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WEIGHTED APPROXIMATION BY BASKAKOV OPERATORS

IVAN GADJEV

(Communicated by I. Perić)

Abstract. The weighted approximation errors of Baskakov operator is characterized for weights
of the form w(x) = xγ0 (1+ x)γ∞ , where γ0 ∈ [−1,0] , γ∞ ∈ R . Direct inequalities and strong
converse inequalities of type A are proved in terms of the weighted K -functional.

1. Introduction

The weghted approximation by linear positive operators has been a widely dis-
cussed topic. In [5] Z. Ditzian proved for the Bernstein operator [19]

Bn( f ,x) =
n

∑
k=0

f

(
k
n

)(
n
k

)
xk(1− x)n−k, x ∈ [0,1],

the estimate

|Bn( f ,x)− f (x)| � w2
ϕλ

(
f ,n−1/2ϕ(x)1−λ

)
where λ ∈ [0,1] , ϕ2 = x(1− x) and

ω2
φ ( f ,δ ) = sup

|h|�δ
sup

x+hφ(x)∈[0,1]
| f (x−φ(x)h)−2 f (x)+ f (x+ φ(x)h)|

is the second order modulus of smoothness of Ditzian-Totik [8]. This unifies the classi-
cal local (λ = 0) and the global (norm) (λ = 1) estimations for the Bernstein operator.
The converse result is also true (see [6], [23]), which means the equivalence

|Bn( f ,x)− f (x)| = O
((

n−1/2ϕ(x)1−λ
)α)⇔ ω2

ϕλ ( f ,δ ) = O(δ α)

holds for all α ∈ (0,2) and λ ∈ [0,1] .
Later, Felten [10], [11] extended this result for the more general weights (including

non-simetrical weights) by replacing ϕ(x)1−λ with ϕ(x)
φ(x) , where φ(x) is an admissible

step-weight function and for the operators of exponential type, in particular for Szász-
Mirakjan operator. In all of the results, mentioned above, the inverse approximation
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statement is formulated as the equivalence of the rates of convergence. A different type
of converse inequality is proved by E. Van Wickeren in [21].

In [7] Ditzian and Ivanov suggested a classification and defined four types of
strong converse inequalities. The strongest are the inequalities of type A. In unweighted
case, they proved in the same paper a strong converse inequality of type B for the Bern-
stein operator. In [20] Totik proved the inequalities of type A for the Bernstein, Szász-
Mirakjan and Baskakov operators. Another proofs are given: for the Bernstein operator
by Knoop and Zhou in [18] and for the Baskakov operator by Gadjev in [14].

Regarding weighted approximation, we reference: by Bernstein operator – [4],
[6], [10], [17], [23], and by Szász-Mirakjan – [1], [3], [9], [13], [16].

In this paper we characterize the weighted approximation by Baskakov operators.
The weights under consideration are defined as

w(x) = xγ0(1+ x)γ∞, where γ0 ∈ [−1,0], γ∞ ∈ R. (1)

For functions f ∈C[0;∞) the Baskakov operator is given by (see [2])

Vn f (x) = (Vn f ,x) = Vn( f ,x) =
∞

∑
k=0

f

(
k
n

)
Vn,k(x) for 0 � x < ∞, (2)

where

Vn,k(x) =
(

n+ k−1
k

)
xk(1+ x)−n−k. (3)

In [3] Becker studied the global weighted (for weights w(x) = 1 + xN , n ∈ N)
approximation by Baskakov operators and proved the direct inequality. In [16] Holhoş
improved the result for weights (1), γ0 = 0, γ∞ � 0. Guo and Qi gave in [15] a strong
converse inequality of type B for simmetrical weights γ0 = γ∞ ∈ (0,1] . In [13] Finta
generalized the method of [15], which allows him to extend the result to some non-
simmetrical weights.

In this paper we prove direct and strong converse inequalities of type A for the
widdest reasonable class of weights (1), where γ0 ∈ [−1,0] , γ∞ ∈ R . All previously
known results are, at best, for weaker inequalities of type B. In the process of proving
them, we establish two inequalities, which are important of their own: Voronovskaya-
type inequality (Theorem 2) and Bernstein-type inequality (Theorem 3), which takes
into account the growth of the constant with respect to the number of iterates of the
Baskakov operator.

Before stating our main result, let us introduce some notations. We denote the
first derivative operator by D = d

dx . Thus, Dg(x) = g′(x) and D2g(x) = g′′(x) . By
ψ(x) = x(1 + x) we denote the weight which is naturally connected with the second
derivative of Baskakov operator (2) (see Lemmas 6 and 2 below).

