ) � (κ +3)/6 such that

( 1
xκ+2 −

1
(m+ x)κ+2 −

m

∑
j=1

κ +2
( j + x)κ+3 +

κ +2
2(m+ x)κ+3 −

(κ +3)(κ +2)
12(m+ x)κ+4

)2

>
( 1

xκ+1 −
1

(m+ x)κ+1 −
m

∑
j=1

κ +1
( j + x)κ+2 +

κ +1
2(m+ x)κ+2

)

×
( 1

xκ+3 −
1

(m+ x)κ+3 −
m

∑
j=1

κ +3
( j + x)κ+4 +

κ +3
2(m+ x)κ+4

)
x > 0.

For κ � 23 we have found a value for m = m(κ) for which the difference of the func-
tions appearing on the left and right sides is actually a rational function (in x ) with
denominator 6∏m

j=1( j + x)κ+4 and whose numerator has only nonnegative integer co-
efficients: this obviously proves the claim in a strong form. These values are collected
in Table 1.

Table 1: m(κ) for κ � 23 .

κ 0 1 2 3 4 5 6 7 8 9 10 11

m 1 2 3 4 5 7 8 10 13 15 18 21

κ 12 13 14 15 16 17 18 19 20 21 22 23

m 24 28 32 35 40 44 49 54 59 65 70 76

�
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The nonnegativity of the coefficients in the difference seems to be a ‘stable’ prop-
erty in some sense, since if it holds for m , then it seems to hold also for m + 1; the
values appearing in the previous table are only the smallest ones ensuring that property.
It is not clear how we can select for a given κ a good candidate for m : the empirical
data show that m(κ) grows approximately as m(κ) ≈ κ2 .

Moreover, in order to prove that the difference has positive coefficients we have
not found a better argument than their explicit computation. This computation becomes
quickly very complicated, due to the large size of the coefficients involved (for example,
the greatest coefficient appearing in the numerator of the difference for κ = 10 is ≈
10444 and for κ = 23 is ≈ 105880 ). Table 1 has been computed with PARI/GP [37].
Lacking both a good comprehension of the dependence of m(κ) on κ and a good
method to check the positivity of those coefficients, the validity of (∗) in the other
regions is proved via a different argument.

We notice that (9) has the form of a log concavity for the map κ �→(−1)κG(κ)(x)/κ!
having x as nonnegative parameter, and that if this map is log-concave in [κ ,κ + 2]
then (9) holds for κ . This remark can be made effective since, according to (7), that
map has a natural continuation to R+ (with a shift in the argument to simplify the next
computations):

G (s) := s
∫ +∞

0+

d{t}
(t + x)s+1 .

Thus, if we are able to prove that logG is strictly concave, i.e. that

(G ′(s))2 > G (s)G ′′(s) (13)

in [k− 1,k + 1] , then (9) is proved for κ = k− 2 and (∗) for k . Next lemmas will
obtain (∗) by proving (13).

LEMMA 2. (∗) holds for k � 1.8x−1 and y > 0 .

Proof. By Lemma 1 we can assume that k � 26. We prove (13) for 25 � s � 1.8x .
The integral representation of G gives

G ′(s) = −
∫ +∞

0+

(s log(t + x)−1)d{t}
(t + x)s+1 ,

G ′′(s) =
∫ +∞

0+

(s log2(t + x)−2log(t + x))d{t}
(t + x)s+1 .

Inequality (13) therefore may be written as

(∫ +∞

0+

s log(t + x)−1
(t + x)s+1 d{t}

)2
> s

∫ +∞

0+

d{t}
(t + x)s+1

∫ +∞

0+

s log2(t + x)−2log(t + x)
(t + x)s+1 d{t} .

Since x > 0 we can normalize the measure t �→ (t+x)−s−1 d{t} by introducing dμs,x(t)
:= c−1(t +x)−s−1 d{t} with c :=

∫ +∞
0+ (t +x)−s−1 d{t} . In terms of μs,x Inequality (13)

is written as(∫ +∞

0+
(s log(t + x)−1)dμs,x(t)

)2
>

∫ +∞

0+
((s log(t + x)−1)2−1)dμs,x(t),
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or, using a probabilistic language, as

Var[s log(t + x)−1]μs,x < 1, (14)

where the variance is computed with respect to the measure μs,x . It is now evident
that (14) is true if and only if the analog where we substitute −1 with any function of
s and x holds. We prove now that Var[s log(t + x)]μs,x < 1 for 25 � s � 1.8x . We need
some computations. From (12) and the definitions of c and G we get

c =
1
s
G (s) � 1

2xs+1 −
s+1

12xs+2 ,

i.e.