As usual, C[0,∞) denotes the space of all continuous on [0,∞) functions (without
the requirement for boundedness at ∞) and L∞[0,∞) is the space of all Lebesgue mea-
surable and essentially bounded in [0,∞) functions equipped with the uniform norm
‖.‖ .
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For the weight function w , defined by (1) we set

C(w) = {g ∈C[0,∞); wg ∈ L∞[0,∞)} ,

W 2(wψ) =
{
g,Dg ∈ ACloc(0,∞) and wψD2g ∈ L∞[0,∞)

}
,

W 3(wψ3/2) =
{

g,Dg,D2g ∈ ACloc(0,∞) and wψ3/2D3g ∈ L∞[0,∞)
}

.

The weighted approximation error of Vn will be compared with the K-functional
between the weighted spaces C(w) and W 2(wψ) , which is defined by

Kw( f , t) = inf
{‖w( f −g)‖+ t

∥∥wψD2g
∥∥ : g ∈W 2(wψ), f −g ∈C(w)

}
for every function f ∈C(w)+W2(wψ) and every t > 0.

Our main result is the following theorem, establishing a full equivalence between
the K-functional Kw

(
f , 1

n

)
and ‖w(Vn f − f )‖ . It consists of a direct inequality (the

first inequality in (4)) and a strong converse inequality of type A in the terminology in
[7] (the second inequality in (4)).

THEOREM 1. For w defined by (1) there exist positive constants C1 , C2 and L
such that for every natural n � L and for all f ∈C(w)+W2(wψ) there holds

C1‖w(Vn f − f )‖ � Kw

(
f ,

1
n

)
� C2‖w(Vn f − f )‖. (4)

Several comments about the range of γ0 follow. The range of γ0 cannot be reason-
ably extended, because for γ0 < −1 we must assume that f (x) = 0 in a neighbourhood
of 0, otherwise Vn f will not be bounded.

On the other hand, if γ0 > 0, then f (x) is not generally defined at x = 0 and
hence Vn f is not defined. Even if we restrict f in such a way that wf ∈ C[0,∞) , we
cannot settle this case because then Vn would not be a bounded operator in the weighted
uniform norm (as implied by an equivalence like (4)).

We remark that for smaller classes of functions equivalence theorems in modified
norms are known for different ranges of γ0 . See e.g. [12], [22].

Although Theorem 1 is formulated and proved for integer n it also holds true if n
is assumed to be a continuous positive parameter. In this case

Vn,k(x) =
Γ(n+ k)
k!Γ(n)

xk(1+ x)−n−k,

where Γ stands for the Gamma function, Vn is defined again by (2).
The paper is organized as follows. Some auxiliary results are proved in section 2.

The main result is proved in section 3.
For the rest of this paper the constant C will always be an absolute constant, which

means it does not depend on f and n although it may depend on γ0 and γ∞ . It may be
different on each occurrence. And w−1(x) will always denote (w(x))−1 = 1

w(x) .
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2. Auxiliary results

We will mention some properties of Baskakov operator, which can be found in [2]

Vn is a linear, positive operator with ‖Vn f‖ � ‖ f‖ (5)

Vn(1,x) = 1, Vn(t− x,x) = 0, Vn
(
(t − x)2,x

)
=

ψ(x)
n

. (6)

For k � 0 we have the next easily verified identities [8]

(DVn,k)(x) = DVn,k(x) = n
(
Vn+1,k−1(x)−Vn+1,k(x)

)
, (7)

DVn,k(x) =
n

ψ(x)

(
k
n
− x

)
Vn,k(x) (8)

where Vn,−1(x) = 0.
Differentiating (6) we have

∞

∑
k=0

k
n

(
k
n
− x

)2

Vn,k(x) =
(1+2x)ψ(x)

n2 +
xψ(x)

n
. (9)

The next three inequalities are valid for all integers m and can be found in [8,
(9.6.4, page 142), (9.6.3, page 141), (9.4.14, page 128)]. The constant C depends only
on m .

∞

∑
k=1

(n
k

)m
Vn,k(x) � Cx−m, (10)

∞

∑
k=0

(
1+

k
n

)m

Vn,k(x) � C(1+ x)m, (11)

Vn
(
(t− x)2m,x

)
� C

(
ψ(x)

n

)m

for x � 1
n
. (12)

LEMMA 1. For β ∈R there exists a constant C such that for every natural n � |β |
and every x ∈ [0,∞) and Vn,k defined by (3)

∞

∑
k=0

(
1+

k
n

)β
Vn,k(x) �

(
1+

C
n

)
(1+ x)β . (13)

Proof. Applying Hölder’s inequality for the smallest m ∈ N and m � |β | we get

∞

∑
k=0

(
1+

k
n

)β
Vn,k(x) �

[
∞

∑
k=0

(
1+

k
n

)sign(β )m

Vn,k(x)

] |β |
m

.
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Let us estimate the last sum. For every integer s we have

∞

∑
k=0

(
1+

k
n

)s

Vn,k(x) = (1+ x)s
∞

∑
k=0

(n+ k)sn(n+1)...(n+ s−1)
ns(n+ k)...(n+ k+ s−1)

Vn+s,k(x).

But
(n+ k)sn(n+1)...(n+ s−1)
ns(n+ k)...(n+ k+ s−1)

� 1+
C(s)

n

and consequently

∞

∑
k=0

(
1+

k
n

)s

Vn,k(x) �
(

1+
C(s)

n

)
(1+ x)s,

i.e.[
∞

∑
k=0

(
1+

k
n

)sign(β )m

Vn,k(x)

] |β |
m

�
(

1+
C(m)

n

) β
m

(1+x)β �
(

1+
C(β )

n

)
(1+x)β . �

LEMMA 2. For α ∈ [0,1] , β ∈ R there exists a constant C such that for every
natural n � |β | and every x ∈ [0,∞) and Vn,k defined by (3)

∞

∑
k=0

(
k
n

)α (
1+

k
n

)β
Vn,k(x) �

(
1+

C
n

)
xα(1+ x)β . (14)

Proof. We consider two cases.
1. α = 1.
By Cauchy’s inequality and (13) we have

∞

∑
k=0

k
n

(
1+

k
n

)β
Vn,k(x) = x

∞

∑
k=1

(
1+

k
n

)β
Vn+1,k−1(x)

= x
∞

∑
k=0

(
1+

k+1
n

)β
Vn+1,k(x)

=
(

1+
1
n

)β
x

∞

∑
k=0

(
1+

k
n+1

)β
Vn+1,k(x)

�
(

1+
C(β )

n

)
x(1+ x)β .

2. 0 � α < 1.
By Hölder’s inequality, (6) and (13) we have

∞

∑
k=0

(
k
n

)α(
1+

k
n

)β
Vn,k(x) �

[
∞

∑
k=0

k
n
Vn,k(x)

]α
⎡
⎣ ∞

∑
k=0

(
1+

k
n

) β
1−α

Vn,k(x)

⎤
⎦

1−α

�
(

1+
C(α,β )

n

)
xα(1+ x)β . �
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Of course, if we use notation (1) (with α = −γ0 and β = −γ∞ ) we can write (14)
in the way

Vn
(
w−1(x)

)
=

∞

∑
k=0

w−1
(

k
n

)
Vn,k(x) �

(
1+

C
n

)
w−1(x). (15)

LEMMA 3. For α ∈ [−2,0] , m+ α � 0 , β ∈ R and x,t ∈ [0,∞)∣∣∣∣
∫ t

x
(t−u)muα(1+u)βdu

∣∣∣∣� xα |t− x|m+1
[
(1+ x)β +(1+ t)β

]
. (16)

Proof. It is obvious that for u between x and t

(1+u)β � (1+ x)β +(1+ t)β

because (1+u)β is a monotonic function. We consider two cases.
Case 1. t � x .
Then uα � xα and consequently∣∣∣∣

∫ t

x
(t −u)muα(1+u)βdu

∣∣∣∣� xα
[
(1+ x)β +(1+ t)β

]∫ t

x
(t−u)mdu

=
xα

m+1
(t − x)m+1

[
(1+ x)β +(1+ t)β

]
� xα |t − x|m+1

[
(1+ x)β +(1+ t)β

]
.

Case 2. t < x .
Then∣∣∣∣
∫ t

x
(t −u)muα(1+u)βdu

∣∣∣∣� [(1+ x)β +(1+ t)β
]∫ x

t
(u− t)muαdu

=
[
(1+ x)β +(1+ t)β

]∫ x

t

(
1− t

u

)−α
(u− t)m+αdu

�
[
(1+ x)β +(1+ t)β

]∫ x

t

(
1− t

x

)−α
(u− t)m+αdu

=
xα(x− t)m+1

m+ α +1

[
(1+ x)β +(1+ t)β

]
� xα |t − x|m+1

[
(1+ x)β +(1+ t)β

]
. �

LEMMA 4. For α ∈ [−2,0] , δ ∈ (−1,0] , α � δ , m+α � 0 , β ∈ R there exists
a constant C such that for every natural n � |β | and every x ∈ [0,∞)

∞

∑
k=0

∣∣∣∣
∫ k/n

x

(
k
n
−u

)m

uα(1+u)βdu

∣∣∣∣Vn,k(x) �

⎧⎪⎨
⎪⎩

Cxα(1+ x)β
[

ψ(x)
n

]m+1
2

, x � 1
n ,

Cxα(1+ x)β [ψ(x)]1−δ

nm+δ , x < 1
n .

(17)
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Proof.

Case 1. x � 1
n .

By (16) we get

∞

∑
k=0

∣∣∣∣
∫ k/n

x

(
k
n
−u

)m

uα(1+u)βdu

∣∣∣∣Vn,k(x)

� xα
∞

∑
k=0

∣∣∣∣ kn − x

∣∣∣∣
m+1
[
(1+ x)β +

(
1+

k
n

)β
]
Vn,k(x).