2cxs+1 � 1− s+1
6x

. (15)

Let m be the mean value of s log(t + x) with respect to μs,x . Then

c(s logx−m) = −s
∫ +∞

0+

log(1+ t/x)
(t + x)s+1 dB1({t});

integrating by parts one time it becomes

= s
∫ +∞

0+
B1({t})

[ log(1+ t/x)
(t + x)s+1

]′
dt

and two further integrations by parts give

=
−s

12xs+2 +
s
6

∫ +∞

0+
B3({t})

[ log(1+ t/x)
(t + x)s+1

]′′′
dt.

Let M3 := max[0,1] B3(t) =
√

3/36, then

=
−s

12xs+2 + θ
s
6
M3

∫ +∞

0+

∣∣∣
[ log(1+ t/x)

(t + x)s+1

]′′′∣∣∣ dt

=
−s

12xs+2 + θ
s
6
M3

∫ +∞

0+

[3s2 +12s+11
(t + x)s+4 +(s+1)(s+2)(s+3)

log(1+ t/x)
(t + x)s+4

]
dt.

The integral may be explicitly evaluated, giving

=
−s

12xs+2 + θ
M3

6
s

s+3
4s2+15s+13

xs+3 .

Let Δt := s log(t + x)−m , then the previous computation shows that

Δ0 =
1

2cxs+1

(−s
6x

+ θ
M3

3
s

s+3
4s2 +15s+13

x2

)
. (16)
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We observe that Δ0 is negative when 25 � s � 1.8x . In the same range we also have
2s + (6x− s− 1)Δ0 � 0. This can be seen using the upper bound for |Δ0| coming
from (16), the lower bound for c coming from (15) and elementary arguments.

We also have

cVar[s log(t + x)−1]μs,x =
∫ +∞

0+

Δ2
t

(t + x)s+1 dB1({t})

that after three integrations by parts becomes

=
Δ2

0

2xs+1 +
2sΔ0− (s+1)Δ2

0

12xs+2 +
1
6

∫ +∞

0+
B3({t})

[ −Δ2
t

(t + x)s+1

]′′′
dt

which is, as noticed above,

� 1
6

∫ +∞

0+
B3({t})

[ −Δ2
t

(t + x)s+1

]′′′
dt.

One has [ −Δ2
t

(t + x)s+1

]′′′
=

A−BΔt +CΔ2
t

(t + x)s+4

with

A := 6s2(s+2), B := 2s(3s2 +12s+11), C := (s+1)(s+2)(s+3).

Since Δt = Δ0 + s log(1+ t/x) , we also have

[ −Δ2
t

(t + x)s+1

]′′′
=

A−BΔ0 +CΔ2
0

(t + x)s+4 +
(−B+2CΔ0)s log(1+ t/x)+Cs2 log2(1+ t/x)

(t + x)s+4 .

Moreover,

0 �
∫ +∞

0+

B3({t})
(t + x)s+4 dt � 1

120xs+4 .

In addition
∫ +∞

0+
B3({t}) s log(1+ t/x)

(t + x)s+4 dt = θM3

∫ +∞

0+

s log(1+ t/x)
(t + x)s+4 dt = θ

M3

xs+3

s
(s+3)2

and ∫ +∞

0+
B3({t}) s2 log2(1+ t/x)

(t + x)s+4 dt = θ
M3

xs+3

2s2

(s+3)3 .

Hence, using the lower bound for c given by (15), we get

Var[s log(t + x)−1]μs,x

� 6s2(s+2)+2s(3s2 +12s+11)|Δ0|+(s+1)(s+2)(s+3)Δ2
0

60x2(6x− s−1)

+4M3
s2(4s2 +15s+13)+ s(s+1)(s+2)(s+3)|Δ0|

(s+3)2x(6x− s−1)
,
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where Δ0 is given in (16) and thus bounded by

|Δ0| � 6x
6x− s−1

( s
6x

+
M3

3
s

s+3
4s2 +15s+13

x2

)
.

In these formulas the functions appearing on the right hand sides depend essentially on
s and x via the quotient s/x and therefore (14) will be true for s/x small enough. We
determine how small s/x has to be as follows. The upper bound for the variance in-
creases in s and in |Δ0| ; the upper bound for |Δ0| also increases in s , thus substituting
the bound for |Δ0| into the upper bound for the variance we get a new function increas-
ing again in s , whose upper bound is therefore reached when s = 1.8x . The resulting
function is a rational function decreasing in x . Its value for x = 25/1.8 is smaller than
1, thus it is so for all 25 � s � 1.8x . �

LEMMA 3. (∗) holds in x ∈ (0,1] , for every k � 1 and y > 0 .