Using Cauchy’s inequality and (12) we have for the first sum on the right

xα
∞

∑
k=0

∣∣∣∣ kn − x

∣∣∣∣
m+1

(1+ x)βVn,k(x) � xα(1+ x)β

[
∞

∑
k=0

(
k
n
− x

)2(m+1)

Vn,k(x)

] 1
2

� C(m)xα (1+ x)β
[

ψ(x)
n

]m+1
2

.

For the second one, again by using Cauchy’s inequality, (12) and (13) we get

xα
∞

∑
k=0

∣∣∣∣ kn − x

∣∣∣∣
m+1(

1+
k
n

)β
Vn,k(x)

� xα

[
∞

∑
k=0

(
k
n
− x

)2(m+1)

Vn,k(x)

] 1
2
[

∞

∑
k=0

(
1+

k
n

)2β
Vn,k(x)

] 1
2

� C(m,β )xα (1+ x)β
[

ψ(x)
n

]m+1
2

.

Case 2. x < 1
n .

We estimate the terms in the sum separately for k = 0, k = 1,...,k = 2m+ 1 and
for k � 2(m+1) .

I0 = (1+ x)−n
∫ x

0
um+α(1+u)βdu �

[
(1+ x)β +1

]∫ x

0
um+αdu

� C(β )xm+α+1 � C(β )
xα+1

nm .
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For 1 � k � 2m+1 we have

Ik =
∫ k/n

x

(
k
n
−u

)m

uα(1+u)βVn,k(x)

�
[
(1+ x)β +

(
1+

k
n

)β
](

k
n

)m

Vn,k(x)
∫ k/n

x
uαdu

� C(m,k,β )
nm Vn,k(x)xα−δ

∫ k/n

x
uδ du � C(m,k,β ,δ )

nm Vn,k(x)xα−δ
(

k
n

)δ+1

� C(m,k,β ,δ )
nm+δ+1

Vn,k(x)xα−δ � Cxα−δ+1

nm+δ

because for x � 1
n and k � 1

Vn,k(x) � C(k)nx and (1+ x)β +
(

1+
k
n

)β
� C(m,β ).

Now we estimate

∞

∑
k=2(m+1)

Ik =
∞

∑
k=2(m+1)

∣∣∣∣
∫ k/n

x

(
k
n
−u

)m

uα(1+u)βdu

∣∣∣∣Vn,k(x).

We have

∞

∑
k=2(m+1)

Ik �
∞

∑
k=2(m+1)

[
(1+ x)β +

(
1+

k
n

)β
](

k
n

)m+1

xαVn,k(x) =
xα

nm+1 (J1 + J2) .

J1 =
∞

∑
k=2(m+1)

km+1(1+ x)βVn,k(x)

= (1+ x)βxm+1
∞

∑
k=2(m+1)

n(n+1)...(n+m)km

(k−m)(k−m+1)...(k−1)
Vn+m+1,k−m−1(x)

� C(m)(1+ x)βxm+1nm+1
∞

∑
k=2(m+1)

Vn+m+1,k−m−1(x) � C(m)(xn)m+1.

For the second term by Cauchy’s inequality and using (10) and (13) we have

J2 =
∞

∑
k=2(m+1)

km+1
(

1+
k
n

)β
Vn,k(x)

�
[

∞

∑
k=2(m+1)

k2(m+1)Vn,k(x)

] 1
2
[

∞

∑
k=2(m+1)

(
1+

k
n

)2β
Vn,k(x)

] 1
2

� C(m,α,β )(xn)m+1.
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Then,
∞

∑
k=2(m+1)

Ik � xα

nm+1C(m,α,β )(xn)m+1 = C(m,α,β )xm+α+1 � C(m,α,β )xα−δ+1

nm+δ ,

and consequently

∞

∑
k=0

Ik � C(m,α,β )xα−δ+1

nm+δ � Cxα(1+ x)β [ψ(x)]1−δ

nm+δ . �

LEMMA 5. For w, defined by (1) there exists a constant C such that for every
natural n � |γ∞| we have

‖wVn f‖ � C‖wf‖ (18)

for every function f ∈C(w) .

Proof. Using (5) and (15) we get

|Vn f (x)| = ∣∣Vn
(
(wf )w−1) (x)∣∣� Vn

(‖wf‖w−1)(x)
= ‖wf‖Vn

(
w−1) (x) � C‖wf‖w−1(x). �

LEMMA 6. For w, defined by (1) there exists a constant C such that for every
natural n � |γ∞| we have

‖w(Vng−g)‖ � C
n

∥∥wψD2g
∥∥ (19)

for every function g ∈W 2(wψ) .

Proof. We have

g(t) = g(x)+ (t− x)Dg(x)+
∫ t

x
(t − v)D2g(v)dv.

Multiplying both sides by Vn,k(x) , summing with respect to k and using (6) we obtain

Vng(x) = g(x)+Vn

(∫ (.)

x
(.− v)D2g(v)dv

)
.

Using the positivity of Vn we get

|Vng(x)−g(x)|=
∣∣∣∣Vn

(∫ (.)

x
(.− v)D2g(v)dv

)∣∣∣∣
�
∣∣∣∣Vn

(∫ (.)

x
(.− v)(wψ)−1(v)dv

)∣∣∣∣‖wψD2g‖

=
∥∥wψD2g

∥∥∣∣∣∣∣
∞

∑
k=0

∫ k/n

x

(
k
n
− v

)
(wψ)−1(v)dvVn,k(x)

∣∣∣∣∣
�
∥∥wψD2g

∥∥ ∞

∑
k=0

∣∣∣∣
∫ k/n

x

(
k
n
− v

)
v−1−γ0(1+ v)−1−γ∞dv

∣∣∣∣Vn,k(x).
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The use of (17) of Lemma 4 with α =−1−γ0 , β =−1−γ∞ , m = 1, δ = 0 completes
the proof. �

As an elementary consequence of this lemma we have that if a function g ∈
W 2(wψ) then Vng−g∈C(w) .

THEOREM 2. For w, defined by (1) there exists a constant C such that for every
natural n � |γ∞| we have∥∥∥∥w

(
Vng−g− 1

2n
ψD2g

)∥∥∥∥� C

n3/2

∥∥∥wψ3/2D3g
∥∥∥ (20)

for every function g ∈W 3(wψ3/2) .

Proof. By Taylor’s formula we have

g(t) = g(x)+ (t− x)Dg(x)+
(t− x)2

2
D2g(x)+

1
2

∫ t

x
(t − v)2D3g(v)dv.

Multiplying both sides by Vn,k(x) , summing with respect to k and using the identities
(6) we get∣∣∣∣Vng(x)−g(x)− 1

2n
ψD2g(x)

∣∣∣∣
� 1

2

∞

∑
k=0

∣∣∣∣∣
∫ k/n

x

(
k
n
− v

)2

D3g(v)dv

∣∣∣∣∣Vn,k(x)

� 1
2

∥∥∥wψ3/2D3g
∥∥∥ ∞

∑
k=0

∣∣∣∣∣
∫ k/n

x

(
k
n
− v

)2

w−1(v)ψ−3/2(v)dv

∣∣∣∣∣Vn,k(x).

Now we can use (17) of Lemma 4 with α = −γ0 − 3
2 , β = −γ∞ − 3

2 , m = 2, δ = − 1
2

to complete the proof. �

LEMMA 7. For w, defined by (1) there exists a constant C such that for every
natural n � |γ∞| we have ∥∥wψD2Vn f

∥∥� Cn‖wf‖ (21)

for every function f ∈C(w) .

Proof. We consider two cases.
Case 1. x � 1

n . We have [8]

D2Vn f (x) = n(n+1)
∞

∑
k=0

Δ2
1
n
f

(
k
n

)
Vn+2,k(x),

where, as usual,

Δr
h f

(
k
n

)
=

r

∑
k=0

(−1)k
(

r
k

)
f
(
x+(r− k)h

)
.
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Then, by (15) we get

∣∣w(x)ψ(x)D2Vn f (x)
∣∣

= n(n+1)w(x)ψ(x)

∣∣∣∣∣
∞

∑
k=0

[
f

(
k+2

n

)
−2 f

(
k+1

n

)
+ f

(
k
n

)]
Vn+2,k(x)

∣∣∣∣∣
� n(n+1)w(x)ψ(x)‖wf‖

∞

∑
k=0

[
w−1
(

k+2
n

)
+2w−1

(
k+1

n

)
+w−1

(
k
n

)]
Vn+2,k(x)

� C(γ∞)n(n+1)w(x)ψ(x)‖wf‖
∞

∑
k=0

w−1
(

k
n+2

)
Vn+2,k(x)

� Cn‖wf‖.

Case 2. x > 1
n . We have

∣∣ψ(x)D2Vn f (x)
∣∣

=
n2

ψ(x)

∞

∑
k=0

[(
k
n
− x

)2

− 1+2x
n

(
k
n
− x

)
− ψ(x)

n

]
f

(
k
n

)
Vn,k(x)

� ‖wf‖ n2

ψ(x)

∞

∑
k=0

[(
k
n
− x

)2

+
1+2x

n

∣∣∣∣ kn − x

∣∣∣∣+ ψ(x)
n

]
w−1
(

k
n

)
Vn,k(x)

= ‖wf‖(I1 + I2 + I3) .

Now we estimate Ii separately.

For I1 and I2 we consider two cases.