Proof. By Lemma 1 we can assume that k � 26 and s � 25. The decomposition
of the measure d{t} as dt− d�t� produces the alternative representation G (s) = x−s−
sζ (s+1,x+1) , so that (13) becomes

(−x−s logx− ζ − sζ ′)2 > (x−s− sζ )(x−s log2 x−2ζ ′ − sζ ′′)

which we write as

(ζ + sζ ′)2 +2x−s logx(ζ + sζ ′)+ sx−sζ log2 x+(x−s− sζ )(2ζ ′ + sζ ′′) > 0, (17)

and where we have used the notation ζ for ζ (s+1,x+1) , and ζ ′ and ζ ′′ for ∂sζ (s+
1,x+1) and ∂ 2

s ζ (s+1,x+1) . The term x−s − sζ is positive for every x > 0 and for
every s . Moreover,

ζ + sζ ′ =
1− s log(1+ x)

(1+ x)s+1 +
+∞

∑
j=2

1− s log( j + x)
( j + x)s+1

is negative for every x � e1/s−1 and

2ζ ′ + sζ ′′ =
s log2(1+ x)−2log(1+ x)

(1+ x)s+1 +
+∞

∑
j=2

s log2( j + x)−2log( j + x)
( j + x)s+1 (18)

is positive for x � e2/s−1. This fact and the representation (17) already suffice to prove
the claim for x ∈ [e2/s−1,1] .

The assumption s � 25 ensures that e2/s−1 < 1/4, therefore in order to complete
the proof it is sufficient to prove it in (0,1/4] . For s � 25 each term of the series in (18)
is positive, hence (17) may be also written as

2 logx
xs (ζ + sζ ′)+

sζ log2 x
xs +(x−s− sζ )

(s log(1+ x)−2) log(1+ x)
(1+ x)s+1 +Pos. > 0
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therefore it is sufficient to prove that

2 logx(ζ + sζ ′)+ sζ log2 x+(1− sxsζ )
(s log(1+ x)−2) log(1+ x)

(1+ x)s+1 > 0.

Under the assumption x � 1/4 it is sufficient to prove that

2ζ logx+ sζ log2 x−2(1− sxsζ )
log(1+ x)
(1+ x)s+1 > 0

(because 1− sxsζ > 0 for every x and ζ ′ logx > 0 for x < 1), or even the stronger

2 logx+ s log2 x− 2log2
ζ

> 0.

Since ζ > 1, it is sufficient to prove that

2 logx+ s log2 x−2log2 > 0

and this is true for s � 25, x � 1/4. �

LEMMA 4. (∗) holds for k � 1.6x+2 , x > 1 and y > 0 .

Proof. By Lemma 1 we can assume that k � 26. We prove the claim by show-
ing (13) for s � max{25,1.6x+1} . Substituting

sζ =
∞

∑
j=1

s
( j + x)s+1 , −ζ − sζ ′ =

∞

∑
j=1

s log( j + x)−1
( j + x)s+1 ,

2ζ ′ + sζ ′′ =
∞

∑
j=1

s log2( j + x)−2log( j + x)
( j + x)s+1

in (17), after some algebra the inequality becomes:

( ∞

∑
j=1

s log( j + x)
( j + x)s+1

)2
+

( ∞

∑
j=1

1
( j + x)s+1

)2
+

s
xs

∞

∑
j=1

(log( j + x)− logx)2

( j + x)s+1

− 2
xs

∞

∑
j=1

log( j + x)− logx
( j + x)s+1 −

∞

∑
j=1

s
( j + x)s+1

∞

∑
j=1

s log2( j + x)
( j + x)s+1 > 0,

which is equivalent to

s
xs

∞

∑
j=1

log2(1+ j/x)
( j + x)s+1 − 2

xs

∞

∑
j=1

log(1+ j/x)
( j + x)s+1 +

( ∞

∑
j=1

1
( j + x)s+1

)2

− s2 ∑
1� j<k

log2((k+ x)/( j + x))
( j + x)s+1(k+ x)s+1 > 0. (19)
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We have
∞

∑
k= j+1

log2((k+ x)/( j + x))
(k+ x)s+1 � 4e−2

s2( j + x)s+1 +
2

s3( j + x)s . (20)

In fact, the function z−s−1 log2 z has a unique maximum at z0 = e2/(s+1) , therefore

∞

∑
k= j+1

log2((k+ x)/( j + x))
(k+ x)s+1 �

∫ ∞

j

log2((k+ x)/( j + x))
(k+ x)s+1 dk

+
( 2

s+1

)2 1

(e2/(s+1))s+1

1
( j + x)s+1

=
4e−2

(s+1)2

1
( j + x)s+1 +

1
( j + x)s

∫ ∞

1

log2 z
zs+1 dz

=
4e−2

(s+1)2

1
( j + x)s+1 +

2
s3( j + x)s .