1. γ0 = −1

Applying two times Cauchy’s inequality for I1 and I2 and using (10), (12) and
(13) we obtain

I1 =
n2

ψ(x)

∞

∑
k=0

k
n

(
k
n
− x

)2(
1+

k
n

)−γ∞

Vn,k(x)

� n2

ψ(x)

[
∞

∑
k=0

(
k
n
− x

)4

Vn,k(x)

]1/2[ ∞

∑
k=0

(
k
n

)4

Vn,k(x)

]1/4[ ∞

∑
k=0

(
1+

k
n

)−4γ∞

Vn,k(x)

]1/4

� C(γ∞)nw−1(x)

= Cnw−1(x).
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I2 =
n(1+2x)

ψ(x)

∞

∑
k=0

k
n

∣∣∣∣ kn − x

∣∣∣∣
(

1+
k
n

)−γ∞

Vn,k(x)

� n(1+2x)
ψ(x)

[
∞

∑
k=0

(
k
n
− x

)2

Vn,k(x)

]1/2

×
[

∞

∑
k=0

(
k
n

)4

Vn,k(x)

]1/4[ ∞

∑
k=0

(
1+

k
n

)−4γ∞

Vn,k(x)

]1/4

� C(γ∞)n(1+2x)
ψ(x)

[
ψ(x)

n

] 1
2

w−1(x) � 2Cn
1
2 w−1(x)

√
1+

1
x

� Cnw−1(x).

2. γ0 > −1
By Hölder’s inequality we get for I1

I1 =
n2

ψ(x)

∞

∑
k=0

(
k
n
− x

)2

w−1
(

k
n

)
Vn,k(x)

� n2

ψ(x)

[
∞

∑
k=0

k
n

(
k
n
− x

)2

Vn,k(x)

]−γ0
[

∞

∑
k=0

(
k
n
− x

)2(
1+

k
n

)− γ∞
1+γ0

Vn,k(x)

]1+γ0

.

From (9) it follows
∞

∑
k=0

k
n

(
k
n
− x

)2

Vn,k(x) � 4xψ(x)
n

.

Now using Cauchy’s inequality, (12) and (14) we have

∞

∑
k=0

(
k
n
− x

)2(
1+

k
n

)− γ∞
1+γ0

Vn,k(x)

�
[

∞

∑
k=0

(
k
n
− x

)4

Vn,k(x)

] 1
2
⎡
⎣ ∞

∑
k=0

(
1+

k
n

)− 2γ∞
1+γ0

Vn,k(x)

⎤
⎦

1
2

� C(γ0,γ∞)
ψ(x)

n
(1+ x)−

γ∞
1+γ0

and consequently I1 � Cnw−1(x) .
Again, by Hölder’s inequality and (6) we get for I2 :

I2 =
n(1+2x)

ψ(x)

∞

∑
k=0

∣∣∣∣ kn − x

∣∣∣∣w−1
(

k
n

)
Vn,k(x)

� n(1+2x)
ψ(x)

[
∞

∑
k=0

k
n
Vn,k(x)

]−γ0
[

∞

∑
k=0

(
1+

k
n

)− γ∞
1+γ0
∣∣∣∣ kn − x

∣∣∣∣
1

1+γ0
Vn,k(x)

]1+γ0

=
n(1+2x)x−γ0

ψ(x)

[
∞

∑
k=0

(
1+

k
n

)− γ∞
1+γ0
∣∣∣∣ kn − x

∣∣∣∣
1

1+γ0
Vn,k(x)

]1+γ0

.
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Let m is the smallest natural number such that m > 1
2(1+γ0)

. Then by Hölder’s inequal-
ity, (12) and (14) we get

∞

∑
k=0

(
1+

k
n

)− γ∞
1+γ0
∣∣∣∣ kn − x

∣∣∣∣
1

1+γ0
Vn,k(x)

�
[

∞

∑
k=0

(
k
n
− x

)2m

Vn,k(x)

] 1
2m(1+γ0)

⎡
⎣ ∞

∑
k=0

(
1+

k
n

) −2mγ∞
2m(1+γ0)−1

Vn,k(x)

⎤
⎦

2m(1+γ0)−1
2m(1+γ0)

� C(γ0,γ∞)
[

ψ(x)
n

] 1
2(1+γ0)

(1+ x)−
γ∞

1+γ0

and

I2 � C(γ0,γ∞)n(1+2x)
ψ(x)

[
ψ(x)

n

] 1
2

w−1(x)

� 2C(γ0,γ∞)n
1
2 w−1(x)

√
1+

1
x

� Cnw−1(x).

For I3 by (14) we have

I3 =
∞

∑
k=0

nw−1
(

k
n

)
Vn,k(x) � Cnw−1(x).

The proof of the lemma is complete. �

3. Proof of Theorem 1

The proof is based on

THEOREM 3. For w, defined by (1) there exists an absolute constant L such that
for n � L ∥∥∥wψ

3
2 D3VN

n g
∥∥∥� K(N)

√
n
∥∥wψD2g

∥∥ where lim
N→∞

K(N) = 0 (22)

holds for all g ∈W 2(wψ) .

Proof. Inequality (4.12) of [14] gives the following estimate of the third deriva-
tives of the N -th power of Baskakov operator∣∣∣D3VN

n g(x)
∣∣∣� n(n+1)

N−1

√
∑
N

Vn+3,kN (x)P(k1, ..kN ;n)Q2

×
√√√√∑

N

[∫ 1/n

0

∫ 1/n

0
D2g

(
k1

n
+u1 + v1

)
du1dv1

]2
Vn+3,kN (x)P(k1, ..kN ;n)
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where

∑
N

=
∞

∑
k1=0

· · ·
∞

∑
kN=0

, P(k1, ..kN ;n) =
N−1

∏
j=1

T2,k j

(
k j+1

n

)

and

T2,k(x) = n(n+1)
∫ 1/n

0

∫ 1/n

0
Vn+2,k(x+ t1 + t2)dt1dt2,

Instead of giving the definition of Q we use the estimate from Lemma 4.2 of [14] which
for 2 � N � n and n � 10 is

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)Q2 � CnNψ−1(x).

For the second factor, using (23) of Lemma 8 and (24) of Lemma 9 (below) we have

∑
N

[∫ 1/n

0

∫ 1/n

0
D2g

(
k1

n
+u1 + v1

)
du1dv1

]2
Vn+3,kN (x)P(k1, ..kN ;n)

�
∥∥wψD2g

∥∥2 ∑
N

[∫ 1/n

0

∫ 1/n

0
(wψ)−1

(
k1

n
+u1 + v1

)
du1dv1

]2
Vn+3,kN (x)P(k1, ..kN ;n)

� Cn−4
∥∥wψD2g

∥∥2 ∑
N

Vn+3,kN (x)P(k1, ..kN ;n)(wψ)−2
(

k1 +1
n

)

� Cn−4K1(N)
∥∥wψD2g

∥∥2 (wψ)−2 (x)

where

lim
N→∞

K1(N)
N

= 0.

Then,∣∣∣D3VN
n g(x)

∣∣∣� Cn(n+1)
N−1

√
CnNψ−1(x)

√
Cn−4K1(N)(wψ)−2 (x)

∥∥wψD2g
∥∥

= K(N)
√

nw−1(x)ψ−3/2(x)
∥∥wψD2g

∥∥
with

K(N) = C

√
K1(N)

N
. �

LEMMA 8. For α ∈ [−1,0] , β ∈ R there exists an absolute constant C such that

∫ 1/n

0

∫ 1/n

0

(
k
n

+u+ v

)α(
1+

k
n

+u+ v

)β
dudv � C

n2

(
k+1

n

)α(
1+

k+1
n

)β
.

(23)

Proof. Because of(
1+

k
n

+u+ v

)β
� C(β )

(
1+

k+1
n

)β
for 0 � u,v � 1

n
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we need to prove only

∫ 1/n

0

∫ 1/n

0

(
k
n

+u+ v

)α
dudv � C

n2

(
k+1

n

)α
.

By Hölder’s inequality we have

∫ 1/n

0

∫ 1/n

0

(
k
n

+u+ v

)α
dudv � n−2(1+α)

[∫ 1/n

0

∫ 1/n

0

(
k
n

+u+ v

)−1

dudv

]−α

.

Here,

∫ 1/n

0

∫ 1/n

0

(
k
n

+u+ v

)−1

dudv �
[∫ 1/n

0

(
k
n

+u

)− 1
2

du

]2

= 4

[(
k+1

n

) 1
2

−
(

k
n

) 1
2
]2

� 4
(k+1)n

and consequently

∫ 1/n

0

∫ 1/n

0

(
k
n

+u+ v

)α
dudv � n−2(1+α)

[
4

(k+1)n

]−α
=

4−α

n2

(
k+1

n

)α
. �

LEMMA 9. For w defined by (1), n,N ∈ N such that N � n−2
2 and n � |γ∞| and

x ∈ (0,∞) we have

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)(wψ)−2
(

k1 +1
n

)
� K1(N)(wψ)−2 (x), lim

N→∞

K1(N)
N

= 0.

(24)

Proof. For γ0 ∈ [−1,0) by Hölder’s inequality we get

∑
N

Vn+3,kN (x)P(k1, ..kN ;n) (wψ)−2
(

k1 +1
n

)

�
[
∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2(
1+

k1 +1
n

)−2
]1+γ0

×
⎡
⎣∑

N

Vn+3,kN (x)P(k1, ..kN ;n)
(

1+
k1 +1

n

)−2(γ0−γ∞)
γ0

⎤
⎦
−γ0

.

For the first factor on the right we have from lemma 4.3 of [14]

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2(
1+

k1 +1
n

)−2

� CN3/4 lnNψ−2(x). (25)
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For the second one we have

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

1+
k1 +1

n

)β

=
∞

∑
kN=0

...
∞

∑
k2=0

Vn+3,kN (x)
N−1

∏
j=2

T2,k j

(
k j+1

n

) ∞

∑
k1=0

(
1+

k1 +1
n

)β
T2,k1

(
k2

n

)
.