And since the map j �→ 1
( j+x)s+1 is completely monotone, thus convex, we further have

∞

∑
j=1

1
( j + x)s+1 � 1

s(1+ x)s +
1/2

(1+ x)s+1 . (21)

As a consequence, by (20) and (21), the function appearing on the left-hand side in (19)
is greater than

S :=
∞

∑
j=1

r( j,x,s)
( jx+ x2)s+1

with

r( j,x,s) :=
s
x

(
x log

(
1+

j
x

)
− x

s

)2− x
s

− xs

( j + x)s

(2x
s

+4e−2 x
j + x

)
+

xs

(1+ x)s

(x
s

+
x/2
1+ x

)
,

and we obtain (19) showing that S > 0. We simplify this expression using 1
(1+x)s �

1
( j+x)s and 4e−2 x

j+x − x/2
1+x � 4e−2− 1

2 � 1
20 , thus

r( j,x,s) � r̃( j,x,s)

with

r̃( j,x,s) := sx log2
(
1+

j
x

)
−2x log

(
1+

j
x

)
− 1

(1+ j/x)s

(x
s

+
1
20

)
.

The derivatives ∂sr̃ and ∂ j r̃ are

∂sr̃( j,x,s) = x log2
(
1+

j
x

)
+

1
(1+ j/x)s

(
log

(
1+

j
x

)(x
s

+
1
20

)
+

x
s2

)
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∂ j r̃( j,x,s) =
2x

j + x

(
s log

(
1+

j
x

)
−1

)
+

s/x
(1+ j/x)s+1

(x
s

+
1
20

)

and hence are positive for s � 1.6x+ 1, x � 1, j � 1 (for ∂ j , notice that s log(1 +
j/x) � (1.6x+ 1) log(1+ 1/x) � 1.6 for every x � 1). As a consequence, for x � 1,
s � 1.6x + 1 and j � 2 one has r̃( j,x,s) > 0 since r̃(2,x,1.6x + 1) > 0 here, as one
can check easily.

Unfortunately r̃(1,x,s) is negative for every x � 1 when s = 1.6x+ 1, thus the
positivity of S cannot be proved in this simple way. However, r̃(1,x,2.1x+1) is posi-
tive for every x � 1. This suffices to prove that S is positive for s � 2.1x+1, thus it re-
mains to prove that S is positive also in the intermediate range 1.6x+1 � s � 2.1x+1.
Moreover, r̃(1,x,max(25,1.6x+1)) > 0 for x � 10, thus we can further take x � 10.

Lastly, the positivity of each r̃( j, ·, ·) in the given range for j � 2 allows us to get
the claim showing that a truncated sum is already positive. In fact, we prove now that

xs+1S >
4

∑
j=1

r̃( j,x,s)
( j + x)s+1 � 0

for x � 10 and 1.6x+1 � s � 2.1x+1.
Let Uj := s log(1+ j/x) . Then,

s
x
r̃( j,x,s) = U2

j −2Uj −
(
1+

s
20x

)
e−Uj .

Since we are assuming s � 2.1x+1 and x � 10, it is

� U2
j −2Uj− 10

9
e−Uj ,

so that it is enough to prove that

sxs−1
4

∑
j=1

r̃( j,x,s)
( j + x)s+1 �

4

∑
j=1

(U2
j −2Uj)e−Uj − 10

9 e−2Uj

j + x
(22)

is positive.
We compute lower bounds mj for the numerators in (22), so that

(22) �
4

∑
j=1

mj

j + x
, (23)

and in order to reduce to an algebraic problem the check of its positivity we look for
absolute constants. We compute the range of Uj for j � 4: this is easy because Uj ,
as a function of x and s , does not have stationary points, so that its extremal values
are along the border of the regions. We then compute the lower bounds mj for (u2 −
2u)e−u− 10

9 e−2u with u in each range. Ranges and lower bounds are in Table 2.
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Table 2: mj for j � 4 .

range of U1 range of Uj, j = 2,3,4 m1 m2 m3 m4

(1.6,2.1) [17log(1+ j/10),2.1 j) -0.175 0.138 0.049 0.012

Elementary arguments prove that (23) is positive for x � 10. �
Now we can finally prove the theorem. Lemma 3 proves (∗) for every k � 1 when

x ∈ (0,1] . Assuming x > 1, Lemma 2 proves (∗) when 1 � k � 1.8x−1 and Lemma 4
when k � 1.6x+2. Thus, all values for k are covered by Lemmas 2 and 4 when x � 15.
For 1 � x � 15 all k are covered by Lemma 1 and Lemma 4.
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