Now, by (13)

∞

∑
k1=0

(
1+

k1 +1
n

)β
T2,k1

(
k2

n

)
�
(

1+
C
n

)(
1+

k2 +1
n

)β
,

and inductively we obtain for N � n−2
2

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

1+
k1 +1

n

)β
�
(

1+
C
n

)N

(1+ x)β � C(1+ x)β . (26)

Consequently

∑
N

Vn+3,kN (x)P(k1, ..kN ;n) (wψ)−2
(

k1 +1
n

)

� C
[
N3/4 lnN

]1+γ0
ψ−2(1+γ0)(x)(1+ x)2(γ0−γ∞) = K1(N)(wψ)−2 (x)

with

K1(N) = C
[
N3/4 lnN

]1+γ0
.

For γ0 = 0 it is enough to prove it for γ∞ ∈ (−1,0) . Indeed, if γ∞ /∈ (−1,0) we can
choose an integer s such that −2(1+γ∞)� s �−2γ∞ . Then −2(1+γ∞)= s−2(1+γ∗∞)
where γ∗∞ ∈ (−1,0) and because of(

1+
k1 +1

n

)−2(1+γ∞)

Vn,k(x) =
(

1+
k1 +1

n

)s(
1+

k1 +1
n

)−2(1+γ∗∞)

Vn,k(x)

�
(

1+
C(s)

n

)
(1+ x)s

(
1+

k1 +1
n

)−2(1+γ∗∞)

Vn+s,k(x)

inductively we get

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2(
1+

k1 +1
n

)−2(1+γ∞)

�
(

1+
C
n

)N

(1+ x)2(γ∗∞−γ∞)

×∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2(
1+

k1 +1
n

)−2(1+γ∗∞)

.
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For γ∞ ∈ (−1,0) by Hölder’s inequality we have

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2(
1+

k1 +1
n

)−2(1+γ∞)

�
[
∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2(
1+

k1 +1
n

)−2
]1+γ∞

×
[
∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2
]−γ∞

.

For the first factor, again, we use the estimation (25). For the second one, using the
simple inequality

1
x2 � 2

[
1

x2(1+ x)2 +
1

(1+ x)2

]
and the estimations (25) and (13) we get

∑
N

Vn+3,kN (x)P(k1, ..kN ;n)
(

k1 +1
n

)−2

� CN3/4 lnNψ−2(x)

and the Lemma 9 follows. �

Proof of Theorem 1. For every g ∈W 2(wψ) such that f −g ∈C(w) we get from
(18) and (19)

‖w( f −Vn f )‖ � ‖w( f −g)‖+‖w(g−Vng)‖+‖wVn( f −g)‖

� 2‖w( f −g)‖+
C
n

∥∥wψD2g
∥∥� C

{
‖w( f −g)‖+

1
n

∥∥wψD2g
∥∥} .

Taking infimum on g∈W 2(wψ) such that f −g∈C(w) in the above inequality we get
the first inequality of Theorem 1.

For the second one we have

Kw

(
f ,

1
n

)
= inf

{
‖w( f −g)‖+

1
n

∥∥wψD2g
∥∥}� ‖w( f −Vn f )‖+

1
n

∥∥wψD2Vn f
∥∥

which means that it is sufficient to show that for some constant C

1
n

∥∥wψD2Vn f
∥∥� C‖w( f −Vn f )‖ . (27)

We have

1
n

∥∥wψD2Vn f
∥∥=

1
n

∥∥wψD2 (Vn f −VN+1
n f +VN+1

n f
)∥∥

� 1
n

∥∥wψD2Vn
(
f −VN

n f
)∥∥+

1
n

∥∥wψD2VN+1
n f

∥∥ .
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Applying (21) and (18) we get

1
n

∥∥wψD2Vn
(
f −VN

n f
)∥∥� C1

∥∥w( f −VN
n f )
∥∥� C1

N−1

∑
i=0

∥∥w(V i
n f −Vi+1

n f
)∥∥

� C1N ‖w( f −Vn f )‖ .

For the second term, after using (20), (22) and (18) we obtain

1
2n

∥∥wψD2VN+1
n f

∥∥�
∥∥∥w(VN+2

n f −VN+1
n f − ψ

2n
D2VN+1

n f
)∥∥∥

+
∥∥w(VN+2

n f −VN+1
n f

)∥∥
� C2n

−3/2
∥∥∥wψ3/2D3VN+1

n f
∥∥∥+C3‖w( f −Vn f )‖

� C2n
−1K(N)

∥∥wψD2Vn f
∥∥+C3‖w( f −Vn f )‖ ,

i.e.

1
n

∥∥wψD2Vn f
∥∥� (C1N +2C3)‖w( f −Vn f )‖+2C2n

−1K(N)
∥∥wψD2Vn f

∥∥ .
Because of limN→∞ K(N) = 0 we can choose N such that 2C2K(N) � 1

2 and (27)
follows.

This completes the proof of Theorem 1. �
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